{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "67ba05a9", "metadata": {}, "outputs": [], "source": [ "import sys\n", "import json\n", "from IPython import display\n", "import pandas as pd\n", "import numpy as np\n", "import category_encoders as ce\n", "from sklearn.ensemble import RandomForestClassifier\n", "from sklearn.model_selection import train_test_split\n", "from sklearn.metrics import ConfusionMatrixDisplay, RocCurveDisplay, precision_score, recall_score\n", "from sklearn.pipeline import Pipeline\n", "\n", "# parent directory to work with dev\n", "sys.path.insert(0, '..')\n", "import verifyml.model_card_toolkit as mctlib\n", "from verifyml.model_card_toolkit import model_card_pb2, ModelCard\n", "from verifyml.model_card_toolkit.utils.tally_form import tally_form_to_mc\n", "from verifyml.model_tests.utils import plot_to_str\n", "from verifyml.model_tests.FEAT import (\n", " SubgroupDisparity,\n", " MinMaxMetricThreshold,\n", " Perturbation,\n", " SHAPFeatureImportance,\n", " FeatureImportance,\n", " DataShift\n", ")" ] }, { "cell_type": "code", "execution_count": 2, "id": "4a4b10a8", "metadata": {}, "outputs": [], "source": [ "# Credit card fraud Dataset\n", "df = pd.read_csv(\"../data/fraud.csv\")\n", "x = df.drop(\"is_fraud\", axis=1)\n", "y = df[\"is_fraud\"]\n", "\n", "\n", "# Train-Test data Split\n", "x_train, x_test, y_train, y_test = train_test_split(\n", " x, y, test_size=0.5, random_state=50\n", ")\n", "\n", "\n", "## Build ML model with protected attributes as model features\n", "\n", "# Apply one hot encoding to categorical columns (auto-detect object columns) and random forest model in the pipeline\n", "estimator = Pipeline(steps=[('onehot', ce.OneHotEncoder(use_cat_names=True)),\n", " ('classifier', RandomForestClassifier(n_estimators=4, max_features=\"sqrt\", random_state = 882))])\n", "\n", "\n", "# Fit, predict and compute performance metrics\n", "estimator.fit(x_train, y_train)\n", "\n", "output = x_test.copy() # x_test df with output columns, to be appended later\n", "y_pred = estimator.predict(x_test)\n", "y_probas = estimator.predict_proba(x_test)[::, 1]\n", "\n", "precision_train = round(precision_score(y_train, estimator.predict(x_train)),3)\n", "recall_train = round(recall_score(y_train, estimator.predict(x_train)), 3)\n", "precision_test = round(precision_score(y_test, y_pred),3)\n", "recall_test = round(recall_score(y_test, y_pred), 3)\n", "\n", "\n", "# Add output columns to this dataframe, to be used as a input for feat tests\n", "output[\"truth\"] = y_test\n", "output[\"prediction\"] = y_pred\n", "output[\"prediction_probas\"] = y_probas\n", "\n", "\n", "# Dataframe with categorical features encoded\n", "x_train_encoded = estimator[0].transform(x_train)\n", "x_test_encoded = estimator[0].transform(x_test)\n", "\n", "\n", "# Get feature importance values\n", "df_importance = pd.DataFrame(\n", " {\"features\": x_test_encoded.columns, \"value\": estimator[-1].feature_importances_}\n", ")" ] }, { "cell_type": "markdown", "id": "05e72fb8", "metadata": {}, "source": [ "## Get confusion matrix and ROC curve on train/test set" ] }, { "cell_type": "code", "execution_count": 3, "id": "913baf07", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAT8AAAEGCAYAAAAT05LOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAeyElEQVR4nO3df5xVVf3v8deb4TeIgiAhoIChBqSmSP6orqYFll8hH5mYprcszWvaLeub1MOvfetSPq7VN62w+Kqpt9IoLdDyV/RDLRXxt6DIKAojIAJKCgrMzOf+sffQYZw5c/YwZ86Z2e+nj/2YfdZee691Bvi49l5rr6WIwMwsb3pUugJmZpXg4GdmueTgZ2a55OBnZrnk4GdmudSz0hUoNHRITYwZ3avS1bAMnn2if6WrYBm8xWa2xVbtyjWmHjsgNmxsKCnvw09svTMipu1KeeVSVcFvzOheLLpzdKWrYRlM3fuQSlfBMngwFu7yNTZsbGDRnfuUlLdmxPKhu1xgmVRV8DOz6hdAI42VrsYu8zM/M8skCLZHQ0lbWyRdK2mdpKeapV8gaZmkJZL+b0H6LEm16bGpBemHSXoyPXalpDZv7R38zCyzxhL/K8F1wE7PBCUdC0wHDoqIicD30vQJwExgYnrOHEk16WlXAecA49OtzeeMDn5mlkkQNERpW5vXirgH2Ngs+TzgsojYmuZZl6ZPB26KiK0RsQKoBaZIGgEMioj7I3lf9wZgRltlO/iZWWaNREkbMFTS4oLtnBIuvz/wfkkPSvqbpMPT9JHAqoJ8dWnayHS/eXpR7vAws0wCaKDkCVHWR8TkjEX0BAYDRwCHA/MkjQNaeo4XRdLbLMTMLJPG0oNfe9QBt6S3sIskNQJD0/TCsXCjgNVp+qgW0ovyba+ZZRLA9oiStnb6PfBBAEn7A72B9cACYKakPpLGknRsLIqINcDrko5Ie3nPBOa3VYhbfmaWSRBZbnuLknQjcAzJs8E64FLgWuDadPjLNuCstBW4RNI8YClQD5wfsWM8zXkkPcf9gNvTrSgHPzPLJqChg+56I+K0Vg6d0Ur+2cDsFtIXA5OylO3gZ2aZJG94dH0OfmaWkWhosYO1a3HwM7NMkg4PBz8zy5lknJ+Dn5nlUKNbfmaWN275mVkuBaKhG7wf4eBnZpn5ttfMcicQ26Km7YxVzsHPzDJJBjn7ttfMcsgdHmaWOxGiIdzyM7McanTLz8zyJunw6Pqho+t/AzPrVO7wMLPcavA4PzPLm+7yhkfX/wZm1ukao0dJW1skXStpXTplffNjX5EUkoYWpM2SVCtpmaSpBemHSXoyPXZlupZHUQ5+ZpZJMrFBj5K2ElwHTGueKGk08CFgZUHaBGAmMDE9Z46kpldNrgLOIVnUaHxL12zOwc/MMgnE9qgpaWvzWhH3ABtbOPRfwL+z8/q704GbImJrRKwAaoEpkkYAgyLi/nShoxuAGW2V7Wd+ZpZJBGUd5CzpJOCliHi82d3rSOCBgs91adr2dL95elEOfmaWkbIMch4qaXHB57kRMbfVK0v9gW8AH26x4LeLIulFOfiZWSZBppbf+oiYnOHy+wFjgaZW3yjgEUlTSFp0owvyjgJWp+mjWkgvys/8zCyzDuzw2ElEPBkRe0XEmIgYQxLYDo2ItcACYKakPpLGknRsLIqINcDrko5Ie3nPBOa3VZaDn5llEojGKG1ri6QbgfuBAyTVSTq71XIjlgDzgKXAHcD5EdGQHj4PuJqkE+Q54Pa2yvZtr5llkixd2TGhIyJOa+P4mGafZwOzW8i3GJiUpWwHPzPLyIuWm1kOBZT09ka1c/Azs8zc8jOz3ImQW35mlj9Jh4dXbzOz3PEaHmaWQ0mHh5/5mVkOdYfJTB38zCyTpjc8ujoHPzPLzAsYmVnuRMD2Rgc/M8uZ5LbXwc/McshveOTU9780mgf/NIg9htYz9y/LdqTPv2YoC34+lB49g/ce908+e8maHcfW1fXic8ccyBkXreWU814B4OufHMfGdb1oqIdJ793MF75TR03XHzvaZQ3bextfvWIlg/eqJxrhj7/Yk99fM6zS1ao6HupSAknTgCuAGuDqiLisnOV1lg+fupGTPr2ey7+4z460x/4+kH/cuTtXLVxG7z7Ba+t3/tX+9JsjOfyDr++U9o2fvcCA3RqJgG9/bgz33roHx8x4rTO+grWgoV7M/dbe1D7Zn34DGvjxHc/yyD27sXJ530pXrcr4treodEm5n5AsP1cHPCRpQUQsLVeZneXdR2xm7areO6XddsOenPqFl+ndJ1k6YI+h9TuO/eP23Rmxzzb69m/c6ZwBuyWfG+qhfptaXonAOs3Gdb3YuK4XAG9urmFVbV+Gjtju4NeCDGt4VK1yhu8pQG1EPB8R24CbSJae65Zeeq4vTz04kAs/Op6vnPxOlj3WD4C3tvRg3py9OOOitS2e9/XTxnHqQZPoN7CR95/4WifW2IoZPmob+016k2ce6V/pqlSdpLe3pqStmpUz+I0EVhV8bnE5OUnnSFosafErGxqaH+4yGhrgjU01XHHbcj57yWpmnzuGCLjh8nfwsc+9Qr8BjS2e950bn+fGR5ewfZt47L6BnVxra0nf/g1ccvUL/PQ/9mbLG9X9D7gSOnIa+0oqZ/AraTm5iJgbEZMjYvKwPbvuX7ShI7Zz9Ec2IcGB79lCjx6waWMNzzzan2v+z96cOWUCv7t6GDf9aDjzrx2607m9+wZHfngT99+5e4Vqb01qegaXXP0Cf75lMH+/fY9KV6dqNabLV7a1tUXStZLWSXqqIO1ySc9IekLS7yTtUXBslqRaScskTS1IP0zSk+mxK9Vswd+WlDP4tbbMXLd01LRNO1pudc/1Yfs2sfuQBn7w+1puWLSUGxYt5WOffYWZF7zM9M+s583NPdjwcvLItaEeFi0cxOh3bq3kVzCCL39/FauW9+WWue7lbU1Tb28HtfyuA6Y1S7sbmBQRBwHPArMAJE0AZgIT03PmpH0LAFcB55Cs6Da+hWu+TTl7ex8CxqdLzL1EUulPlrG8TvPd8/blifsHsmljT04/bAKfumgtU2du5AdfHs05xx5Ar17BV69YSbH/97y1pQff/J/j2L5NNDTAIUe/wYlnru+8L2FvM3HKZo4/5VWeX9qXOXcnQ5h+/t0RPPTnQRWuWfXpqN7eiLhH0phmaXcVfHwA+Hi6Px24KSK2Aisk1QJTJL0ADIqI+wEk3QDMoI0V3MoW/CKiXtIXgDtJhrpcmy491+XNuurFFtO/9uOVRc/71Ff+1ekxeFg9P7r92Q6tl+2aJYsGMnXvgytdjaoXIepLD35DJS0u+Dw3IuZmKO4zwK/T/ZEkwbBJUz/C9nS/eXpRZR3nFxF/BP5YzjLMrPNl6MxYHxGT21OGpG8A9cAvm5JayBZF0ovyGx5mlklnvOEh6SzgROC4iGgKZK31I9Sl+83Ti+r6w7TNrNOVc6hL+mbY14CTImJLwaEFwExJfdK+hPHAoohYA7wu6Yi0l/dMYH5b5bjlZ2aZdORkppJuBI4heTZYB1xK0rvbB7g7HbHyQER8PiKWSJoHLCW5HT4/IpoGB59H0nPcj6Sjo2hnBzj4mVk7dNTrbRFxWgvJ1xTJPxuY3UL6YmBSlrId/Mwskwio92SmZpZH1f7qWikc/MwsEy9gZGa5FQ5+ZpZH3WE+Pwc/M8skws/8zCyXRIN7e80sj/zMz8xyx6u3mVk+RfLcr6tz8DOzzNzba2a5E+7wMLO88m2vmeWSe3vNLHciHPzMLKc81MXMcqk7PPPr+l02ZtapAtHY2KOkrS2SrpW0TtJTBWlDJN0taXn6c3DBsVmSaiUtkzS1IP0wSU+mx65M1/IoysHPzDKLErcSXAdMa5Z2MbAwIsYDC9PPSJoAzAQmpufMkVSTnnMVcA7JokbjW7jm2zj4mVk2aYdHKVubl4q4B9jYLHk6cH26fz0woyD9pojYGhErgFpgiqQRwKCIuD9d5vKGgnNa5Wd+ZpZdeZ/5DU+XoyQi1kjaK00fCTxQkK8uTdue7jdPL8rBz8wyyzDUZaikxQWf50bE3HYW21KhUSS9qFaDn6QfFbtARFzY1sXNrPsJoLGx5OC3PiImZyziZUkj0lbfCGBdml4HjC7INwpYnaaPaiG9qGItv8VFjplZXgVQ3nF+C4CzgMvSn/ML0n8l6QfA3iQdG4siokHS65KOAB4EzgR+1FYhrQa/iLi+8LOkARGxuT3fxMy6l44a5yfpRuAYktvjOuBSkqA3T9LZwErglKTMWCJpHrAUqAfOj4iG9FLnkfQc9wNuT7ei2nzmJ+lIkhXUBwL7SDoYODci/leG72hm3UkHBb+IOK2VQ8e1kn82MLuF9MXApCxllzLU5YfAVGBDWsjjwAeyFGJm3Ulpw1yq/f3fknp7I2JVswHTDa3lNbMc6Aavt5US/FZJOgoISb2BC4Gny1stM6taAVF6b2/VKuW29/PA+SSDBl8CDkk/m1luqcSterXZ8ouI9cDpnVAXM+squsFtb5stP0njJN0q6ZV09oX5ksZ1RuXMrEp14MwGlVLKbe+vgHnACJKBhb8BbixnpcysijUNci5lq2KlBD9FxP+LiPp0+wVVH9PNrJwiStuqWbF3e4eku3+RdDFwE0nQOxX4QyfUzcyqVTfo7S3W4fEwO8+YcG7BsQC+Xa5KmVl1U5W36kpR7N3esZ1ZETPrIrpAZ0YpSnrDQ9IkYALQtyktIm4oV6XMrJpVf2dGKUqZ2OBSklkXJgB/BE4A7iOZKtrM8qgbtPxK6e39OMkMC2sj4tPAwUCfstbKzKpbY4lbFSvltvfNiGiUVC9pEMmsqh7kbJZX5Z/MtFOUEvwWS9oD+G+SHuA3gEXlrJSZVbdu3dvbpGDS0p9KuoNkibgnylstM6tq3Tn4STq02LGIeKQ8VTIzK79iLb/vFzkWwAc7uC4sf2ogJ4w/uqMva2X03OUHVboKlsHWHz7QdqYSdNRtr6QvAZ8liSlPAp8G+gO/BsYALwCfiIhX0/yzgLNJJlS+MCLubG/ZxQY5H9vei5pZNxZ0yOttkkaSTI48ISLeTBcnmkkyrG5hRFyWvlp7MfA1SRPS4xNJJln5k6T9CxYxyqSUoS5mZjvruCmtegL9JPUkafGtBqYDTatHXg/MSPenAzdFxNaIWAHUAlPa+xUc/MwsM0VpG8mSlIsLtnOarhERLwHfI1mecg2wKSLuAoZHxJo0zxpgr/SUkcCqgmrUpWntUtLrbWZmOyn9md/6iJjc0gFJg0lac2OB14DfSDqjyLVautdu99PHUmZylqQzJP1H+nkfSe1uappZN9Axt73HAysi4pWI2A7cAhwFvCxpBED6c12avw4YXXD+KJLb5HYp5bZ3DnAk0LS48OvAT9pboJl1baXe8pbQI7wSOEJSfyVr4x5HsjLkAuCsNM9ZwPx0fwEwU1IfSWOB8ezCCxel3Pa+NyIOlfQoQES8mi5haWZ51QG9vRHxoKTfAo8A9cCjwFxgIDBP0tkkAfKUNP+StEd4aZr//Pb29EJpwW+7pBrSRqykYVT9K8tmVk4dNc4vIi4FLm2WvJWkFdhS/tnA7I4ou5Tb3iuB3wF7SZpNMp3VdzqicDProrrB6m2lvNv7S0kPk0RiATMi4umy18zMqlNpz/OqXimTme4DbAFuLUyLiJXlrJiZVbE8BD+SldqaFjLqSzImZxnJKyZmlkPqBk/9S7ntfXfh53S2l3NbyW5m1iVkfsMjIh6RdHg5KmNmXUQebnslfbngYw/gUOCVstXIzKpbXjo8gN0K9utJngHeXJ7qmFmX0N2DXzq4eWBEfLWT6mNmXUF3Dn6SekZEfbHp7M0sf0T37+1dRPJ87zFJC4DfAJubDkbELWWum5lVoxw98xsCbCBZs6NpvF+QTD9jZnnUzYPfXmlP71P8K+g16QZf3czarRtEgGLBr4ZkapkOnT3VzLq+7n7buyYivtVpNTGzrqObB79dn63QzLqf6P69vS1OJmhm1h1afq1OZhoRGzuzImbWdXTQGh5I2kPSbyU9I+lpSUdKGiLpbknL05+DC/LPklQraZmkqbvyHbxur5ll13EzOV8B3BERBwIHkyxgdDGwMCLGAwvTz0iaAMwkmU5vGjAnfQutXRz8zCybUgNfG8FP0iDgA8A1ABGxLSJeI1nL9/o02/XAjHR/OnBTRGyNiBVALdDuZXQd/MwsE9Fht73jSGaI+rmkRyVdLWkAMDwi1gCkP/dK848EVhWcX5emtYuDn5llliH4DZW0uGA7p+AyPUleob0qIt5D8vrsxcWKbSGt3V0vmSczNTPLEHLWR8TkVo7VAXUR8WD6+bckwe9lSSMiYo2kEcC6gvyjC84fBazOVO8CbvmZWXYd8MwvItYCqyQdkCYdR7Ig+QLgrDTtLGB+ur8AmCmpj6SxwHiSCVjaxS0/M8umY2d1uQD4paTewPPAp0kaZfMknQ2sBE4BiIglkuaRBMh64PyIaGhvwQ5+ZpZdBwW/iHgMaOm2uMWXLCJiNjC7I8p28DOzzLr7621mZi3q7rO6mJm9Xelvb1Q1Bz8zy87Bz8zypukNj67Owc/MMlNj149+Dn5mlo2f+ZlZXvm218zyycHPzPLILT8zyycHPzPLnRys3mZm9jYe52dm+RVdP/o5+JlZZm752dtc95eH2bK5hsZGaKgXXzz5YE6/YCXTPrGOTa8mv+7rv78vD/1tcBtXsnL69IGP84n9niGAZa/tydfuP4Z+Peu54n13M2rA69Rt3o0L7/sw/9zWB4DPT3yEU/Z7hoYQ3178Pu5dM7p4Ad2ZBzkXJ+la4ERgXURMKlc51ejiT03kn6/22int99eN4OZr2r3QlHWg4f3e4MwDnmLabaeytaEnV77vLk4cU8s7d3+V+9eO4mdL38O5Ex7l3AmPcvljR/DOQRv56L7PccJtp7JXv83ccNxtHH/rTBojv6tAdIcOj3L+6V1HsrCwWdXpqUb61tRTo0b69qxn3ZYBHD/qBW55fn8Abnl+fz40egUAx49+gT+8uB/bGmuo2zyIF18fxMF7rit2+W5PjaVt1axswS8i7gE2luv61SoCZv98KVf+7nFOOHXtjvR/O2Mtc259jC99t5aBg+orWEN7+c2BXP30wdwz4xfcf/INvL6tN/etHc3Qvm/yylsDAHjlrQHs2edNAIb328yazQN3nL92y0CG99tckbpXhSD5i17KVgJJNem6vbeln4dIulvS8vTn4IK8syTVSlomaequfI2Kt9slndO0pue2eKvS1dllF818NxfMOJhLzn4XJ56+lkmHb+IPv3oHnznuUM4/6WA2ruvF52a9UOlq5tqg3ls5ftQLHDv/dI665VP071nP9DHPtppfLawWGy0uIZsfHbRoeZMvAk8XfL4YWBgR44GF6WckTQBmAhNJ7irnSKpp73eoePCLiLkRMTkiJvdW30pXZ5dtXNcbgE0be/OPu4dwwEFv8NqG3jQ2ighx+7zh7H/Q6xWuZb4d/Y466t4YxMat/aiPGu5cNZZDh61l/Vv9GNY3adEN67uZDVv7AbB2ywBGDHhjx/nv6P8G697sX5G6V40OWLoSQNIo4KPA1QXJ04Hr0/3rgRkF6TdFxNaIWAHUAlPa+xUqHvy6kz79Gug3oGHH/qHv28QLz/Zn8LBtO/Ic9aGNvPhszv/hVNjqzQM5ZOjL9K3ZDgRHveMlajcNZmHdGE4el7QATx73LH+qGwPAwroxfHTf5+jdo4FRA/7Jvrtt4vENe1XuC1RY0yDnElt+Q5vu7NLtnGaX+yHw70DhE8LhEbEGIP3Z9MseCawqyFeXprWLh7p0oMFDt3PJT54BoKZn8Ndbh/HwvYP5yuXLGfeuzRDw8kt9uPKS/Spc03x7fMNw7lg5jvkn3ExDiKWvDuXXtRPo33M7V77/bk7Z72lWb9mNC+79EADLNw3hjy+O444Tf019iG8ufn+ue3qJyDKZ6fqIaGlpSiQ1jQZ5WNIxJVyrpWcN7R50U86hLjcCx5BE/jrg0oi4plzlVYO1q/py/kmHvC39e18d3/mVsaKuePJwrnjy8J3Stm2r4cyF/9Zi/quWHMZVSw7rjKp1DR0zzu9o4CRJHwH6AoMk/QJ4WdKIiFgjaQTQ1LVeBxQOsBwFrG5v4eXs7T0tIkZERK+IGNXdA59ZnnREh0dEzEpjwxiSjow/R8QZwALgrDTbWcD8dH8BMFNSH0ljgfHAovZ+B9/2mlk2AZR3DY/LgHmSzgZWAqcARMQSSfOApUA9cH5ENLS3EAc/M8uug2NfRPwV+Gu6vwE4rpV8s4HZHVGmg5+ZZeaJDcwsl7x0pZnlj2d1MbM8SgY5d/3o5+BnZtlV+YwtpXDwM7PM3PIzs/zxMz8zy6dM7/ZWLQc/M8vOt71mljtetNzMcsstPzPLpa4f+xz8zCw7NXb9+14HPzPLJvAgZzPLHxEe5GxmOeXgZ2a51A2CX46XoDKzdml65lfKVoSk0ZL+IulpSUskfTFNHyLpbknL05+DC86ZJalW0jJJU3flazj4mVlmamwsaWtDPXBRRLwLOAI4X9IE4GJgYUSMBxamn0mPzQQmAtOAOZJq2vsdHPzMLKNIbntL2YpdJWJNRDyS7r8OPE2yCPl04Po02/XAjHR/OnBTRGyNiBVALTClvd/Cwc/Msgk6JPgVkjQGeA/wIDA8ItZAEiCBvdJsI4FVBafVpWnt4g4PM8uu9HF+QyUtLvg8NyLmFmaQNBC4GfjfEfFPSa1dq6UD7e55cfAzs8wyjPNbHxGTW72O1Isk8P0yIm5Jk1+WNCIi1kgaAaxL0+uA0QWnjwJWZ6v5v/i218yy64DbXiVNvGuApyPiBwWHFgBnpftnAfML0mdK6iNpLDAeWNTer+CWn5llEwENHfJ+29HAp4AnJT2Wpn0duAyYJ+lsYCVwSlJsLJE0D1hK0lN8fkQ0tLdwBz8zy64DBjlHxH20/BwP4LhWzpkNzN7lwnHwM7P26AZveDj4mVk2AXgNDzPLn4Do+nNaOfiZWTZBR3V4VJSDn5ll52d+ZpZLDn5mlj/Z3tutVg5+ZpZNAF7AyMxyyS0/M8ufDnu9raIc/Mwsm4DwOD8zyyW/4WFmueRnfmaWOxHu7TWznHLLz8zyJ4iGds8hWjUc/MwsG09pZWa55aEuZpY3AYRbfmaWO+HJTM0sp7pDh4eiirqsJb0CvFjpepTBUGB9pSthmXTXP7N9I2LYrlxA0h0kv59SrI+IabtSXrlUVfDrriQtLrZqvVUf/5l1fz0qXQEzs0pw8DOzXHLw6xxzK10By8x/Zt2cn/mZWS655WdmueTgZ2a55OBXRpKmSVomqVbSxZWuj7VN0rWS1kl6qtJ1sfJy8CsTSTXAT4ATgAnAaZImVLZWVoLrgKoclGsdy8GvfKYAtRHxfERsA24Cple4TtaGiLgH2Fjpelj5OfiVz0hgVcHnujTNzKqAg1/5qIU0jysyqxIOfuVTB4wu+DwKWF2huphZMw5+5fMQMF7SWEm9gZnAggrXycxSDn5lEhH1wBeAO4GngXkRsaSytbK2SLoRuB84QFKdpLMrXScrD7/eZma55JafmeWSg5+Z5ZKDn5nlkoOfmeWSg5+Z5ZKDXxciqUHSY5KekvQbSf134VrXSfp4un91sUkXJB0j6ah2lPGCpLet8tVaerM8b2Qs65uSvpK1jpZfDn5dy5sRcUhETAK2AZ8vPJjOJJNZRHw2IpYWyXIMkDn4mVUzB7+u617gnWmr7C+SfgU8KalG0uWSHpL0hKRzAZT4saSlkv4A7NV0IUl/lTQ53Z8m6RFJj0taKGkMSZD9UtrqfL+kYZJuTst4SNLR6bl7SrpL0qOSfkbL7zfvRNLvJT0saYmkc5od+35al4WShqVp+0m6Iz3nXkkHdshv03KnZ6UrYNlJ6kkyT+AdadIUYFJErEgDyKaIOFxSH+Dvku4C3gMcALwbGA4sBa5tdt1hwH8DH0ivNSQiNkr6KfBGRHwvzfcr4L8i4j5J+5C8xfIu4FLgvoj4lqSPAjsFs1Z8Ji2jH/CQpJsjYgMwAHgkIi6S9B/ptb9AsrDQ5yNiuaT3AnOAD7bj12g55+DXtfST9Fi6fy9wDcnt6KKIWJGmfxg4qOl5HrA7MB74AHBjRDQAqyX9uYXrHwHc03StiGhtXrvjgQnSjobdIEm7pWWcnJ77B0mvlvCdLpT0sXR/dFrXDUAj8Os0/RfALZIGpt/3NwVl9ymhDLO3cfDrWt6MiEMKE9IgsLkwCbggIu5slu8jtD2llkrIA8njkiMj4s0W6lLy+5KSjiEJpEdGxBZJfwX6tpI90nJfa/47MGsPP/Prfu4EzpPUC0DS/pIGAPcAM9NngiOAY1s4937gf0gam547JE1/HditIN9dJLegpPkOSXfvAU5P004ABrdR192BV9PAdyBJy7NJD6Cp9fpJktvpfwIrJJ2SliFJB7dRhlmLHPy6n6tJnuc9ki7C8zOSFv7vgOXAk8BVwN+anxgRr5A8p7tF0uP867bzVuBjTR0ewIXA5LRDZSn/6nX+T+ADkh4huf1e2UZd7wB6SnoC+DbwQMGxzcBESQ+TPNP7Vpp+OnB2Wr8leGkAayfP6mJmueSWn5nlkoOfmeWSg5+Z5ZKDn5nlkoOfmeWSg5+Z5ZKDn5nl0v8HX2hqmt3ovg4AAAAASUVORK5CYII=\n", "text/plain": [ "

" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEGCAYAAABo25JHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAm50lEQVR4nO3debxVZd338c9XZsEhEUtABAVNcEA9ImTOOZvm45Dzo1lqOdTLzLRMzbu7LNRHzYxwCE1u0EwTzakJLY1bAREBRVBRBgnEIQUZDvyeP9Y6uM9hn7PXGdY+HPb3/Xrt195r/q19YP32dV1rXZciAjMzq1wbtXYAZmbWupwIzMwqnBOBmVmFcyIwM6twTgRmZhWufWsH0Fhbbrll9O3bt7XDMDNrUyZNmvRuRPQotqzNJYK+ffsyceLE1g7DzKxNkfRWfctcNWRmVuGcCMzMKpwTgZlZhXMiMDOrcE4EZmYVLrdEIOkuSYskTatnuSTdImm2pKmS9sgrFjMzq1+eJYJRwOENLD8CGJC+zgV+nWMsZmZWj9yeI4iIZyT1bWCVY4F7IukHe4KkzSVtHRHv5BXT+mDV6jUsXVHN0pWrk/cV1SxdsZqlK6s/nV65mmUrV4O7CDezAlV9t2C/HYo+E9YsrflAWS9gbsH0vHTeOolA0rkkpQb69OlTluAAIoLlq9bw8Ypqlq2sTt9XJ+8rkgv5p8tWf7pOrQt77c8rV6/JfHwpx5Mzszbn/P233+ASQbHLXNGfwBExEhgJUFVV1aI/k2/882vMWPBh0Yv80pXVrMl4tI7tNmLjTu3o2rE9XTu1o2un9nTt2J4em3RK56WvjumygnW6dmrPxh3b0a1mnU7t6NKhHXImMLMyaM1EMA/YpmC6N7CgnAFMnPMet/x1Fttt2ZUtu3Vii64d2WaLjT+9WKcX6W6d2rFxx/ZFLuDt1q7Tsb1vwDKztqk1E8E44EJJY4G9gQ/L3T4w4uk3+MzGHfjTxfvSpWO7ch7azGy9kVsikDQGOADYUtI84GqgA0BEjAAeA44EZgPLgLPziqWY2Ys+4i+v/JtvHzzAScDMKlqedw2dUmJ5ABfkdfxSbn/mTTp32Igzh23bWiGYma0XKrJi+9//Wc5DL87nxD23oXu3Tq0djplZq6rIRPDbZ+dQvWYNX9+3X2uHYmbW6iouEXy0fBWjJ7zFEbtszbbdu7Z2OGZmra7iEsHY5+fy0Ypqzttvu9YOxcxsvVBRiWBl9Rru/OebDNuuO7v23ry1wzEzWy9UVCIY99ICFv5nOeft79KAmVmNTLePStoI2A3oCXwCTI+If+cZWB7u+McbfP5zm7B/Dn11mJm1VQ0mAknbA98HvgTMAhYDnYEdJC0DfgPcHRHZe1JrRW8sXsrZX+zrPnzMzAqUKhH8hGScgPPSB8DWkrQVcCpwBnB3PuG1rNURtN/IScDMrFCDiaChp4MjYhFwU0sHlKfVa4J2Lg2YmdXS5MZiSYe0ZCB5W5P2J72RSwRmZrU0566hO1ssijJYndZsuURgZlZbqcbicfUtArq3fDj5We0SgZlZUaUai/cFTgc+rjNfwJBcIsrJmpoSgROBmVktpRLBBGBZRDxdd4GkmfmElI+aEoGrhszMait119ARDSzbr+XDyc+a9EkHVw2ZmdVWMV1MfNpY3MqBmJmtZyonEaxxG4GZWTEVkwhqGotdNWRmVlvFJAI3FpuZFZc5EUi6pqHp9Z2fIzAzK64xJYJJJabXa2v8ZLGZWVGZE0FEPNLQ9PrOjcVmZsWV6mLil0DUtzwiLm7xiHLixmIzs+JKPVk8sSxRlMHq9IEyVw2ZmdVW6sniWgPOSOoaEUvzDSkfn1YNtXIgZmbrmUyXRUnDJM0AXkmnd5N0W66RtbC1VUMuEZiZ1ZL19/FNwGHAEoCIeAloU30NubHYzKy4xtw1NLfOrNUtHEuuVrux2MysqFKNxTXmSvoCEJI6AheTVhO1FWv8ZLGZWVFZSwTnAxcAvYD5wOB0us1w1ZCZWXGZEkFEvBsRp0XEZyOiR0ScHhFLSm0n6XBJMyXNlnR5keWbSXpE0kuSpks6uyknkcVqNxabmRWV9a6h7dIL9mJJiyQ9LGm7Etu0A34FHAEMBE6RNLDOahcAMyJiN+AA4Ia06qnF1QxM4xKBmVltWauG/ge4H9ga6An8HhhTYpshwOyIeCMiVgJjgWPrrBPAJpIEdAPeA6ozxtQoawem8XMEZma1ZL0sKiJ+FxHV6eteGuh6ItULKLzTaF46r9CtwE7AAuBl4NsRsWadg0vnSpooaeLixYszhlxbTWOxq4bMzGprMBFI2kLSFsDfJV0uqa+kbSVdBvypxL6LXXHrJo/DgCkkpYzBwK2SNl1no4iREVEVEVU9evQocdji3FhsZlZcqdtHJ5FcvGuunucVLAvgvxrYdh6wTcF0b5Jf/oXOBq6LiABmS3oT+DzwfIm4Gs2NxWZmxZXqa6hfM/b9AjBAUj+SW05PBk6ts87bwMHAPyR9FtgReKMZx6zXGpcIzMyKyvpAGZJ2Jrn7p3PNvIi4p771I6Ja0oXAk0A74K6ImC7p/HT5CJISxShJL5OUOr4fEe826UxKSPOASwRmZnVkSgSSria5vXMg8BjJLaH/BOpNBAAR8Vi6fuG8EQWfFwCHNiriZnIeMDOrLetdQyeQVOEsjIizgd2ATrlFZWZmZZM1EXyS3tZZnd7Vswho8IEyMzNrG7K2EUyUtDlwO8mdRB+Tw509ZmZWfpkSQUR8K/04QtITwKYRMTW/sMzMrFxKDV6/R0PLImJyy4dkZmblVKpEcEMDywI4qAVjMTOzVlDqgbIDyxWImZm1DvfFaWZW4ZwIzMwqnBOBmVmFyzpCmSSdLumqdLqPpCH5hmZmZuWQtURwGzAMOCWd/ohkGEozM2vjsj5ZvHdE7CHpRYCIeD+vsYXNzKy8spYIVqWD0QeApB7AOkNKmplZ25M1EdwCPARsJem/Sbqg/mluUZmZWdlk7WtotKRJJF1RC/hKRLySa2RmZlYWWQemuRm4LyLcQGxmtoHJWjU0GbhS0mxJwyVV5RmUmZmVT6ZEEBF3R8SRwBDgNeDnkmblGpmZmZVFY58s7g98HugLvNri0ZiZWdllfbK4pgRwLTAd2DMivpxrZGZmVhZZHyh7ExgWEe/mGYyZmZVfqRHKPh8Rr5KMT9xHUp/C5R6hzMys7StVIrgEOJfiI5V5hDIzsw1AqRHKzk0/HhERywuXSeqcW1RmZlY2We8aei7jPDMza2NKtRF8DugFdJG0O0n3EgCbAhvnHJuZmZVBqTaCw4CzgN7AjQXzPwJ+kFNMZmZWRqXaCO4G7pZ0fET8oUwxmZlZGZWqGjo9Iu4F+kq6pO7yiLixyGZmZtaGlGos7pq+dwM2KfJqkKTDJc1MO6u7vJ51DpA0RdJ0SU83InYzM2sBpaqGfpO+/7ixO05HNPsVcAgwD3hB0riImFGwzuYk4yEfHhFvS9qqsccxM7PmydrX0C8kbSqpg6S/SnpX0uklNhsCzI6INyJiJTAWOLbOOqcCD0bE2wARsaixJ2BmZs2T9TmCQyPiP8DRJL/udwC+V2KbXsDcgul56bxCOwCfkTRe0iRJZxbbkaRzJU2UNHHx4sUZQzYzsyyyJoIO6fuRwJiIeC/DNioyL+pMtwf2BI4iuVX1R5J2WGejiJERURURVT169MgYspmZZZG199FHJL0KfAJ8S1IPYHmJbeYB2xRM9wYWFFnn3YhYCiyV9AywG8ngN2ZmVgZZRyi7HBgGVEXEKmAp69b31/UCMEBSP0kdgZOBcXXWeRjYV1J7SRsDewOvNOYEzMysebIOXt8BOAPYTxLA08CIhraJiGpJFwJPAu2AuyJiuqTz0+UjIuIVSU8AU4E1wB0RMa3JZ2NmZo2WtWro1yTtBLel02ek877e0EYR8RjwWJ15I+pMDweGZ4zDzMxaWNZEsFdE7FYw/TdJL+URkJmZlVfWu4ZWS9q+ZkLSdsDqfEIyM7Nyyloi+B7wd0lvkNwWui1wdm5RmZlZ2ZRMBOmtoh+SPCm8FUkieDUiVuQcm5mZlUGDVUOSvg5MB34JTAH6RsRLTgJmZhuOUiWC7wCDImJx2i4wmnWfBTAzszasVGPxyohYDBARbwCd8g/JzMzKqVSJoLekW+qbjoiL8wnLzMzKpVQiqNvD6KS8AjEzs9aRZcxiMzPbgJW6a2ikpJ3rWdZV0tcknZZPaGZmVg6lqoZuA66StAswDVgMdAYGAJsCd5HcSWRmZm1UqaqhKcBJkroBVcDWJGMSvBIRM/MPz8zM8papi4mI+BgYn28oZmbWGrJ2OmdmZhsoJwIzswrXqEQgqWtegZiZWevIlAgkfUHSDNLxhCXtJum2EpuZmVkbkLVE8P+Aw4AlABHxErBfXkGZmVn5ZK4aioi5dWZ5hDIzsw1A1hHK5kr6AhCSOgIXk1YTmZlZ25a1RHA+cAHQC5gHDAa+lVNMZmZWRllLBDtGRK0+hSTtAzzb8iGZmVk5ZS0R/DLjPDMza2MaLBFIGgZ8Aegh6ZKCRZsC7fIMzMzMyqNU1VBHoFu63iYF8/8DnJBXUGZmVj6leh99Gnha0qiIeKtMMZmZWRllbSxeJmk4MIhkPAIAIuKgXKIyM7OyydpYPBp4FegH/BiYA7yQU0xmZlZGWRNB94i4E1gVEU9HxNeAoTnGZWZmZZK1amhV+v6OpKOABUDvfEIyM7Nyyloi+ImkzYDvApcCdwDfKbWRpMMlzZQ0W9LlDay3l6TVknwnkplZmWUdqvLR9OOHwIGw9snieklqB/wKOISkW4oXJI2LiBlF1vs58GTjQjczs5bQYIlAUjtJp0i6VNLO6byjJT0H3Fpi30OA2RHxRkSsBMYCxxZZ7yLgD8CixodvZmbNVapEcCewDfA8cIukt4BhwOUR8ccS2/YCCruungfsXbiCpF7AccBBwF717UjSucC5AH369ClxWDMza4xSiaAK2DUi1kjqDLwL9I+IhRn2rSLzos70TcD3I2K1VGz1dKOIkcBIgKqqqrr7MDOzZiiVCFZGxBqAiFgu6bWMSQCSEsA2BdO9Se42KlQFjE2TwJbAkZKqM5Q2zMyshZRKBJ+XNDX9LGD7dFpARMSuDWz7AjBAUj9gPnAycGrhChHRr+azpFHAo04CZmblVSoR7NTUHUdEtaQLSe4GagfcFRHTJZ2fLh/R1H2bmVnLKdXpXLM6mouIx4DH6swrmgAi4qzmHMvMzJom8+D1Zma2YXIiMDOrcJkTgaQuknbMMxgzMyu/TIlA0peBKcAT6fRgSeNyjMvMzMoka4ngGpIuIz4AiIgpQN88AjIzs/LKmgiqI+LDXCMxM7NWkXU8gmmSTgXaSRoAXAw8l19YZmZWLllLBBeRjFe8Avgfku6ov5NTTGZmVkZZSwQ7RsQPgR/mGYyZmZVf1hLBjZJelfRfkgblGpGZmZVVpkQQEQcCBwCLgZGSXpZ0ZZ6BmZlZeWR+oCwiFkbELcD5JM8UXJVXUGZmVj5ZHyjbSdI1kqaRDFH5HMn4AmZm1sZlbSz+LTAGODQi6g4uY2ZmbVimRBARQ/MOxMzMWkeDiUDS/RFxkqSXqT3ecJYRyszMrA0oVSL4dvp+dN6BmJlZ62iwsTgi3kk/fisi3ip8Ad/KPzwzM8tb1ttHDyky74iWDMTMzFpHqTaCb5L88t9O0tSCRZsAz+YZmJmZlUepNoL/AR4HfgZcXjD/o4h4L7eozMysbEolgoiIOZIuqLtA0hZOBmZmbV+WEsHRwCSS20dVsCyA7XKKy8zMyqTBRBARR6fv/coTjpmZlVvWvob2kdQ1/Xy6pBsl9ck3NDMzK4est4/+GlgmaTfgMuAt4He5RWVmZmXTmMHrAzgWuDkibia5hdTMzNq4rL2PfiTpCuAMYF9J7YAO+YVlZmblkrVE8FWSgeu/FhELgV7A8NyiMjOzssk6VOVCYDSwmaSjgeURcU+ukZmZWVlkvWvoJOB54ETgJOB/JZ2QYbvDJc2UNFvS5UWWnyZpavp6Lm2MNjOzMsraRvBDYK+IWAQgqQfwF+CB+jZI2xF+RdJh3TzgBUnjImJGwWpvAvtHxPuSjgBGAns3/jTMzKypsrYRbFSTBFJLMmw7BJgdEW9ExEpgLMldR2tFxHMR8X46OQGPg2xmVnZZSwRPSHqSZNxiSBqPHyuxTS9gbsH0PBr+tX8OSQd365B0LnAuQJ8+fo7NzKwlZR2z+HuS/g/wRZL+hkZGxEMlNlOReVFkHpIOJEkEX6zn+CNJqo2oqqoqug8zM2uaUuMRDACuB7YHXgYujYj5Gfc9D9imYLo3sKDIMXYF7gCOiIglGfdtZmYtpFQ9/13Ao8DxJD2Q/rIR+34BGCCpn6SOwMnAuMIV0v6KHgTOiIjXGrFvMzNrIaWqhjaJiNvTzzMlTc6644iolnQh8CTQDrgrIqZLOj9dPgK4CugO3CYJkq4sqhp7EmZm1nSlEkFnSbvzaX1/l8LpiGgwMUTEY9RpVE4TQM3nrwNfb2zQZmbWckolgneAGwumFxZMB3BQHkGZmVn5lBqY5sByBWJmZq0j6wNlZma2gXIiMDOrcE4EZmYVLmvvo0rHKr4qne4jaUi+oZmZWTlkLRHcBgwDTkmnPyLpWdTMzNq4rJ3O7R0Re0h6ESDtNrpjjnGZmVmZZC0RrErHFwhYOx7BmtyiMjOzssmaCG4BHgK2kvTfwD+Bn+YWlZmZlU3WbqhHS5oEHEzSvcRXIuKVXCMzM7OyyJQI0l5ClwGPFM6LiLfzCszMzMoja2Pxn0jaBwR0BvoBM4FBOcVlZmZlkrVqaJfCaUl7AOflEpGZmZVVk54sTruf3quFYzEzs1aQtY3gkoLJjYA9gMW5RGRmZmWVtY1gk4LP1SRtBn9o+XDMzKzcSiaC9EGybhHxvTLEY2ZmZdZgG4Gk9hGxmqQqyMzMNkClSgTPkySBKZLGAb8HltYsjIgHc4zNzMzKIGsbwRbAEpIximueJwjAicDMrI0rlQi2Su8YmsanCaBG5BaVWYVbtWoV8+bNY/ny5a0dirUxnTt3pnfv3nTo0CHzNqUSQTugG7UTQA0nArOczJs3j0022YS+ffsiFfvvZ7auiGDJkiXMmzePfv36Zd6uVCJ4JyKubV5oZtZYy5cvdxKwRpNE9+7dWby4cY95lXqy2P8KzVqJk4A1RVP+3ZRKBAc3LRQzM2srGkwEEfFeuQIxs/VLu3btGDx4MDvvvDMnnngiy5YtY+LEiVx88cVN3me3bt0AWLBgASeccEJLhcp3vvMdnnnmmbXTixcvpkOHDvzmN78pevwao0aN4sILL1w7fc8997DzzjszaNAgBg4cyPXXX9/s2L72ta+x1VZbsfPOO9e7TkRw8cUX079/f3bddVcmT568dtkTTzzBjjvuSP/+/bnuuuvWzr/00kv529/+1uz4oImdzpnZhq9Lly5MmTKFadOm0bFjR0aMGEFVVRW33HJLs/fds2dPHnjggRaIEt577z0mTJjAfvvtt3be73//e4YOHcqYMWMy7+fxxx/npptu4qmnnmL69OlMnjyZzTbbrNnxnXXWWTzxxBMljz1r1ixmzZrFyJEj+eY3vwnA6tWrueCCC3j88ceZMWMGY8aMYcaMGQBcdNFFtRJDc2R9jsDMWsmPH5nOjAX/adF9Duy5KVd/OftwIvvuuy9Tp05l/PjxXH/99Tz66KNcc801vP7668yfP5+5c+dy2WWX8Y1vfAOA4cOHc//997NixQqOO+44fvzjH9fa35w5czj66KOZNm0ao0aNYty4cSxbtozXX3+d4447jl/84hcAPPXUU1x99dWsWLGC7bffnt/+9rfr/Kp/4IEHOPzww2vNGzNmDDfccAOnnnoq8+fPp1evXiXP8Wc/+xnXX389PXv2BJLbMGvOpzn2228/5syZ0+A6Dz/8MGeeeSaSGDp0KB988AHvvPMOc+bMoX///my33XYAnHzyyTz88MMMHDiQbbfdliVLlrBw4UI+97nPNStGlwjMrEHV1dU8/vjj7LLLLussmzp1Kn/605/417/+xbXXXsuCBQt46qmnmDVrFs8//zxTpkxh0qRJtaptipkyZQr33XcfL7/8Mvfddx9z587l3Xff5Sc/+Ql/+ctfmDx5MlVVVdx4443rbPvss8+y5557rp2eO3cuCxcuZMiQIZx00kncd999mc5z2rRptfZTn9GjRzN48OB1Xs2p6po/fz7bbLPN2unevXszf/78eufX2GOPPXj22WebfNwaLhGYreca88u9JX3yyScMHjwYSEoE55xzDs8991ytdY499li6dOlCly5dOPDAA3n++ef55z//yVNPPcXuu+8OwMcff8ysWbNqVd3UdfDBB6+thhk4cCBvvfUWH3zwATNmzGCfffYBYOXKlQwbNmydbd955x169Oixdnrs2LGcdNJJQPIL+pxzzuGSSy5ZZ7sajb3L5rTTTuO0005r1DalRKz7WJakeufX2GqrrViwYEGzj59rIpB0OHAzyYNpd0TEdXWWK11+JMmYyGelg96YWSuraSNoSN2LaM3F64orruC887IPYtipU6e1n9u1a0d1dTURwSGHHFKynr9Lly61nsAeM2YM//73vxk9ejSQNEzPmjWLAQMG0KVLF1auXEnHjh2BpH1hyy23BGDQoEFMmjSJgw46qMHjjR49muHDh68zv3///k1u9+jduzdz585dOz1v3jx69uzJypUri86vsXz5crp06dKkYxbKrWoo7b76V8ARwEDgFEkD66x2BDAgfZ0L/DqveMys5T388MMsX76cJUuWMH78ePbaay8OO+ww7rrrLj7++GMgqfZYtGhRo/c9dOhQnn32WWbPng3AsmXLeO2119ZZb6eddlq7zsyZM1m6dCnz589nzpw5zJkzhyuuuIKxY8cCsP/++3PvvfcCSYnn/vvv58ADDwTgiiuu4LLLLmPhwoUArFixomjD+GmnncaUKVPWeTWn8fuYY47hnnvuISKYMGECm222GVtvvTV77bUXs2bN4s0332TlypWMHTuWY445Zu12r732WoN3I2WVZxvBEGB2RLwRESuBscCxddY5FrgnEhOAzSVtnWNMZtaChgwZwlFHHcXQoUP50Y9+RM+ePTn00EM59dRTGTZsGLvssgsnnHACH330UaP33aNHD0aNGsUpp5zCrrvuytChQ3n11VfXWe+oo45i/PjxQFIaOO6442otP/7449eWKm6++WYefPBBBg8ezNChQznxxBPXVlkdeeSRXHDBBXzpS19i0KBB7LnnnlRXVzc67rpOOeUUhg0bxsyZM+nduzd33nknACNGjGDEiBFrj73ddtvRv39/vvGNb3DbbbcB0L59e2699VYOO+wwdtppJ0466SQGDUqqCletWsXs2bOpqqpqdoxERC4v4ASS6qCa6TOAW+us8yjwxYLpvwJVRfZ1LjARmNinT59oiolz3otv3jsx5r+/rEnbm5XTjBkzWjuEkq6++uoYPnx4a4cRERH77LNPvP/++60dRlk9+OCDceWVVxZdVuzfDzAx6rle59lGkKWjukyd2UXESGAkQFVVVZM6u9tz28+w57al7wgws7bnhhtu4O2332bzzTdv7VDKprq6mu9+97stsq88E8E8YJuC6d5A3ebtLOuY2Xrommuuae0Q1tp7771bO4SyO/HEE1tsX3m2EbwADJDUT1JH4GRgXJ11xgFnKjEU+DAi3skxJrM2I4rcOmhWSlP+3eRWIoiIakkXAk+S3D56V0RMl3R+unwE8BjJraOzSW4fPTuveMzaks6dO7NkyRK6d+/uXkgts0jHI+jcuXOjtlNb+9VRVVUVEydObO0wzHLlEcqsqeoboUzSpIgoeouRnyw2Ww916NChUSNMmTWH+xoyM6twTgRmZhXOicDMrMK1ucZiSYuBt5q4+ZbAuy0YTlvgc64MPufK0Jxz3jYiehRb0OYSQXNImlhfq/mGyudcGXzOlSGvc3bVkJlZhXMiMDOrcJWWCEa2dgCtwOdcGXzOlSGXc66oNgIzM1tXpZUIzMysDicCM7MKt0EmAkmHS5opabaky4ssl6Rb0uVTJe3RGnG2pAznfFp6rlMlPSdpt9aIsyWVOueC9faStFrSCeWMLw9ZzlnSAZKmSJou6elyx9jSMvzb3kzSI5JeSs+5TfdiLOkuSYskTatnectfv+obuqytvki6vH4d2A7oCLwEDKyzzpHA4yQjpA0F/re14y7DOX8B+Ez6+YhKOOeC9f5G0uX5Ca0ddxn+zpsDM4A+6fRWrR13Gc75B8DP0889gPeAjq0dezPOeT9gD2BaPctb/Pq1IZYIhgCzI+KNiFgJjAWOrbPOscA9kZgAbC5p63IH2oJKnnNEPBcR76eTE0hGg2vLsvydAS4C/gAsKmdwOclyzqcCD0bE2wAR0dbPO8s5B7CJkoEbupEkguaPOt9KIuIZknOoT4tfvzbERNALmFswPS+d19h12pLGns85JL8o2rKS5yypF3AcMKKMceUpy995B+AzksZLmiTpzLJFl48s53wrsBPJMLcvA9+OiDXlCa9VtPj1a0Mcj6DYcE5175HNsk5bkvl8JB1Ikgi+mGtE+ctyzjcB34+I1RvIKF9Zzrk9sCdwMNAF+JekCRHxWt7B5STLOR8GTAEOArYH/izpHxHxn5xjay0tfv3aEBPBPGCbguneJL8UGrtOW5LpfCTtCtwBHBERS8oUW16ynHMVMDZNAlsCR0qqjog/liXClpf13/a7EbEUWCrpGWA3oK0mgiznfDZwXSQV6LMlvQl8Hni+PCGWXYtfvzbEqqEXgAGS+knqCJwMjKuzzjjgzLT1fSjwYUS8U+5AW1DJc5bUB3gQOKMN/zosVPKcI6JfRPSNiL7AA8C32nASgGz/th8G9pXUXtLGwN7AK2WOsyVlOee3SUpASPossCPwRlmjLK8Wv35tcCWCiKiWdCHwJMkdB3dFxHRJ56fLR5DcQXIkMBtYRvKLos3KeM5XAd2B29JfyNXRhntuzHjOG5Qs5xwRr0h6ApgKrAHuiIiityG2BRn/zv8FjJL0Mkm1yfcjos12Ty1pDHAAsKWkecDVQAfI7/rlLibMzCrchlg1ZGZmjeBEYGZW4ZwIzMwqnBOBmVmFcyIwM6twTgQVIO15c0rBq28D637cAscbJenN9FiTJQ1rwj7ukDQw/fyDOsuea26M6X5qvpdpae+Vm5dYf7CkI5twnK0lPZp+PkDSh5JelPSKpKubsL9janrhlPSVmu8pnb5W0pcau88ixxilEr21pt1YZL4FOT33RzOsV7T3TUnXSzoo6/EsOyeCyvBJRAwueM0pwzG/FxGDgcuB3zR244j4ekTMSCd/UGfZF5ofHvDp97IzSSdfF5RYfzDJ/duNdQlwe8H0PyJid5Inn0+XtGdjdhYR4yLiunTyK8DAgmVXRcRfmhDj+mQUcHiR+b8k+fdkLcyJoAJJ6ibpr+mv9ZclrdNrZ/or9pmCX8z7pvMPlfSvdNvfS+pW4nDPAP3TbS9J9zVN0nfSeV0l/UlJX/LTJH01nT9eUpWk64AuaRyj02Ufp+/3Ff5CT3/FHi+pnaThkl5Q0l/7eRm+ln+RdtwlaYiSMRteTN93TJ9qvRb4ahrLV9PY70qP82Kx7zF1PPBE3ZlpNxCTgO3T0saENN6HJH0mjeViSTPS+WPTeWdJulXSF4BjgOFpTNvX/JKXdISk+wu+mwMkPZJ+btTfUNJV6TlOkzRSqtVx0+npdzRN0pB0/azfS1H19b4ZEW8B3SV9rjH7swzK1ce2X633AlaTdMo1BXiI5InyTdNlW5I8oVjzcOHH6ft3gR+mn9sBm6TrPgN0Ted/H7iqyPFGkfb9D5wI/C9JR2gvA11JugqeDuxOcpG8vWDbzdL38UBVYUwF69TEeBxwd/q5I0mPjF2Ac4Er0/mdgIlAvyJxflxwfr8HDk+nNwXap5+/BPwh/XwWcGvB9j8FTk8/b07Sn0/XOsfoB0wqmD4AeDT93B2YAwwieRJ4/3T+tcBN6ecFQKeaY9SNo/C7LpxO/8ZvF/ytfg2c3sS/4RYF838HfLngb3R7+nk/0v7z6/te6px7FclTz/X9m+1Lkf74SUpWx7f2/6kN7bXBdTFhRX0SSTUNAJI6AD+VtB9JNwS9gM8CCwu2eQG4K133jxExRdL+JNUQz6Y/CjuS/JIuZrikK4HFJL2dHgw8FMmvYCQ9COxL8kv5ekk/J7lI/KMR5/U4cIukTiRVCc9ExCeSDgV2Lajj3gwYALxZZ/sukqaQXHQmAX8uWP9uSQNIenXsUM/xDwWOkXRpOt0Z6EPtvn22Tr+DQvtKepHku7+OpBOxzSOiZjSxu0kSEyQJYrSkPwJ/rCeOdUTSNcMTwJclPQAcBVwGNOZvWONASZcBGwNbkCTxR9JlY9LjPSNpUyXtLPV9L4XxTQS+nvV8CiwCejZhO2uAE0FlOo1kJKc9I2KVpDkk/1nXSv9j70dyAfmdpOHA+8CfI+KUDMf4XkQ8UDOhehowI+K1tI78SOBnkp6KiGuznERELJc0nqQb4q+SXpRI+pu5KCKeLLGLTyJisKTNgEdJ2ghuIem75u8RcZyShvXx9Wwvkl+nMxs6BnW+W5I2gqPX7iQ5fn2OIvm1fQzwI0mDGli3rvtIzuk94IWI+Cit1sn6N0RSZ+A2ktLZXEnXUPt86vZRE9TzvSjpEK65OpN8p9aC3EZQmTYDFqVJ4EBg27orSNo2Xed24E6SofMmAPtIqqnz31jSDhmP+QzwlXSbriTVOv+Q1BNYFhH3Atenx6lrVVoyKWYsSadb+5J0TEb6/s2abSTtkB6zqIj4ELgYuDTdZjNgfrr4rIJVPyKpIqvxJHBRTZ25pN2L7P41khJHvdLjv6+0HQY4A3ha0kbANhHxd5Jf85uTVKsVqhtTofEk3+c3SJICNP5vWHPRfzdtS6h7J1FNm84XSXrB/JBs30tT7QC02U701ldOBJVpNFAlaSJJ6eDVIuscAExJqzCOB26OiMUkF8YxkqaSXFQ+n+WAETGZpN75eZI2gzsi4kVgF+D5tIrmh8BPimw+EpiqtLG4jqdIfjH/JZKhDCEZc2EGMFnJLYi/oUTpN43lJZJujn9BUjp5lqT9oMbfgYE1jcUkJYcOaWzT0um6+10KvF5z4W3A/yWpTptKcnfStemx71XSq+aLwP+LiA/qbDcW+F7aKLt9nWOvJinpHJG+09i/YXq820nad/5IUmVY6H0lt/OOIKkChAzfi5IbAe4odkwlvW/+C9hR0jxJ56TzO5DceDCxvnitadz7qFnOJB1HUg13ZWvH0pal3+MeEfGj1o5lQ+M2ArOcRcRDkrq3dhwbgPbADa0dxIbIJQIzswrnNgIzswrnRGBmVuGcCMzMKpwTgZlZhXMiMDOrcP8fcChNkcweRqUAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAT8AAAEGCAYAAAAT05LOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAfrUlEQVR4nO3dfZxXZZ3/8debAQYBUcYRQkDBRAkxLQlvSvOmDXQr3N8vN9xu+Lm23oQ3bduNbLvZz5ZHVtquVtpSmrqVRmVJaaKSpm4o4i0CS5KUDCI4IIJKMDef/eOc0a/jzHe+Z5gv35nveT99nMecc53rnHMd5uFnrnOu61yXIgIzs7zpV+kCmJlVgoOfmeWSg5+Z5ZKDn5nlkoOfmeVS/0oXoFB9XU2MGzug0sWwDP7w5OBKF8Ey+AuvsDN2aFfOMe3EIbFpc0tJeR95csfCiJi+K9crl14V/MaNHcCShWMrXQzLYNp+R1S6CJbBQ7Fol8+xaXMLSxbuX1LemlFP1+/yBcukVwU/M+v9AmiltdLF2GUOfmaWSRA0RWmPvb2ZGzzMLLPWEv/riqTrJG2U9FS79AskrZK0XNLXC9LnSFqd7ptWkH6kpGXpvqskdfle08HPzDIJgpYobSnB9cAbGkQknQjMAN4eEYcCl6fpk4CZwKHpMVdLqkkPuwY4G5iQLl02sjj4mVlmrURJS1ci4j5gc7vk84DLImJHmmdjmj4DuDkidkTEGmA1MFXSKGBYRCyOZLCCG4HTurq2g5+ZZRJAC1HSAtRLWlqwnF3CJQ4GjpP0kKTfSXpXmj4aWFuQryFNG52ut08vyg0eZpZZKbW6VGNETMl4+v7AcOBo4F3AfEkHAh29x4si6V1exMysZAE0lXcovAbglvQRdomkVqA+TS/sCDwGeC5NH9NBelF+7DWzTKLER96W0muH7f0SOAlA0sHAQKARWADMlFQraTxJw8aSiFgPbJN0dNrK+wng1q4u4pqfmWUT0NJDFT9JNwEnkLwbbAAuAa4Drku7v+wEZqW1wOWS5gMrgGZgdsRrHQ7PI2k53gP4TboU5eBnZpkkX3j00Lkizuhk18c6yT8XmNtB+lJgcpZrO/iZWUaipcM2hr7Fwc/MMkkaPBz8zCxnkn5+Dn5mlkOtrvmZWd645mdmuRSIliroIuzgZ2aZ+bHXzHInEDujpuuMvZyDn5llknRy9mOvmeWQGzzMLHciREu45mdmOdTqmp+Z5U3S4NH3Q0ffvwMz263c4GFmudXifn5mljf+wsPMcqvVrb1mljfJwAZ9P/j1/Tsws90qEE1RU9LSFUnXSdqYztfRft9nJYWk+oK0OZJWS1olaVpB+pGSlqX7rkonMirKwc/MMomAluhX0lKC64Hp7RMljQX+Cni2IG0SMBM4ND3makltEfYa4GySGd0mdHTO9hz8zCwj0Vri0pWIuA/Y3MGufwc+zxsnH58B3BwROyJiDbAamCppFDAsIhans7zdCJzW1bX9zs/MMgnI8nlbvaSlBdvzImJesQMkfQhYFxFPtHt6HQ08WLDdkKY1pevt04ty8DOzzDI0eDRGxJRSM0saDHwReH9HuztIiyLpRTn4mVkmgco5mOlbgfFAW61vDPCopKkkNbqxBXnHAM+l6WM6SC/K7/zMLJNk6sr+JS2Zzx2xLCJGRMS4iBhHEtjeGRHPAwuAmZJqJY0nadhYEhHrgW2Sjk5beT8B3NrVtRz8zCyjZNLyUpYuzyTdBCwGDpHUIOmszvJGxHJgPrACuAOYHREt6e7zgO+TNIL8EfhNV9f2Y6+ZZRL03BceEXFGF/vHtdueC8ztIN9SYHKWazv4mVlmHsnZzHInQv6218zyJ2nw8OxtZpY7nsPDzHIoafDwOz8zy6FqGNLKwc/MMinzFx67jYOfmWXmCYzMLHcioKnVwc/MciZ57HXwM7Mc8hceOXXFP47lobuHsXd9M/PuWfVa+q3X1rPgB/X06x8cdfJWPvmv63l+7UD+4b0TGXPgDgAmHvkKF30tGXfx6Sf34PJP78+Ov/Rj6klbOe8r6+h65gHrSQNqW7niltUMGBjU9A/uv21v/uvyt7Dn3s3883f/zMgxO9nQMJC55xzAyy/5fxdwV5eSSJoOXAnUAN+PiMvKeb3d5f0f2cyHzmzkGxft/1ra4/89lN8v3ItrFq1iYG2wpfH1f9pRB+zgmrtXvek8V108hou+vpa3Hfkq//KxA1l6z56866Rtu+UeLNG0Q3z+9Lfyl1drqOkffPOXq3n4t3vy7lNf4rEHhjL/2yP52/M38JHzN3Lt3P0qXdxeojoee8t2B+nEIt8BTgEmAWekE5D0eYcd/Qp7Dm95Q9qvb9yHj5y/gYG1yQCye9c3Fz3Hpg39eXVbDZOmvIoE7/vwZn5/x15lK7N1Rvzl1eRTrf4DgpoBQQQcM20rd8+vA+Du+XUcM31rJQvZ6/TUHB6VVM6a31RgdUQ8AyDpZpIJSFaU8ZoVs+6Pg3jqoaFc/7VRDKwN/uFL6zjkiO0APP/sQD71VwczeM9WZn1hPYcd9Qqbnh9A/aim146v36+JxucHVKr4udavX/DthX9gv3E7+dX1+7DqsSEMr29i88bk97F54wD23qf4H7M8SVp7/W1vMaOBtQXbDcBR7TNJOptkyjn2H91336m0tMDLL9Vw5a+fZtXjg5l7zjhueHAldSOa+OHDKxhW18LTT+7Bl88cz7x7/4foYIaB3v13snq1topP/dUhDBnWwiXXruGAQ7ZXuki9WrV0ci7ng3tJk4pExLyImBIRU/bdp+/+Nakf1cS7T30JCSa+41X69YOXNtcwsDYYVpc8Ik94+3b2G7eTdc/UUj+qicb1r9f0Gp8bwD5vaers9LYbvLK1hicWD+VdJ27jxcYB1I1Ifh91I5rYsqnv/mEuh2p47C1n8OtsspGqdOz0l3j8gaEANPyxlqadYq+6FrZsqqElfT24/s8DWbdmIG/Zfyf7jGxm8NBWVj4ymAi4+2d1HDPtpQreQT7tVdfMkGHJL2jgoFbeedzLrF09iAfvHMb7/jaZTvZ9f7uZxQuHVbKYvUpba28pS29Wzj9nDwMT0olG1pHMtP53ZbzebvPV8w7gycVDeWlzfz565CQ+/k/PM23mZr75mbGcfeIhDBgQfO7KZ5Fg2YNDufEbb6GmP9T0Cy68rIFhaWPJBZet5fJP78/Ov/Rjyolb3dJbAXUjm/jslc/Srx/06wf3/WovHrp7GCseGcwXv/tnps/czMZ1SVcXe11PtfZKug74ALAxIianad8APgjsJJmP48yI2JLumwOcBbQAF0bEwjT9SOB6YA/gduCidALzzq/dxf5dIulU4D9Iurpcl46/36kphw+KJQvHFstivcy0/Y6odBEsg4diEVtj8y5VyYZPHBEnXffhkvLe8u5rHik2b6+k44GXgRsLgt/7gd9GRLOkrwFExBfS3iI3kTSm7gfcDRwcES2SlgAXkUxqfjtwVUQUncSorC8yIuL2tCBmVkV66pE2Iu6TNK5d2p0Fmw8CbZF2BnBzROwA1khaDUyV9CdgWEQsBpB0I3AaXczg5re4ZpZJxi886iUtLdieFxHzMlzu74GfpOujSYJhm4Y0rSldb59elIOfmWWWIfg1FnvsLUbSF4Fm4EdtSR1kiyLpRTn4mVkmu6Ofn6RZJA0hJxc0XHTWg6QhXW+fXlTf/0DPzHa7cvbzS8cE+ALwoYh4tWDXAmCmpNq0F8kEYElErAe2STpakoBPALd2dR3X/Mwskwho7qHBTCXdBJxA8m6wAbgEmAPUAnclsYwHI+LciFguaT7JJ7LNwOyIaPvI/jxe7+ryG7po7AAHPzPrhh5s7T2jg+Rri+SfC7ypy1xELAUmZ7m2g5+ZZVIt3/Y6+JlZZuHgZ2Z51NsHLSiFg5+ZZRLhYezNLJdEi6euNLM88js/M8sdz95mZvkUdDgNQ1/j4Gdmmbm118xyJ9zgYWZ55cdeM8slt/aaWe5EOPiZWU65q4uZ5ZLf+ZlZ7gSi1a29ZpZHVVDx8xweZpZR2uBRytIVSddJ2ijpqYK0Okl3SXo6/Tm8YN8cSaslrZI0rSD9SEnL0n1XpXN5FOXgZ2bZRYlL164HprdLuxhYFBETgEXpNpImATOBQ9NjrpZUkx5zDXA2yaRGEzo455s4+JlZZj1V84uI+4DN7ZJnADek6zcApxWk3xwROyJiDbAamCppFDAsIhan01zeWHBMpzp95yfpWxSJ3RFxYVcnN7PqE0Bra1m7uoxMp6MkItZLGpGmjwYeLMjXkKY1pevt04sq1uCxNFNxzSwfAii9n1+9pMJYMi8i5nXzyh1dNIqkF9Vp8IuIGwq3JQ2JiFe6LJ6ZVb0M/fwaI2JKxtNvkDQqrfWNAjam6Q3A2IJ8Y4Dn0vQxHaQX1eU7P0nHSFoBrEy3D5d0dWn3YGZVqecaPDqyAJiVrs8Cbi1InympVtJ4koaNJekj8jZJR6etvJ8oOKZTpfTz+w9gWnphIuIJScdnuRMzqyalNWaUdCbpJuAEksfjBuAS4DJgvqSzgGeB0wEiYrmk+cAKoBmYHREt6anOI2k53gP4TboUVVIn54hY267bTEtnec0sB3qol3NEnNHJrpM7yT8XmNtB+lJgcpZrlxL81ko6FghJA4ELSR+BzSyHAqK8rb27RSn9/M4FZpM0Ha8Djki3zSy3VOLSe3VZ84uIRuCju6EsZtZXVMHHvaW09h4o6VeSXki/wbtV0oG7o3Bm1kuVt7V3tyjlsffHwHxgFLAf8FPgpnIWysx6sbZOzqUsvVgpwU8R8V8R0ZwuP6TXx3QzK6eI0pberNi3vXXp6j2SLgZuJgl6HwFu2w1lM7Peqgpae4s1eDzCG7+bO6dgXwBfKVehzKx3Uy+v1ZWi2Le943dnQcysj+gDjRmlKOkLD0mTgUnAoLa0iLixXIUys96s9zdmlKLL4CfpEpJv7yYBtwOnAA+QDBhoZnlUBTW/Ulp7P0zynd3zEXEmcDhQW9ZSmVnv1lri0ouV8ti7PSJaJTVLGkYytpY7OZvlVbbBTHutUoLfUkl7A98jaQF+GVhSzkKZWe9W1a29bSLiU+nqdyXdQTJRyJPlLZaZ9WrVHPwkvbPYvoh4tDxFMjMrv2I1vyuK7AvgpB4uC0+v2pu/fs9pPX1aK6PnL9qv0kWwDJp+/GDXmUpQ1Y+9EXHi7iyImfURQVV83uZJy80sux4a0krSP0paLukpSTdJGiSpTtJdkp5Ofw4vyD9H0mpJqyRN25VbcPAzs8wUpS1FzyGNJpkWY0pETAZqgJnAxcCiiJgALEq3kTQp3X8oMB24WlJNd+/Bwc/Msuu5wUz7A3tI6g8MJplvdwbQNm/4DcBp6foM4OaI2BERa4DVwNTu3kIpIzlL0sckfSnd3l9Sty9oZlWg9OBXL2lpwXL2a6eIWAdcTjI95XrgpYi4ExiZzsVL+nNEeshoYG1BKRrStG4ppZPz1SQfqpwEXApsA34OvKu7FzWzvquUR9oCjRExpcPzJO/yZgDjgS3ATyV9rNilO0jrdrtzKcHvqIh4p6THACLixXQKSzPLq55p7X0fsCYiXgCQdAtwLLBB0qiIWC9pFMkntZDU9MYWHD+G5DG5W0p559eUvlSMtID70us/WTazcuqJBg+Sx92jJQ2WJJIBVFYCC4BZaZ5ZwK3p+gJgpqRaSeOBCezCp7al1PyuAn4BjJA0l2SUl3/p7gXNrAr0QCfniHhI0s+AR4Fm4DFgHjAUmC/pLJIAeXqaf7mk+cCKNP/siGjp7vVL+bb3R5IeIYnKAk6LiJXdvaCZ9XHZ3vkVP1XEJcAl7ZJ3kMSbjvLPBeb2xLVLGcx0f+BV4FeFaRHxbE8UwMz6oGr+vK3Abbw+kdEgkpaZVSQdDc0sh1QFb/1Leew9rHA7He3lnE6ym5n1CSVNYFQoIh6V5D5+ZnmWh8deSZ8p2OwHvBN4oWwlMrPerQcbPCqplJrfngXrzSTvAH9enuKYWZ9Q7cEv7dw8NCI+t5vKY2Z9QTUHP0n9I6K52HD2ZpY/ovpbe5eQvN97XNIC4KfAK207I+KWMpfNzHqjHL3zqwM2kYzq0tbfLwAHP7O8qvLgNyJt6X2K14Nemyq4dTPrtiqIAMWCXw3JB8Y9OoaWmfV91f7Yuz4iLt1tJTGzvqPKg1/fn5vOzHpeVH9rb4dDypiZVXXNLyI2786CmFnfUe3v/MzMOubgZ2a5U/qcvL2aJy03s0xEj01ghKS9Jf1M0v9IWinpGEl1ku6S9HT6c3hB/jmSVktaJWnartyHg5+ZZdZTwQ+4ErgjIiYCh5PM3nYxsCgiJgCL0m0kTQJmkowiPx24Oh18pVsc/MwsuyhxKULSMOB44FqAiNgZEVtIJjK/Ic12A3Bauj4DuDkidkTEGmA1MLW7t+DgZ2bZlR786iUtLVjOLjjLgSQDI/9A0mOSvi9pCDAyItYDpD9HpPlHA2sLjm9I07rFDR5mlk22UV0aI2JKJ/v6k4wcdUE6h++VpI+4nejRT21d8zOz7HrgsZek5tYQEQ+l2z8jCYYbJI0CSH9uLMg/tuD4McBz3b0FBz8zy0ytpS3FRMTzwFpJh6RJJwMrgAXArDRtFnBrur4AmCmpVtJ4YALJuKPd4sdeM8usB7/wuAD4kaSBwDPAmSSVsvmSzgKeBU4HiIjlkuaTBMhmYHZEtHT3wg5+ZpZND3ZyjojHgY7eCXY4tkBEzAXm9sS1HfzMLLsq+MLDwc/MMmn7wqOvc/Azs8zU2vejn4OfmWVTJQMbOPiZWWZ+7DWzfHLwM7M8cs3PzPLJwc/McicHs7eZmb2J+/mZWX5F349+Dn5mlplrfsZFcx5j6rHPs+XFWmZ/4iQADjzoJWZ/7gkGDmyhpUVcfcXh/GHlcPr3b+X8zz3OhIlbaA0x78rDWPZYfYXvIJ/2rN3BJafcy0H1mwngkttP5Li3PssJB62hNcSLr+7Bv95+Ei+8PIS9Bv2FK05byKGjNrJg2US+evdxlS5+ZbmTc3GSrgM+AGyMiMnluk6l3X37WH798/F85l8efS3tzE8t58c/OIRHHhzJlKM3cOanljPngvcw7UN/AmD2rJPYa+8dXHrFYj79yfcS0dEAtVZOnz/5Af77mbF89pfT6N+vhT0GNPPHxjq+c38yJcTfHfkk5xy7lH+7873sbKnhO/dP5aB9N3NQ/eYKl7x3qIYGj3IOZno9yQxLVW35E/Vs2zrwDWkRMHhwMwBDhjaxuXEQAPuP28YTj+wLwEtbanl52wAmTNyyW8trMGTgTo4cu55fPPk2AJpba9i2o5ZXdr7+exw0oPm1ys32pgE8tm4UO5q7PVFY1emJwUwrrWw1v4i4T9K4cp2/N/veVYdx6TcXc9bsp1A/+Oy5yWPSmtV7cfRxz/O7RaPZd8R2DjpkC/UjtvOHlcO7OKP1pDF7b+XFV/fg0lPv4ZARm1jxfD1fX/QetjcN4PzjHuKDk1fx8o6BfPKmGZUuau8UVEWDR8WHsZd0dtvMTjtbXq10cXrEqaet4XtXTeb//d9pfO9bk/n0nMcAuPO2/WncOIgrv/87zr7wKVY+VUdrix95d7eafq1MfMsL/PSxQ/nI9aezvWkAf3908jv69v1HMe2aT3DbioOZeeSyCpe09+rBeXsrpuLBLyLmRcSUiJgysGZwpYvTI04+ZS2//90oAB747X4c/LYtALS29ON73zqMC848ka/MOYqhQ5tY1zCkgiXNpw3bhrJh21CWrR8JwF2rDmTiyBfekOc3KybwvoOfqUTx+oaemcCooioe/KrR5sZBHPaOTQAcfmQjz6UBrra2mdpBybvAI6ZspKWlH2v/NKxi5cyrTa8MZsPWIRxQ9yIARx2wjmcah7P/8C2v5TnhoD+xZrNfR3SkrZNzT9X8JNWk8/b+Ot2uk3SXpKfTn8ML8s6RtFrSKknTduU+3NVlF33+y0s57IhGhu29kxtuWciPrp3IVV8/gnMuWka/mqBpZz++9fUjANhr+E6+8s3fE61iU+MgLv/KOytb+By77O7j+OoHFjGgpoWGLcP40u0n8eVT7mFcXdINaf3WPfm3hce/lv/2c3/I0IE7GVDTwokHr+Hcn3yAZzbVVfAOKiiipwczvQhYCbTVBC4GFkXEZZIuTre/IGkSMBM4FNgPuFvSwd2dxEhRpheXkm4CTgDqgQ3AJRFxbbFj9hr0ljh2zMfLUh4rj4YP7lfpIlgGq3/8TbZvWLtLL5r33HtMvOP4i0rKe/+vPv9IkUnLkTQGuIFkUqLPRMQHJK0CToiI9em8vfdGxCGS5gBExFfTYxcCX46Ixd25j3K29p5RrnObWWVlaMyol7S0YHteRMwr2P4P4PPAngVpIyNiPUAaAEek6aOBBwvyNaRp3eLHXjPLJoDSH3sbO6v5SWr7COIRSSeUcK6OaqzdfnR18DOz7Hrmbdm7gQ9JOhUYBAyT9ENgg6RRBY+9G9P8DcDYguPHAM919+Ju7TWzzHqitTci5kTEmIgYR9KQ8duI+BiwAJiVZpsF3JquLwBmSqqVNB6YACzp7j245mdmmZV56srLgPmSzgKeBU4HiIjlkuYDK4BmYHZ3W3rBwc/MsipDB+aIuBe4N13fBJzcSb65JC3Du8zBz8wySTo59/LPN0rg4Gdm2fXyEVtK4eBnZpm55mdm+dMHBi0ohYOfmWXU49/2VoSDn5ll58deM8sdT1puZrnlmp+Z5VLfj30OfmaWnVr7/nOvg5+ZZRO4k7OZ5Y8Id3I2s5xy8DOzXHLwM7Pc8Ts/M8srt/aaWQ6FH3vNLIeCqgh+nsDIzLJrLXEpQtJYSfdIWilpuaSL0vQ6SXdJejr9ObzgmDmSVktaJWnartyCg5+ZZaaIkpYuNAP/FBFvA44GZkuaBFwMLIqICcCidJt030zgUGA6cLWkmu7eg4OfmWUXUdpS9BSxPiIeTde3ASuB0cAM4IY02w3Aaen6DODmiNgREWuA1cDU7t6C3/mZWTYR0FJya2+9pKUF2/MiYl77TJLGAe8AHgJGRsT65FKxXtKINNto4MGCwxrStG5x8DOz7Epv8GiMiCnFMkgaCvwc+HREbJXUadaOSlJqQdrzY6+ZZdcDj70AkgaQBL4fRcQtafIGSaPS/aOAjWl6AzC24PAxwHPdvQUHPzPLJoDWKG0pQkkV71pgZUR8s2DXAmBWuj4LuLUgfaakWknjgQnAku7ehh97zSyjgOiRLzzeDXwcWCbp8TTtn4HLgPmSzgKeBU4HiIjlkuYDK0haimdHREt3L+7gZ2bZBFkaPDo/TcQDdPweD+DkTo6ZC8zd5Yvj4Gdm3VEFX3g4+JlZdg5+ZpY/HtjAzPIoAA9pZWa55JqfmeVPps/bei0HPzPLJiB6pp9fRTn4mVl2XXy90Rc4+JlZdn7nZ2a5E+HWXjPLKdf8zCx/gmjp9ngCvYaDn5ll0zakVR/n4Gdm2bmri5nlTQDhmp+Z5U702GCmFeXgZ2aZVUODh6IXNVlLegH4c6XLUQb1QGOlC2GZVOvv7ICI2HdXTiDpDpJ/n1I0RsT0XbleufSq4FetJC3tavo+6138O6t+nr3NzHLJwc/McsnBb/eYV+kCWGb+nVU5v/Mzs1xyzc/McsnBz8xyycGvjCRNl7RK0mpJF1e6PNY1SddJ2ijpqUqXxcrLwa9MJNUA3wFOASYBZ0iaVNlSWQmuB3plp1zrWQ5+5TMVWB0Rz0TETuBmYEaFy2RdiIj7gM2VLoeVn4Nf+YwG1hZsN6RpZtYLOPiVjzpIc78is17Cwa98GoCxBdtjgOcqVBYza8fBr3weBiZIGi9pIDATWFDhMplZysGvTCKiGTgfWAisBOZHxPLKlsq6IukmYDFwiKQGSWdVukxWHv68zcxyyTU/M8slBz8zyyUHPzPLJQc/M8slBz8zyyUHvz5EUoukxyU9Jemnkgbvwrmul/ThdP37xQZdkHSCpGO7cY0/SXrTLF+dpbfL83LGa31Z0mezltHyy8Gvb9keEUdExGRgJ3Bu4c50JJnMIuKTEbGiSJYTgMzBz6w3c/Dru+4HDkprZfdI+jGwTFKNpG9IeljSk5LOAVDi25JWSLoNGNF2Ikn3SpqSrk+X9KikJyQtkjSOJMj+Y1rrPE7SvpJ+nl7jYUnvTo/dR9Kdkh6T9J90/H3zG0j6paRHJC2XdHa7fVekZVkkad807a2S7kiPuV/SxB7517Tc6V/pAlh2kvqTjBN4R5o0FZgcEWvSAPJSRLxLUi3w35LuBN4BHAIcBowEVgDXtTvvvsD3gOPTc9VFxGZJ3wVejojL03w/Bv49Ih6QtD/JVyxvAy4BHoiISyX9NfCGYNaJv0+vsQfwsKSfR8QmYAjwaET8k6Qvpec+n2RioXMj4mlJRwFXAyd145/Rcs7Br2/ZQ9Lj6fr9wLUkj6NLImJNmv5+4O1t7/OAvYAJwPHATRHRAjwn6bcdnP9o4L62c0VEZ+PavQ+YJL1WsRsmac/0Gv8nPfY2SS+WcE8XSvqbdH1sWtZNQCvwkzT9h8Atkoam9/vTgmvXlnANszdx8OtbtkfEEYUJaRB4pTAJuCAiFrbLdypdD6mlEvJA8rrkmIjY3kFZSv5eUtIJJIH0mIh4VdK9wKBOskd63S3t/w3MusPv/KrPQuA8SQMAJB0saQhwHzAzfSc4Cjixg2MXA++VND49ti5N3wbsWZDvTpJHUNJ8R6Sr9wEfTdNOAYZ3Uda9gBfTwDeRpObZph/QVnv9O5LH6a3AGkmnp9eQpMO7uIZZhxz8qs/3Sd7nPZpOwvOfJDX8XwBPA8uAa4DftT8wIl4geU93i6QneP2x81fA37Q1eAAXAlPSBpUVvN7q/P+B4yU9SvL4/WwXZb0D6C/pSeArwIMF+14BDpX0CMk7vUvT9I8CZ6XlW46nBrBu8qguZpZLrvmZWS45+JlZLjn4mVkuOfiZWS45+JlZLjn4mVkuOfiZWS79LyeHY3CExv/hAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEGCAYAAABo25JHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAuWklEQVR4nO3deXxV1b3//9eHkJAYJiVBBUSCoMggUSJiHSpaZ6tyHerU/traWm+12p9Vq63z7W1t0d5qraXUWrRScFacaW+ltlovgiICTigoAZGASJlDks/3j70TTs45ydkJ2Qkn5/18PPLI2fNnn8Baew17LXN3REQkd3Xp6ABERKRjKSMQEclxyghERHKcMgIRkRynjEBEJMd17egAWqqkpMQHDRrU0WGIiGSVuXPnrnb30nTbsi4jGDRoEHPmzOnoMEREsoqZfdTUNlUNiYjkOGUEIiI5ThmBiEiOU0YgIpLjlBGIiOS42DICM7vXzFaZ2YImtpuZ3Wlmi81svpkdFFcsIiLStDhLBFOAE5rZfiIwNPy5CPhtjLGIiEgTYnuPwN1fMrNBzexyGnC/B+Ngv2pmvc1sT3f/JK6YRER2BjW1dWzeVsuWbXVs2VbLlm21Dcubw+WG9dW1bA73G7P3rhy5b9p3wnZIR75Q1h9YlrBcGa5LyQjM7CKCUgMDBw5sl+BEJLfU1nlKopw2ka6uZUtNkECnTbi3bU+4U84XHruttnXzwPznUft0uozA0qxL++24+2RgMkBFRYVm0hHJEXV1ztaauoTEtHEivTkxUa4JE9qkhHtrQ+Jcv62uYd32c9RRXVPXqhgL8rrQLb8LRfl5FObnBb8L8ijs2oXdigso7JpHUUEehfldKEzYJ9i/8brC/DyKCrrQLTwm8ZzdunahS5d0yeaO68iMoBLYK2F5ALCig2IRkYjcg8R5a8LTcPLvLdvqGiXSW2vC5YREOfX4xk/g9ce1Rl4Xa0hEC8NEuqggj8KuefQqyqewR7eG5aKCvIaEvFHCm5i4N+ybmnDnxZQ4t6eOzAhmAJea2XTgEGCd2gdEWsfd2VbrbKkJqy6SEtnEJ+PERHpL+DQc1EMnVnE0Pr4+0a4/rjUz3HYxGiWghfldGhLY7t260qe4PsEN1zdKcLskHNd4uf7JOTHhzs9Tz/iWiC0jMLNpwFFAiZlVAjcC+QDuPgl4FjgJWAxsAr4RVywiHaWmtq4hoY3SKBht37qEJ+btx9XWta7WtDC5WiMhke5dlB9Wc4RPww3VHBkS6YK8lHUFeV0wy/6n584ozl5D52bY7sAlcV1fpCl1dd5QZRG950b6RsH09dA73ihY0LVL2kS2KD+Pku5dG56kExPpxglv40S6W329dEHjc3brqsRZsnAYaumc6uudE6soMvbcaCIxTuy50ZaNgvl51mRjX+9dCtgz4Wm4cWNf48S4MOnY+ifshnVd82JrFBRJRxmBxKauzlmxbjNLVm/kw6qNwe/VG6lavzUpcQ8S89bY3ijYpXHPi/w8ehZ2pahHt8aJbEH6xDj52MSeG4X5Qb11V9U7SyeljEB22NqN1Xy4OkzoqzawJPy8ZPXGRr0+igvyKCstpn/vwqTucmkaANMk0turQ7Yn+moUFNlxyggkki3balm6ZiNLqoKn+uAJP0j0127a1rBf1y7GwN12oaykmCOGllBW0p2ykmIGlxbTt0c31UeL7ISUEUiD2jpnxeebg6f7qg0JT/kbWbFuc6Mug7v37EZZSTEnjNyTfUqLKSsJfvbabRc9pYtkGWUEOcbdWbtpGx82SuiDJ/ulazY1akjt3q0rg0uLqRi0K4NL9qKstJjBJcUMKimmezf90xHpLCL9bzazLsBooB+wGVjo7p/GGZjsmM3VtQl19RsSqnM2sm7z9qqc/Lz6qpzujN+vb8OTfVlpMaXdVZUjkguazQjMbB/gh8CXgPeBKqAQ2NfMNgG/A+5z99Z1+ZAdUlvnLF+7mQ9Wb2BJQ6+c4POKdVsa7btnr0LKSoo55YA9GVzancFhgj9g1yL1hhHJcZlKBD8hmCfgO+ELYA3MrC9wHvBV4L54whN3Z83G6oYqnKD+Pmiw/XjNJqprt+fBPQq7Mri0O4cM7hMk9Al197sUqCpHRNJrNnVo7u1gd18F/KqtA8pVm6prGvW3T0z412+padivIK8Le/fZhcElxRyzf1/2KenekOD3KS5QVY6ItFirHxPN7Fh3/0tbBtPZ1dTWUbk2eMHqg4T+9h9WbWTlvxtX5fTvXURZSTGnl/dncJjQDy7pTv9dizrFaIcisvPYkfqCPwCaJSaJu1O1YWtD9c2ShD73H3+2qdHYM72K8hlcWswXhvRhn9LuDdU4g/oUU1SQ14F3ISK5JFNj8YymNgF92j6c7HXfK0t59PVKllRtZP3WhKqcrl0o61PM0L49OG7EHgwOX64qK+nObsUFHRixiEggU4ngCOACYEPSegPGxhJRFnrlg9XcOGMho/r34j8O6s/ghKf7fr1VlSMiO7dMGcGrwCZ3/3vyBjN7N56Qssv6Ldu46uH5lJUU89B3DlWVjohknUy9hk5sZtuRbR9O9vnps2/zybrNPHyxMgERyU56k2gHzHp3FdNmL+PbRw5mzN67dXQ4IiKtooygldZt2sYPH53P0L7d+f+/tG9HhyMi0mp63bSVbn5qIas3VHPP1w6mMF9VQiKSvVQiaIUXFq7ksTeWc8n4IYwa0KujwxER2SGRMwIzu6m55Vzx2cZqfvz4WwzfsyeXjh/S0eGIiOywllQNzc2wnBOuf2IB6zZv44FvHUJBVxWoRCT7RU7J3P2p5pZzwVNvruCZtz7h+1/al2F79OzocERE2kSmISZ+DXhT2939sjaPaCe1av0Wrn9yAaP36s13jhzc0eGIiLSZTFVDc9olip2cu/Ojx95ic3Utt581WhO5iEinkunN4kYTzphZsbtvjDeknc+jry/nr2+v4rqT92dI3+4dHY6ISJuK9GhrZoea2SLg7XB5tJndHWtkO4kVn2/m5hkLGTtoN755WFlHhyMi0uai1nH8CjgeWAPg7m8CnX6sIXfnh4/Op6bOmXjWAXTRKKIi0gm1pNfQsqRVtW0cy07nz7M/5h/vr+ZHJ+/P3n2KOzocEZFYRH2PYJmZfQFwMysALiOsJuqsPl6zif9+5m0OH1LCBYdoIjYR6byilgguBi4B+gPLgfJwuVOqq3OueuRN8sz4+ZkHaEJ4EenUImUE7r7a3c93993dvdTdL3D3NZmOM7MTzOxdM1tsZtek2d7LzJ4yszfNbKGZfaM1N9HWpryylP9b8hnXnzKc/r2LOjocEZFYRe01NDhMsKvMbJWZPWlmzb5VZWZ5wG+AE4HhwLlmNjxpt0uARe4+GjgKuD2seuowH1Rt4OfPv8PRw/pyVsWAjgxFRKRdRK0a+jPwELAn0A94GJiW4ZixwGJ3/9Ddq4HpwGlJ+zjQw4K6l+7AZ0ANHaS2zrny4TcpzM/j1v8YpSohEckJUTMCc/c/uXtN+PMAzQw9EeoPJPY0qgzXJboL2B9YAbwFXO7udSkXN7vIzOaY2ZyqqqqIIbfc5Jc+5I2PP+eW00bQt2dhbNcREdmZNJsRmNluZrYb8KKZXWNmg8xsbzO7Gngmw7nTPU4nZx7HA/MIShnlwF1mljKam7tPdvcKd68oLS3NcNnWeXflev7nL+9x4sg9OHV0v1iuISKyM8rUfXQuQeJdn6h/J2GbA//VzLGVwF4JywMInvwTfQO41d0dWGxmS4BhwOwMcbWpbbV1XPHQPHoUduUnp49UlZCI5JRMYw3tyJgKrwFDzayMoMvpOcB5Sft8DBwD/MPMdgf2Az7cgWu2ym9eXMzCFf9m0gUH0ad7t/a+vIhIh4o8MY2ZjSTo/dNQee7u9ze1v7vXmNmlwAtAHnCvuy80s4vD7ZMIShRTzOwtglLHD919davupJUWLF/HXX9bzOnl/Thh5J7teWkRkZ1CpIzAzG4k6N45HHiWoEvoP4EmMwIAd3823D9x3aSEzyuA41oUcRu77okF7FZcwM2njuzIMEREOkzUXkNnElThrHT3bwCjgayvQ3F3Fn3yb04r70evXfI7OhwRkQ4RNSPYHHbrrAl79awCsn6arvVba6iuqaO0R9bnaSIirRa1jWCOmfUGfk/Qk2gD7dyzJw6r128FUEYgIjktUkbg7t8NP04ys+eBnu4+P76w2sfqDdUAlKinkIjksEyT1x/U3DZ3f73tQ2o/VWGJQBmBiOSyTCWC25vZ5sDRbRhLu1u9QRmBiEimF8rGt1cgHWH1hq10MdituEMHPBUR6VCRp6rsjFZv2Mpuxd3I01zEIpLDcjojqFq/lZLuKg2ISG7L7YxgQ7W6jopIzos6Q5mZ2QVmdkO4PNDMxsYbWvxWr99KqRqKRSTHRS0R3A0cCpwbLq8nmIYya7k7qzdspUQlAhHJcVHfLD7E3Q8yszcA3H1tR88tvKPWb61ha02d2ghEJOdFLRFsCyejdwAzKwVSppTMJhpeQkQkEDUjuBN4HOhrZv9NMAT1T2OLqh1oeAkRkUDUsYammtlcgqGoDTjd3d+ONbKY6a1iEZFA1Ilp7gAedPesbiBOpHGGREQCUauGXgeuM7PFZjbRzCriDKo9aHgJEZFApIzA3e9z95OAscB7wM/N7P1YI4uZhpcQEQm09M3iIcAwYBDwTptH046q1ler66iICNHfLK4vAdwCLATGuPuXY40sZlUbtqrrqIgI0V8oWwIc6u6r4wymPa1ev5V9Soo7OgwRkQ6XaYayYe7+DsH8xAPNbGDi9mydoUzDS4iIbJepRHAFcBHpZyrL2hnKNmh4CRGRBplmKLso/Hiiu29J3GZmhbFFFTO9QyAisl3UXkOvRFyXFeqHl1BjsYhI5jaCPYD+QJGZHUgwvARAT2CXmGOLjYaXEBHZLlMbwfHA14EBwC8T1q8HfhRTTLFTRiAisl2mNoL7gPvM7Ax3f7SdYopd1XoNLyEiUi9T1dAF7v4AMMjMrkje7u6/THPYTk/DS4iIbJepsbj+javuQI80P80ysxPM7N1wsLprmtjnKDObZ2YLzezvLYi91TS8hIjIdpmqhn4X/r65pScOZzT7DXAsUAm8ZmYz3H1Rwj69CeZDPsHdPzazvi29Tmus1vASIiINoo419Asz62lm+Wb2v2a22swuyHDYWGCxu3/o7tXAdOC0pH3OAx5z948B3H1VS2+gNarWb1VDsYhIKOp7BMe5+7+BUwie7vcFrspwTH9gWcJyZbgu0b7ArmY2y8zmmtnX0p3IzC4yszlmNqeqqipiyOnVDy+hEoGISCBqRpAf/j4JmObun0U4Jl1LrCctdwXGACcTdFW93sz2TTnIfbK7V7h7RWlpacSQ09PwEiIijUUdffQpM3sH2Ax818xKgS0ZjqkE9kpYHgCsSLPPanffCGw0s5eA0QST38RCw0uIiDQWdYaya4BDgQp33wZsJLW+P9lrwFAzKzOzAuAcYEbSPk8CR5hZVzPbBTgEeLslN9BS9cNLKCMQEQlEnbw+H/gqcKSZAfwdmNTcMe5eY2aXAi8AecC97r7QzC4Ot09y97fN7HlgPlAH3OPuC1p9NxHUv1WsNgIRkUDUqqHfErQT3B0ufzVc963mDnL3Z4Fnk9ZNSlqeCEyMGMcO0/ASIiKNRc0IDnb30QnLfzOzN+MIKG4aXkJEpLGovYZqzWyf+gUzGwzUxhNSvILhJQo0vISISChqieAq4EUz+5CgW+jewDdiiypGwfASqhYSEamXMSMIu4quI3hTuC9BRvCOu2+NObZY6GUyEZHGmq0aMrNvAQuBXwPzgEHu/ma2ZgKg4SVERJJlKhF8Hxjh7lVhu8BUUt8FyBr1w0vorWIRke0yNRZXu3sVgLt/CGT1o3T98BKqGhIR2S5TiWCAmd3Z1LK7XxZPWPHQW8UiIqkyZQTJI4zOjSuQ9qBxhkREUkWZs7jT0FvFIiKpMvUammxmI5vYVmxm3zSz8+MJre1pnCERkVSZqobuBm4ws1HAAqAKKASGAj2Bewl6EmWF1RpeQkQkRaaqoXnA2WbWHagA9iSYk+Btd383/vDa1uqN1ey6i4aXEBFJFGmICXffAMyKN5T41dTWUdA16vBKIiK5IadSxTqHLqbSgIhIohzLCBzlAyIijbUoIzCz4rgCaQ+uEoGISIpIGYGZfcHMFhHOJ2xmo83s7gyH7XRUIhARSRW1RPA/wPHAGgB3fxM4Mq6g4qISgYhIqshVQ+6+LGlV1s1QphKBiEiqqDOULTOzLwBuZgXAZYTVRNlEJQIRkVRRSwQXA5cA/YFKoBz4bkwxxabOHb1LJiLSWNQSwX7u3mhMITM7DHi57UOKT5ARKCcQEUkUtUTw64jrdmp13tERiIjsfJotEZjZocAXgFIzuyJhU08gL87A4uAqEYiIpMhUNVQAdA/365Gw/t/AmXEFFRd36JJT71KLiGSWafTRvwN/N7Mp7v5RO8UUG7URiIikitpYvMnMJgIjCOYjAMDdj44lqpjUOZgyAhGRRqJWlEwF3gHKgJuBpcBrMcUUG3UfFRFJFTUj6OPufwC2ufvf3f2bwLgY44qFXigTEUkVtWpoW/j7EzM7GVgBDIgnpPjUuaNsQESksaglgp+YWS/gB8CVwD3A9zMdZGYnmNm7ZrbYzK5pZr+DzazWzGLtiaTGYhGRVFGnqnw6/LgOGA8NbxY3yczygN8AxxIMS/Gamc1w90Vp9vs58ELLQm85dzTonIhIkmZLBGaWZ2bnmtmVZjYyXHeKmb0C3JXh3GOBxe7+obtXA9OB09Ls9z3gUWBVy8NvGbURiIikylQi+AOwFzAbuNPMPgIOBa5x9ycyHNsfSBy6uhI4JHEHM+sPTACOBg5u6kRmdhFwEcDAgQMzXLZpde7kq9uQiEgjmTKCCuAAd68zs0JgNTDE3VdGOHe6FDd5tJ9fAT9099rm+ve7+2RgMkBFRUWrRwxSG4GISKpMGUG1u9cBuPsWM3svYiYAQQlgr4TlAQS9jRJVANPDTKAEOMnMaiKUNlpFL5SJiKTKlBEMM7P54WcD9gmXDXB3P6CZY18DhppZGbAcOAc4L3EHdy+r/2xmU4Cn48oEwuup+6iISJJMGcH+rT2xu9eY2aUEvYHygHvdfaGZXRxun9Tac7dWnaM3i0VEkmQadG6HBppz92eBZ5PWpc0A3P3rO3KtSPGgNgIRkWQ5NShzXZ3aCEREkuVWRqBB50REUkTOCMysyMz2izOYuOmFMhGRVJEyAjP7MjAPeD5cLjezGTHGFYs6d81QJiKSJGqyeBPBkBGfA7j7PGBQHAHFKRh9VCUCEZFEUTOCGndfF2sk7cDRoHMiIsmizkewwMzOA/LMbChwGfBKfGHFQ20EIiKpopYIvkcwX/FW4M8Ew1F/P6aYYqNeQyIiqaKWCPZz9x8DP44zmLhp0DkRkVRRSwS/NLN3zOy/zGxErBHFSC+UiYikipQRuPt44CigCphsZm+Z2XVxBhYHd1djsYhIksi96t19pbvfCVxM8E7BDXEFFRcNOicikirqC2X7m9lNZraAYIrKVwjmF8gqGnRORCRV1MbiPwLTgOPcPXlymayhiWlERFJFygjcfVzcgbQHV/dREZEUzWYEZvaQu59tZm/ReL7hKDOU7XTq9EKZiEiKTCWCy8Pfp8QdSHvQC2UiIqmabSx290/Cj991948Sf4Dvxh9e26qrc7URiIgkidp99Ng0605sy0Dag7sGnRMRSZapjeA/CZ78B5vZ/IRNPYCX4wwsDo7aCEREkmVqI/gz8BzwM+CahPXr3f2z2KKKidoIRERSZcoI3N2XmtklyRvMbLdsyww06JyISKooJYJTgLmE87okbHNgcExxxUIvlImIpGo2I3D3U8LfZe0TTrz0QpmISKqoYw0dZmbF4ecLzOyXZjYw3tDaXp16DYmIpIjaffS3wCYzGw1cDXwE/Cm2qGLiaiMQEUnRksnrHTgNuMPd7yDoQppV1EYgIpIq6uij683sWuCrwBFmlgfkxxdW2wvyMc1HICKSLGqJ4CsEE9d/091XAv2BibFFFYO6cMg8VQ2JiDQWdarKlcBUoJeZnQJscff7Y42sjdWpRCAiklbUXkNnA7OBs4Czgf8zszMjHHeCmb1rZovN7Jo02883s/nhzythY3Qs6jMCtRGIiDQWtY3gx8DB7r4KwMxKgb8CjzR1QNiO8BuCAesqgdfMbIa7L0rYbQnwRXdfa2YnApOBQ1p+G5mF+YC6j4qIJInaRtClPhMIrYlw7Fhgsbt/6O7VwHSCXkcN3P0Vd18bLr5KjPMgu9oIRETSiloieN7MXiCYtxiCxuNnMxzTH1iWsFxJ80/7FxIMcJfCzC4CLgIYOLB177GpjUBEJL2ocxZfZWb/ARxOMN7QZHd/PMNh6ZJcT7MOMxtPkBEc3sT1JxNUG1FRUZH2HJlszwiUE4iIJMo0H8FQ4DZgH+At4Ep3Xx7x3JXAXgnLA4AVaa5xAHAPcKK7r4l47hara2gjUEYgIpIoUz3/vcDTwBkEI5D+ugXnfg0YamZlZlYAnAPMSNwhHK/oMeCr7v5eC87dYnqhTEQkvUxVQz3c/ffh53fN7PWoJ3b3GjO7FHgByAPudfeFZnZxuH0ScAPQB7g7fFKvcfeKlt5EFA0lgjhOLiKSxTJlBIVmdiDb08+ixGV3bzZjcPdnSWpUDjOA+s/fAr7V0qBbo6GNQEUCEZFGMmUEnwC/TFhembDswNFxBBUHVxuBiEhamSamGd9egcRNbQQiIulFfaEs62nQORGR9HIoI1CJQEQknZzLCNRGICLSWNTRRy2cq/iGcHmgmY2NN7S25eo+KiKSVtQSwd3AocC54fJ6gpFFs4YGnRMRSS/qoHOHuPtBZvYGQDhsdEGMcbW57e8RdHAgIiI7majJ4rZwfgGHhvkI6mKLKgYadE5EJL2oGcGdwONAXzP7b+CfwE9jiyoGGnRORCS9qMNQTzWzucAxBO2tp7v727FG1sb0QpmISHqRMoJwlNBNwFOJ69z947gCa2t6oUxEJL2ojcXPELQPGFAIlAHvAiNiiqvNNbxH0MFxiIjsbKJWDY1KXDazg4DvxBJRTDTonIhIeq3qTBkOP31wG8cSKw0xISKSXtQ2gisSFrsABwFVsUQUE71QJiKSXtQ2gh4Jn2sI2gwebftw4qMXykRE0suYEYQvknV396vaIZ7YaNA5EZH0mn0+NrOu7l5LUBWU1TRnsYhIeplKBLMJMoF5ZjYDeBjYWL/R3R+LMbY25RpiQkQkrahtBLsBawjmKK5/n8CB7MkIwt/KCEREGsuUEfQNewwtYHsGUM/TH7JzqqtT91HJHtu2baOyspItW7Z0dCiSZQoLCxkwYAD5+fmRj8mUEeQB3UlftZ5dGYFeKJMsUllZSY8ePRg0aJD+zUpk7s6aNWuorKykrKws8nGZMoJP3P2WHQtt56BB5ySbbNmyRZmAtJiZ0adPH6qqWvaaV6Ze9Z3mX2HDoHPKCSRLKBOQ1mjNv5tMGcExrQtl56NB50RE0ms2I3D3z9orkLjVN2joKUskmry8PMrLyxk5ciRnnXUWmzZtYs6cOVx22WWtPmf37t0BWLFiBWeeeWZbhcr3v/99XnrppYblqqoq8vPz+d3vfpf2+vWmTJnCpZde2rB8//33M3LkSEaMGMHw4cO57bbbdji2559/nv32248hQ4Zw6623pt1n7dq1TJgwgQMOOICxY8eyYMGChm2DBg1i1KhRlJeXU1FR0bD+yiuv5G9/+9sOxwetHHQuG2nQOZGWKSoqYt68eSxYsICCggImTZpERUUFd9555w6fu1+/fjzyyCNtECV89tlnvPrqqxx55JEN6x5++GHGjRvHtGnTIp/nueee41e/+hUzZ85k4cKFvP766/Tq1WuHYqutreWSSy7hueeeY9GiRUybNo1Fixal7PfTn/6U8vJy5s+fz/3338/ll1/eaPuLL77IvHnzmDNnTsO6733ve01mLC0V9T2CrKcXyiRb3fzUQhat+HebnnN4v57c+OXo04kcccQRzJ8/n1mzZnHbbbfx9NNPc9NNN/HBBx+wfPlyli1bxtVXX823v/1tACZOnMhDDz3E1q1bmTBhAjfffHOj8y1dupRTTjmFBQsWMGXKFGbMmMGmTZv44IMPmDBhAr/4xS8AmDlzJjfeeCNbt25ln3324Y9//GPKU/0jjzzCCSec0GjdtGnTuP322znvvPNYvnw5/fv3z3iPP/vZz7jtttvo168fEHTDrL+f1po9ezZDhgxh8ODBAJxzzjk8+eSTDB8+vNF+ixYt4tprrwVg2LBhLF26lE8//ZTdd9+9yXPvvfferFmzhpUrV7LHHnvsUJy5UyKoC34rIxBpmZqaGp577jlGjRqVsm3+/Pk888wz/Otf/+KWW25hxYoVzJw5k/fff5/Zs2czb9485s6d26jaJp158+bx4IMP8tZbb/Hggw+ybNkyVq9ezU9+8hP++te/8vrrr1NRUcEvf/nLlGNffvllxowZ07C8bNkyVq5cydixYzn77LN58MEHI93nggULGp2nKVOnTqW8vDzlJ11V1/Lly9lrr70algcMGMDy5ctT9hs9ejSPPRa8nzt79mw++ugjKisrgaA6+7jjjmPMmDFMnjy50XEHHXQQL7/8cqT7a07OlAi2DzrXwYGItFBLntzb0ubNmykvLweCEsGFF17IK6+80mif0047jaKiIoqKihg/fjyzZ8/mn//8JzNnzuTAAw8EYMOGDbz//vuNqm6SHXPMMQ3VMMOHD+ejjz7i888/Z9GiRRx22GEAVFdXc+ihh6Yc+8knn1BaWtqwPH36dM4++2wgeAK/8MILueKKK1KOq9fSdsPzzz+f888/P9K+9TURma53zTXXcPnll1NeXs6oUaM48MAD6do1SJ5ffvll+vXrx6pVqzj22GMZNmxYw3fZt29fVqxY0aL404k1IzCzE4A7CF5Mu8fdb03abuH2kwjmRP56OOlNm9OcxSItU99G0JzkRM3McHeuvfZavvOd6JMYduvWreFzXl4eNTU1uDvHHntsxnr+oqKiRm9gT5s2jU8//ZSpU6cCQcP0+++/z9ChQykqKqK6upqCggIgaF8oKSkBYMSIEcydO5ejjz662etNnTqViRMnpqwfMmRISrvHgAEDWLZsWcNyZWVlQ9VTop49e/LHP/4RCDKPsrKyhhfC6vfv27cvEyZMYPbs2Q0ZwZYtWygqKmo23ihiqxoKh6/+DXAiMBw418yGJ+12IjA0/LkI+G1c8bhKBCJt7sknn2TLli2sWbOGWbNmcfDBB3P88cdz7733smHDBiCoHlm1alWLzz1u3DhefvllFi9eDMCmTZt47733Uvbbf//9G/Z599132bhxI8uXL2fp0qUsXbqUa6+9lunTpwPwxS9+kQceeAAISjwPPfQQ48ePB+Daa6/l6quvZuXKlQBs3bo1bcP4+eefz7x581J+0jV+H3zwwbz//vssWbKE6upqpk+fzqmnnpqy3+eff051dTUA99xzD0ceeSQ9e/Zk48aNrF+/HoCNGzcyc+ZMRo4c2XDce++912i5teJsIxgLLHb3D929GpgOnJa0z2nA/R54FehtZnvGEYwGnRNpe2PHjuXkk09m3LhxXH/99fTr14/jjjuO8847j0MPPZRRo0Zx5plnNiRmLVFaWsqUKVM499xzOeCAAxg3bhzvvPNOyn4nn3wys2bNAoLSwIQJExptP+OMMxpKFXfccQePPfYY5eXljBs3jrPOOqvh6fqkk07ikksu4Utf+hIjRoxgzJgx1NTUtDjuRF27duWuu+7i+OOPZ//99+fss89mxIigqm/SpElMmjQJgLfffpsRI0YwbNgwnnvuOe644w4APv30Uw4//HBGjx7d8F3XN4xv27aNxYsXN+pS2mruHssPcCZBdVD98leBu5L2eRo4PGH5f4GKNOe6CJgDzBk4cKC3xpyln/l3H5jry9duatXxIu1p0aJFHR1CRjfeeKNPnDixo8Nwd/fDDjvM165d29FhtKvHHnvMr7vuurTb0v37AeZ4E+l1nG0EUQaqizSYnbtPBiYDVFRUtGqwuzF778qYvXdtzaEispO7/fbb+fjjj+ndu3dHh9Juampq+MEPftAm54ozI6gE9kpYHgAkN29H2UdEdkI33XRTR4fQ4JBDDunoENrdWWed1WbnirON4DVgqJmVmVkBcA4wI2mfGcDXLDAOWOfun8QYk0jW8DRdD0Uyac2/m9hKBO5eY2aXAi8QdB+9190XmtnF4fZJwLMEXUcXE3Qf/UZc8Yhkk8LCQtasWUOfPn00PpZE5uF8BIWFhS06zrLtqaOiosITx9sQ6Yw0Q5m0VlMzlJnZXHdP28UoZ94sFskm+fn5LZphSmRH5MxYQyIikp4yAhGRHKeMQEQkx2VdY7GZVQEftfLwEmB1G4aTDXTPuUH3nBt25J73dvfSdBuyLiPYEWY2p6lW885K95wbdM+5Ia57VtWQiEiOU0YgIpLjci0jmJx5l05H95wbdM+5IZZ7zqk2AhERSZVrJQIREUmijEBEJMd1yozAzE4ws3fNbLGZXZNmu5nZneH2+WZ2UEfE2ZYi3PP54b3ON7NXzGx0R8TZljLdc8J+B5tZrZmd2Z7xxSHKPZvZUWY2z8wWmtnf2zvGthbh33YvM3vKzN4M7zmrRzE2s3vNbJWZLWhie9unX01NXZatPwRDXn8ADAYKgDeB4Un7nAQ8RzBD2jjg/zo67na45y8Au4afT8yFe07Y728EQ56f2dFxt8PfuTewCBgYLvft6Ljb4Z5/BPw8/FwKfAYUdHTsO3DPRwIHAQua2N7m6VdnLBGMBRa7+4fuXg1MB05L2uc04H4PvAr0NrM92zvQNpTxnt39FXdfGy6+SjAbXDaL8ncG+B7wKLCqPYOLSZR7Pg94zN0/BnD3bL/vKPfsQA8LJm7oTpAR7Nis8x3I3V8iuIemtHn61Rkzgv7AsoTlynBdS/fJJi29nwsJniiyWcZ7NrP+wARgUjvGFacof+d9gV3NbJaZzTWzr7VbdPGIcs93AfsTTHP7FnC5u9e1T3gdos3Tr844H0G66ZyS+8hG2SebRL4fMxtPkBEcHmtE8Ytyz78CfujutZ1klq8o99wVGAMcAxQB/zKzV939vbiDi0mUez4emAccDewD/MXM/uHu/445to7S5ulXZ8wIKoG9EpYHEDwptHSfbBLpfszsAOAe4ER3X9NOscUlyj1XANPDTKAEOMnMatz9iXaJsO1F/be92t03AhvN7CVgNJCtGUGUe/4GcKsHFeiLzWwJMAyY3T4htrs2T786Y9XQa8BQMyszswLgHGBG0j4zgK+Fre/jgHXu/kl7B9qGMt6zmQ0EHgO+msVPh4ky3rO7l7n7IHcfBDwCfDeLMwGI9m/7SeAIM+tqZrsAhwBvt3OcbSnKPX9MUALCzHYH9gM+bNco21ebp1+drkTg7jVmdinwAkGPg3vdfaGZXRxun0TQg+QkYDGwieCJImtFvOcbgD7A3eETco1n8ciNEe+5U4lyz+7+tpk9D8wH6oB73D1tN8RsEPHv/F/AFDN7i6Da5IfunrXDU5vZNOAooMTMKoEbgXyIL/3SEBMiIjmuM1YNiYhICygjEBHJccoIRERynDICEZEcp4xARCTHKSPIAeHIm/MSfgY1s++GNrjeFDNbEl7rdTM7tBXnuMfMhoeff5S07ZUdjTE8T/33siAcvbJ3hv3LzeykVlxnTzN7Ovx8lJmtM7M3zOxtM7uxFec7tX4UTjM7vf57CpdvMbMvtfScaa4xxTKM1hoOYxG5C3J4709H2C/t6JtmdpuZHR31ehKdMoLcsNndyxN+lrbDNa9y93LgGuB3LT3Y3b/l7ovCxR8lbfvCjocHbP9eRhIM8nVJhv3LCfpvt9QVwO8Tlv/h7gcSvPl8gZmNacnJ3H2Gu98aLp4ODE/YdoO7/7UVMe5MpgAnpFn/a4J/T9LGlBHkIDPrbmb/Gz6tv2VmKaN2hk+xLyU8MR8Rrj/OzP4VHvuwmXXPcLmXgCHhsVeE51pgZt8P1xWb2TMWjCW/wMy+Eq6fZWYVZnYrUBTGMTXctiH8/WDiE3r4FHuGmeWZ2UQze82C8dq/E+Fr+RfhwF1mNtaCORveCH/vF77VegvwlTCWr4Sx3xte541032PoDOD55JXhMBBzgX3C0sarYbyPm9muYSyXmdmicP30cN3XzewuM/sCcCowMYxpn/oneTM70cweSvhujjKzp8LPLfobmtkN4T0uMLPJZo0Gbrog/I4WmNnYcP+o30taTY2+6e4fAX3MbI+WnE8iaK8xtvXTcT9ALcGgXPOAxwneKO8ZbisheEOx/uXCDeHvHwA/Dj/nAT3CfV8CisP1PwRuSHO9KYRj/wNnAf9HMBDaW0AxwVDBC4EDCRLJ3ycc2yv8PQuoSIwpYZ/6GCcA94WfCwhGZCwCLgKuC9d3A+YAZWni3JBwfw8DJ4TLPYGu4ecvAY+Gn78O3JVw/E+BC8LPvQnG8ylOukYZMDdh+Sjg6fBzH2ApMILgTeAvhutvAX4Vfl4BdKu/RnIcid914nL4N/444W/1W+CCVv4Nd0tY/yfgywl/o9+Hn48kHD+/qe8l6d4rCN56burf7CDSjMdPULI6o6P/T3W2n043xISktdmDahoAzCwf+KmZHUkwDEF/YHdgZcIxrwH3hvs+4e7zzOyLBNUQL4cPhQUET9LpTDSz64AqgtFOjwEe9+ApGDN7DDiC4En5NjP7OUEi8Y8W3NdzwJ1m1o2gKuEld99sZscBByTUcfcChgJLko4vMrN5BInOXOAvCfvfZ2ZDCUZ1zG/i+scBp5rZleFyITCQxmP77Bl+B4mOMLM3CL77WwkGEevt7vWzid1HkDFBkEFMNbMngCeaiCOFB0MzPA982cweAU4GrgZa8jesN97MrgZ2AXYjyMSfCrdNC6/3kpn1tKCdpanvJTG+OcC3ot5PglVAv1YcJ81QRpCbzieYyWmMu28zs6UE/1kbhP+xjyRIQP5kZhOBtcBf3P3cCNe4yt0fqV+wJhow3f29sI78JOBnZjbT3W+JchPuvsXMZhEMQ/wVwkSJYLyZ77n7CxlOsdndy82sF/A0QRvBnQRj17zo7hMsaFif1cTxRvB0+m5z1yDpuyVoIzil4STB9ZtyMsHT9qnA9WY2opl9kz1IcE+fAa+5+/qwWifq3xAzKwTuJiidLTOzm2h8P8lj1DhNfC8WDAi3owoJvlNpQ2ojyE29gFVhJjAe2Dt5BzPbO9zn98AfCKbOexU4zMzq6/x3MbN9I17zJeD08Jhigmqdf5hZP2CTuz8A3BZeJ9m2sGSSznSCQbeOIBiYjPD3f9YfY2b7htdMy93XAZcBV4bH9AKWh5u/nrDreoIqsnovAN+rrzM3swPTnP49ghJHk8Lrr7WwHQb4KvB3M+sC7OXuLxI8zfcmqFZLlBxTolkE3+e3CTIFaPnfsD7RXx22JST3JKpv0zmcYBTMdUT7XlprXyBrB9HbWSkjyE1TgQozm0NQOngnzT5HAfPCKowzgDvcvYogYZxmZvMJEpVhUS7o7q8T1DvPJmgzuMfd3wBGAbPDKpofAz9Jc/hkYL6FjcVJZhI8Mf/Vg6kMIZhzYRHwugVdEH9HhtJvGMubBMMc/4KgdPIyQftBvReB4fWNxQQlh/wwtgXhcvJ5NwIf1Ce8zfj/CKrT5hP0TrolvPYDFoyq+QbwP+7+edJx04GrwkbZfZKuXUtQ0jkx/E1L/4bh9X5P0L7zBEGVYaK1FnTnnURQBQgRvhcLOgLck+6aFoy++S9gPzOrNLMLw/X5BB0P5jQVr7SORh8ViZmZTSCohruuo2PJZuH3eJC7X9/RsXQ2aiMQiZm7P25mfTo6jk6gK3B7RwfRGalEICKS49RGICKS45QRiIjkOGUEIiI5ThmBiEiOU0YgIpLj/h9O/1gSmmCbxAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# Train set\n", "ConfusionMatrixDisplay.from_estimator(estimator, x_train, y_train)\n", "confusion_matrix_train = plot_to_str()\n", "\n", "RocCurveDisplay.from_estimator(estimator, x_train, y_train)\n", "roc_curve_train = plot_to_str()\n", "\n", "# Test set\n", "ConfusionMatrixDisplay.from_estimator(estimator, x_test, y_test)\n", "confusion_matrix_test = plot_to_str()\n", "\n", "RocCurveDisplay.from_estimator(estimator, x_test, y_test)\n", "roc_curve_test = plot_to_str()" ] }, { "cell_type": "markdown", "id": "69df44bc", "metadata": {}, "source": [ "## Run some FEAT Tests on the data" ] }, { "cell_type": "code", "execution_count": 4, "id": "589c647a", "metadata": { "tags": [] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABKEAAAH3CAYAAABjKExqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAACnoklEQVR4nOzdeViUZdsG8POeYRdEwJ1FQERWccUlTVMzzSWVTFNz3zUt1/ZF+0pLS6ksl9SwMi3NTLPeLCnTcqvcWBQURURU9h1m5vn+eBgdxxkYtkHw/B0Hx8yzX7PU+87Zdd+PkCQJRERERERERERE1UlR0wUQEREREREREVHdxxCKiIiIiIiIiIiqHUMoIiIiIiIiIiKqdgyhiIiIiIiIiIio2jGEIiIiIiIiIiKiascQioiIiIiIiIiIqh1DKCKi+5gQ4g0hhKTzd10IsVcI0cbI/oFCiO1CiBtCiAIhxHkhxFIhRD0j+7ct2f+6EKJICHFNCLFFCBFgQm1NhBCrhRDxQohCIUS6EGK/EOKxyr7u+4UQQiGE+FgIkVLy/r9R0zWVRgjxrRAisqbrICIiIiIyxKKmCyAiojJlAuhf8twTwFIAvwgh/CVJStPuJIR4BMA+AP8BeBbAdQAdAbwEYIAQ4hFJknJ09h8O4GsAfwB4HkASADcAowEcBuBkrCAhRGsABwHkAlgJIApAfQCPA9gjhAiVJOlUZV/4fWA4gFkAJkN+jVdrthwiIiIiotqLIRQR0f1PJUnS3yXP/xZCJAD4C3Iw9RUACCHsAHwJ4CSA3pIkFZfs/7sQ4hcAJwC8BeC5kv2bA/gcwDYAEyRJknSu95UQYlAZNX0JIA1AN0mSsnTW/yCE+ARARgVe521CCFtJkvIrc44q4gcgXZKkTTVdiDlV9fsvhFACUEqSVFRV5yQiIiKi2ofD8YiIah9th5G7zroRAJoBeFkngAIASJJ0GnJoNKUkrAKAKQCsACzQC6C0x+w1dnEhxMMAOgB4US+Aun09SZKulOwbKYT4Vu/4XiVD24JKlj1LlscIISKEEBmQw6zPhRDHDFx/jhAiXwhhX7KsEEK8IISIKxkWeF4IMd5Y/TrnsRNChJcMRSwQQhwXQvTT2R4JYBkAJ53hkJ6lnG+OECJRCJErhNgthOhTckwvnX3KrFX7ngkhRpfsl1UyzNFNbz93IcSPJe9FghBiipG6goQQ+4QQ2SV/3wghmups134ejwkh9gghcgB8VMrrbCOEOFLynp0TQjwuhDghhNiis8+WknVDhRDnABQA6KzzPl0oef1xQojn9c6/RQhxQm+d9jsySGedJISYL4RYI4RIE0JkCCE+FEJY6ezTQAixUcjDTAuEEFeEEBuMvTYiIiIiql7shCIiqn08Sh4v6ax7GHLHzh9GjtkNYAKA9gD+BNATwAlJkm5V4Po9AagBHKjAsaVZCWAX5EBNDcAawI9CCG9Jki7q7PcUgH06Qws/BDAe8jDFfwA8CmCTECK1tDANwAYAQyAPV4wDMBXAvpJhi39CHoY3H8CTuDMcMtnQiYQQw0rqWAvgewDdAXxmYFdTa+0MoDmABQBsAawBsB7ycEcIIUTJdRpCHipYAOBNAM4ALujU5QN5aOUJAM8AUEIO1n4oGTKpG0B+BmAzgNUl5zP0Ou0A/Ax5qOfTAGwAfAB56OZZvd09Abxb8lpTAFwSQkwteQ/eLznPIwBWCSGsJUlabuiaZVgA4G8AYwAEAvi/ktoXlWx/H0A3yMNNr0MObh+uwHWIiIiIqAowhCIiqgWEENp/X7eA3KXyH+QQQssVwOVSTnFZZz/t478VLMcVwM1qGC73tyRJs7ULJa85FXLotLxknSvkgOepkmUfADMBTJQk6fOSQw8IIZoBeB2AwRBKCOEPOUS5fZwQ4mcApwG8CuAxSZKihBBXcfdwSGNeAvCjTv3/E0I0LKlNe83y1FofwEBJktJLjm0K4ANxZ5jcAADtAHSRJOloyT4nAcRDJ4QqOe91AAO0Q+GEEKcBxEAOtPbp7PuNJEmvlvE6JwJwAdBRkqSkkvPFAzhqYF8XAH0lSfqvZD8FgDcAbJEkaYHO++QI4EUhxGpJkgyGX6XIBjBCkiQNgP1CCGsALwsh3imZLy0UwMeSJG3XOeaLcl6DiIiIiKoIh+MREd3/XAAUl/zFQQ4fhkuSVFjJ894zDM9MxxqjG4hAkiQV5M6okTqrR0CeDF27bx8AGgDfCSEstH8AfgXQVshzERnSCYAA8I3O9TQly93LU3TJNdoC2KO3SX+5PLUe1wZQJaJKHrUhYiiAFG0AVVL/ZchzgunqC+A7ABqd610CkAB50npd+1C2TgBOagOokuseg9zppC9JG0CVcIPc3fWN3n7bIYduwSZcX9/3JZ+b1i7InWNBJcv/AVgkhJglhPCtwPmJiIiIqAoxhCIiuv9lQv7x3wXAdMhzOX1V0lmilQS5S8qYFjr7aR89jOxbliQAjYQQNhU83hhDQcbXkAMabYAwEsAenS6shpCHmGXiTlBXDGAL5G7fZkau1QxAjiRJeQZqsCvpqDFVo5Jr3dRbr79cnloz9I7VTuitfc+bArhhoBb9dQ0BLNG7XjEAb9w9pxhg+P3X1xT3vi4YWad/vmZG1muXnU24vj7916td1l5rDuShqK8BiC2Zi2pUBa5DRERERFWAw/GIiO5/KkmStBM1HxVC5AOIgNwVpB1m9AeASUKI7iXzGekbArmDSNspEwl52JJzybCl8oiEPM9PH5TdPVMAOTTTZSxsMNRdFQl5ONlIIUQE5LmS3tHZngZABeAhyF1G+gwFNYA8t5O9EMJOL4hqAiCvnF1mN0tqaKS3Xn+5orUach1AYwPrGwPQHSaZBrkTaqOBffXnAzOlu+06gNYG1uu/VkPn086npV93k5JH7fewPN8Z/XNpl5MBQJKkDABzAcwVQrQBsBjAl0KI05IkRYGIiIiIzIqdUEREtc8XAM5B7nDR+gbyD+//05k/CoB8dzTIk1Jv0Okg+gxyR8xKQxcQQgw0dnFJkg5BDrPeFkI4GDg2WAih7bK5CsBPb5dHjZ3bwLU0AL6F3AH1FIAsAD/p7PIb5O4iR0mSThj4K7r3rACA45BDkid16hYly4ZCvNJqVEMe9vWE3qYhessVrdVY/U2EEJ116veAPPG8rl8hD007aeB6CeW4nu51O5bMzaW9bijuBEmluQrgGuTwVJf2cz2js5+nXqedse/ME3odgcMhh3D6k6Rr7xK5CPL/99H/ThIRERGRGbATioiolpEkSRJCvA25o6OPJEm/SpKUJ4QYA7kzKVIIEQ55mFMHyJNmn4I84bb2HNeEEBMAbBNCuAHYBHmYnSvkwKcnSh8eNQbAQQAnhBAfQJ6zqD6AxyDfZa4zgETIXTiTS/bZB/luaI+V8yVvhzys6nkA3+mGNZIkxQohPgXwtRDiXch3gbOBfKc0X0mSphg6oSRJ0UKIbQA+EkLUx5274/lBZzLxcngbwC4hxEeQ54J6CIA2yNNUplYjfoT8mX4jhFgCuXtoKe7tpnoDwDHId/3bBLn7yRVyqLNFkqTIcr7OzQBeAbBXCPEm5PmX3oTcDWaou+s2SZI0Qog3AKwTQqQC+AXy92wmgJd0JiXfXfJaNgohtkCeA22ikdM6QH4PNkB+H18D8JG2u08I8Sfk7+BZyKHjVMgdgcfK+bqJiIiIqAqwE4qIqHbaDvkuaIu1KyRJOgh5wuprAD4G8D8AMwCsBdBLkqQc3RNIkrQTcliUAWAN5E6d9yH/SO9b2sUlSYqF3HXzU0kNvwDYCsAXwGhJkk6V7LcPcgj2JOQwoAWA58r5Wg9DDrSaQZ4jSt9sAMsAjIMczmyBHAD9UcZ5pwL4HHI4931JbYOMDGcslSRJ30Ee9jUUcojSCcDCks1ZVVCr/vUkyJ1WUZADxNWQ75r4l95+5yHPJZYHYD2A/ZBDo0LIwVu5lAxd7A+522g75JBrMeTvUJbRA+8cvwHy+zQM8t0AnwawQJKk5Tr7nAUwCUBXyIFez5JlQ1ZB7gDcBjmA2gj5+6b1F4AJkLvpdkCeI2uAJElXy361RERERFTVhPz/Y4mIiKgqCSFeAfAyAGedYZB1jhDCC8B5ANMkSdpsxutKAJ6VJOkjc12TiIiIiCqHw/GIiIgqSQjRCMCLkIco5gHoAXnOrs/qWgAlhHgRcrfdZch3WHwR8nC8nTVZFxERERHd/xhCERERVV4R5PmkxgFwhDxEbA105uGqQyQArwNoDnlY3yEACyVJKnM4HhERERE92Dgcj4iIiIiIiIiIqh0nJiciIiIiIiIiomrHEIqIiIiIiIiIiKpdnZgTqmHDhpKnp2dNl1FtLl26BADw8vKq4UqIiIiIiOh+dPLkyVuSJDWq6TqIiEpTJ0IoT09PnDhxoqbLqDa9evUCAERGRtZoHUREREREdH8SQlyu6RqIiMrC4XhERERERERERFTtGEIREREREREREVG1YwhFRERERERERETVrk7MCVXXde3ataZLICIiIiIiqhYnT55sbGFhsRFAENgoQVSbaQCcValUUzp06HDD0A4MoWqBd955p6ZLICIiIiIiqhYWFhYbmzZt6t+oUaN0hUIh1XQ9RFQxGo1G3Lx5M+D69esbAQwxtA9TZiIiIiIiIqpJQY0aNcpiAEVUuykUCqlRo0aZkLsaDe9jxnqogsLCwhAWFlbTZRAREREREVUHBQMoorqh5J9lo1kTh+PVAqmpqTVdAhERERERERFRpbATioiIiIiIiB5oSqWyg5+fX0CrVq0Ce/fu7XPr1i2ldtuJEydsunTp4uvp6RnUokWLoEWLFjXTaDS3j92xY0f9oKAgf29v70AvL6/AadOmuZl63fz8fNGtWzdfPz+/gA0bNjhV8csyaO/evQ6PPPKIT2XPExsbayWE6DBv3rzm2nXJyckWFhYW7ceNG+dR2fNT3cQQioiIiIiIiB5o1tbWmpiYmKgLFy6ca9Cggeq9995rBAA5OTli2LBhPosXL76ekJBw9uzZs1FHjx61X7FiRSMAOH78uM2CBQs8tm7deunixYvnzp8/f87b27vQ1OseOXLErri4WMTExERNnTo1vbpeX2UUFxcb3ebm5lb4v//9r4F2OSIiwsnHx6fAHHVR7cTheERERERERHR/mDTJHWfP2lXpOYOC8rBpU6Kpu3fp0iX39OnTtgCwYcMGl44dO+YMHz48CwAcHBw0n3zyyZU+ffq0fvHFF2++/fbbTRcsWJDcrl27AgCwtLTECy+8cFP/nCkpKcoxY8Z4XrlyxdrW1lazfv36y25ubsUTJ070Sk9Pt/Dz8wvYuXNnfGBg4O0A6/fff7ebOnWqp52dnaZz5845v/32m+OFCxfOqVQqzJ492+3w4cMORUVFYurUqTcWLVp0a+/evQ5Lly5t7uzsXBwbG2sbHByct3v37ksKhQLffvtt/UWLFrk7OzurgoOD87TXyMrKUkyePNkjOjraVq1Wi5dffvna2LFjM8LDw13279/vWFhYqMjLy1P8/fff5w29VzY2NpKPj0/+H3/8Yffwww/n7dy503no0KFp165dszL9A6IHCTuhaoE+ffqgT58+NV0GERERERFRnaZSqXDw4EGHoUOHZgDAuXPnbNq3b5+nu09gYGBhXl6eIi0tTREbG2vbuXPnPIMn07F48eLmISEheefPn49atmxZ0vjx471cXV1Va9euvdyxY8ecmJiYKN0ACgCmTJni9fHHH1/+77//YpRK5e2J21evXt3Q0dFRffbs2ehTp05Ff/75541iYmKsACA6Otr2448/ToyLizt35coV619++cU+Ly9PzJkzx3PPnj1xx48fj71x44al9lwvvfRSs0ceeSTr7Nmz0YcOHYp95ZVX3LKyshQA8M8//9hv27btkrEASmvUqFFpX3zxhXN8fLylUqmUmjdvbrx1ih547ISqBV599dWaLoGIiIiIiKj6laNjqSoVFhYq/Pz8ApKSkqyCgoLyhg4dmgUAkiQJIYTBY4ytN+TYsWMOO3fujAOAIUOGZE+bNs0iNTVVaWz/W7duKXNzcxWPPvpoLgCMHz8+7ZdffmkAAAcOHKgfExNjt2fPHicAyM7OVkZFRdlYWVlJwcHBuS1btiwGgMDAwLz4+HgrBwcHtZubW2FwcHAhAIwZMyZ148aNjQAgMjKy/s8//9wgPDy8acn7IOLi4qwAoEePHllNmjRRl/XawsLCspYuXerapEmT4rCwsDST3xR6ILETioiIiIiIiB5o2jmhEhISzhQVFYnly5c3BoDAwMD8kydP3jU8MCoqysrOzk7j5OSk8fX1LTh69GiZwwclSbpnnRDi3pWl7K+zTaxatepKTExMVExMTFRSUtIZ7XBBa2vr2wcqlUqoVCpRci2j1/n222/jtOdKTk4+0759+wIAsLOz0xg8SI+NjY3Upk2bvE8++aTp2LFj78t5rej+YdYQSgixSQhxQwhx1sh2IYQIF0LECSFOCyHam7O++9WAAQMwYMCAmi6DiIiIiIioTnNxcVGHh4df+fjjj5sUFhaKadOmpR4/ftxh9+7dDoA8Ufns2bM9nn322esA8OKLL15///33m50+fdoaANRqNd54440m+uft0qVL9ubNm10A+e50Tk5OKmdnZ6MhT6NGjdT16tXT/Prrr/UAYOvWrc7abY8++mjmJ5980qiwsFAAwOnTp621Q+gMadu2bcHVq1etzp07Zw0AX3/99e1zPfLII1mrVq1qor3b3+HDh23L8XbdtmTJkuuvv/761aZNm5bZOUUPNnMPx9sC4CMAEUa2DwDQquSvM4BPSh4faPn5+TVdAhERERER0QPhoYceyvf398/fuHGj0+zZs9N27doVN2fOHI/nnnvOUqPRYMSIEakvvvjiDQDo3Llz/ooVKxKffvpp7/z8fIUQAn379s3UP+eKFSuujR492tPX1zfA1tZWs2XLlktl1bFu3bqEGTNmtLCzs9M89NBD2Q4ODmoAeP75528lJCRYBwcH+0uSJJydnYt//PHHeGPnsbOzkz788MPLgwYN8nF2dlZ17tw5Jzo62hYAli9ffm3atGkefn5+AZIkCTc3t8KDBw/Glfc969ixY0HHjh15Vzwqkyitza9aLiiEJ4C9kiQFGdi2DkCkJEnbSpZjAfSSJCm5tHN27NhROnHiRHWUe1/o1asXACAyMrJG6yAiIiIieuBoNIBKBalYhYIcFfLzJDh7OdZ0VfcQQpyUJKljTddREadOnUoICQm5VdN13G8yMzMVjo6OGgB46aWXmiYnJ1tu3ry5RubMIiqPU6dONQwJCfE0tO1+m5jcFYDuP1RXS9aVGkIREREREVE1kyRApbrzV1x897L+X2nbK7rNhGOLiyTkFFggt8gSuYXyY06RlbxcbIWcYmvkFlshV2WNHLUNclU2yFXbIEdti1yN/Jcj2SFX+4d6yIE9clEPEhRopriOa+r7L4SiumfHjh2Oq1ataqZWq4Wrq2vhV199lVDTNRFV1v0WQhmaLc1gq5YQYhqAaQDg4eFRnTUREREREd2hH8bUgmCmSs6rMWmOYpNoIJAHu9vhjm7Qo//89rJwQK7CHjlwQK6wR66ohxzJHrmQw6IcqR5yNXYohmXZBZQQ0MDOogj2loWoZ12EepZFsLcqQj2rYjS2Koa9dS7qWWeinrUK9jYq1LPVwNlJAtC0yt4LImOmTp2aPnXq1Bqf6PvYsWO248aN89JdZ2VlpTl9+nRMTdVEtdf9FkJdBeCus+wG4JqhHSVJWg9gPSAPx6v+0mrOoEGDaroEIiIiontJEqBW35/hSnXWpK7heXctLIz/WVqWvs3KCrCzM+k4SWmBQmGDHE1JR5DGVn6uljuHclXWyFHZIFdtjdxia+QUW8kdRkVWyCm0lDuPiiyQU2CJ3EIlcgsskFugRE6+AvmFRu9Mb5C1tQR7e4F69YB69QB7e/mxmc5z/W2mPLe1VUAIGwA21fNZEdUBoaGh+TExMVE1XQfVDfdbCLUHwBwhxNeQJyTPLGs+qAfBwoULa7oEIiIiKo1uGHM/d71UdU01HcYolWUHL8a2W1oCtrZlhzaVCXyq41ilEtC71bpKBeTmAjk58qOpz28vZxjfrzzNT0qlgbDHAXBqCriZGA4Z2iZnZoZvL09ERLWLWUMoIcQ2AL0ANBRCXAXwOiD3y0qS9CmAHwE8DiAOQB6Aieasj4iIiCrJWBhzPwYoVXne+yWMqWgIYmNjngClKs9rIIy5n2k0QH6+gaAns3zBkaEQqaiofLXY2RkOgVxcyt9JpPvcyqpWfSRERFQDzBpCSZL0dBnbJQCzzVROrcG74xER1UKSdPuOSrWqs6Uqjq1JCkXlgg79MKY2BDO1LIy5n0mSHOhUqqvIyPO8vPLVYmVlOOxp0qT8nUS6z21t5X9MiIiIaoJZQygiInoA6Ycx5ghB7pdgpiYpFJULOnTnjKmJIUcVOa9SyV/XDwi1unKBUGnPy9PUplAYDoHq1weaNatYV5H2z9L0ubWJiIhqDYZQRETmpA1j6sJcMOU5tibphzHlDToMTeBbU8GMqccyjKH7gCTJw88qEwgZ21ZYWL5abG0NBz/u7uXvJNJ9bm3NJjSiukKpVHZo1apVvlqtFu7u7oU7duy41LBhQzUAnDhxwmbOnDke169ft5IkCU899VTqihUrkhUl/1u7Y8eO+kuXLnXNy8tTSJKERx99NHP9+vVXTblufn6+6NOnT6u0tDSLBQsWJJvjbnh79+51WLVqVZODBw/GVeY8sbGxViEhIUGenp4F2nX//fdftI2NTZ2+cRhVDkMoIqodiouB69eBa9fkXzW1NZiRavh/k7UhRUVCEFvb2tUVo/1jGENUqvIMPytPiJSXV75/5VlaGg6EGjYEWrQoXyeR7rKdnZzLEhGVxtraWqO9A9zw4cM933vvvUYrVqy4npOTI4YNG+azZs2aK8OHD8/Kzs5WDBw4sOWKFSsavfjiizePHz9us2DBAo89e/bEtWvXrqC4uBirVq1qZOp1jxw5YldcXCzu57vPFRcXw9JIe6a7u3vh/Vw73X8YQhFRzcvNBZKSgKtXDT8mJckBVFUGOMbulGRK0GFozpjaEMwwjCGqtdRqOdSpqiFnusvlGTkqhPEQyNBcReUJjqysqu/9I6LaY9IkuJ89C7uqPGdQEPI2bUKiqft36dIl9/Tp07YAsGHDBpeOHTvmDB8+PAsAHBwcNJ988smVPn36tH7xxRdvvv32200XLFiQ3K5duwIAsLS0xAsvvHBT/5wpKSnKMWPGeF65csXa1tZWs379+stubm7FEydO9EpPT7fw8/ML2LlzZ3xgYODtXs/ff//dburUqZ52dnaazp075/z222+OFy5cOKdSqTB79my3w4cPOxQVFYmpU6feWLRo0a29e/c6LF26tLmzs3NxbGysbXBwcN7u3bsvKRQKfPvtt/UXLVrk7uzsrAoODr49S11WVpZi8uTJHtHR0bZqtVq8/PLL18aOHZsRHh7usn//fsfCwkJFXl6e4u+//z5fmc+ASIshVC3w1FNP1XQJRBUjSUBqquFQSXddZua9xzZoALi6Am5uQJs28qOrK9C8ufzLpTKhDsMYIqoGkgQUFFRPV1FBQdnX12VjYzjscXUtfziku2xry+FnRFS3qVQqHDx40GHy5Mm3AODcuXM27du3v+vWAoGBgYV5eXmKtLQ0RWxsrO3ixYtTyjrv4sWLm4eEhOQdOHAgfs+ePQ7jx4/3iomJiVq7du1lY0PjpkyZ4rV27dqERx99NHfWrFmu2vWrV69u6OjoqD579mx0fn6+6NSpk9/gwYOzACA6Otr2v//+u+jp6VncoUMHv19++cW+R48euXPmzPH85ZdfYgMDAwsHDRrkrT3XSy+91OyRRx7J+uabbxJu3bql7Nixo/+QIUOyAOCff/6xP3369LkmTZoYnS0vMTHR2s/PLwAAOnXqlLN169YrZb/L9CBjCFULzJo1q6ZLILpXcTGQnFx6uHTt2r0TdwgBNG0qh0qtWgGPPCL/KtIGTtrn9erVzOsiojqvuLhqJ7LW/dNoTK9DqbwT8OgGPc7Od+YqqujE1hx+RkS1VXk6lqpSYWGhws/PLyApKckqKCgob+jQoVkAIEmSEEbSd2PrDTl27JjDzp074wBgyJAh2dOmTbNITU01+m/rW7duKXNzcxWPPvpoLgCMHz8+7ZdffmkAAAcOHKgfExNjt2fPHicAyM7OVkZFRdlYWVlJwcHBuS1btiwGgMDAwLz4+HgrBwcHtZubW2FwcHAhAIwZMyZ148aNjQAgMjKy/s8//9wgPDy8acn7IOLi4qwAoEePHlmlBVAAh+NR+TGEqgXySu7pa2dXpV2pRMbl5JQeLiUlASkp9w6Ps7a+EyR17XpvuOTmJgdQFvxXDxGVTqORh59V1UTWus/LO1e+sa6gRo3K30mk+9zKil1FRET3C+2cUKmpqcp+/fr5LF++vPErr7xyIzAwMP/QoUP2uvtGRUVZ2dnZaZycnDS+vr4FR48etevatWt+aeeXDEwrIYQwOteEof11tolVq1ZdCQsLy9Jdv3fvXgdra+vbByqVSqhUKlFyLaPX+fbbb+NCQkLu+i/Hf/75Zz07O7ty/KcVItPwl2At8PjjjwMAIiMja7YQqv0kCbh1y/i8S9rnhobHOTndCZXatr03XHJ1lf/zPX9RET0wJEludqyqIWe6x+TllX19XdbWhoOepk0rdtcz3eFnHMFLRPTgcHFxUYeHh1958sknfRYtWnRz2rRpqe+//36z3bt3OwwdOjQ7JydHzJ492+PZZ5+9DgAvvvji9REjRrTs3bt3Tps2bQrVajWWLVvW5I033rhriF6XLl2yN2/e7PLee+8l792718HJyUnl7OxsNORp1KiRul69eppff/21Xp8+fXK3bt3qrN326KOPZn7yySeNBg0alG1tbS2dPn3a2tPT0+h/Ymnbtm3B1atXrc6dO2cdGBhY+PXXX98+1yOPPJK1atWqJlu2bLmiUChw+PBh24ceeqjUQI2oMhhCEdUV2uFxpYVLSUnybZB0KRTyrzRXV6B1a6B377uHxWmfsxOPqNZSqSo/ebWx5+UZfqZQGA57HB1Nm6uotG1ssCQioqry0EMP5fv7++dv3LjRafbs2Wm7du2KmzNnjsdzzz1nqdFoMGLEiNQXX3zxBgB07tw5f8WKFYlPP/20d35+vkIIgb59+97zX3RXrFhxbfTo0Z6+vr4Btra2mi1btlwqq45169YlzJgxo4WdnZ3moYceynZwcFADwPPPP38rISHBOjg42F+SJOHs7Fz8448/xhs7j52dnfThhx9eHjRokI+zs7Oqc+fOOdHR0bYAsHz58mvTpk3z8PPzC5AkSbi5uRUamp+KqKqI0tr8aouOHTtKJ06cqOkyqk2vXr0AsBPqgZaTU/bk3jdu3Ds8zsbGcMeS7nMOjyO6L0hS2cPPKhoi6U/NVhY7u/KHQKY8t7ZmsyQRUXURQpyUJKljTddREadOnUoICQm5VdN13G8yMzMVjo6OGgB46aWXmiYnJ1tu3ry5RubMIiqPU6dONQwJCfE0tI2/PIlqkkZzZ3icoSFy2sesrHuPdXK6EyS1a2d4/iUnJ/7iI6pCkiQ3E1bVRNb6y+VhaWk47GnUCPDyqnhXkZ0dh58RERHdD3bs2OG4atWqZmq1Wri6uhZ+9dVXCTVdE1FlMYQiqi5FRffePU6/i+naNcPD45o1k4MkPz+gb997u5g4PI6oVGp15YeZGXuuLvUeMXcTwnDQ4+AgNyFW5K5n2mVLy+p7/4iIiKjmTZ06NX3q1KnpNV3HsWPHbMeNG+elu87Kykpz+vTpmJqqiWovhlC1wIQJE2q6BNKXnV325N4pKfceZ2t7J0R66CHDQ+SaNOHwOHogSBKQn191Q850lwsKyleLjY3h4MfVtWLzE2mf29iwGZGIiIhqt9DQ0PyYmJiomq6D6gb+0q0FGEKZkXZ4XFnzL2Vn33uss/OdIKl9e8PzL3F4HNVC5R1+Vp79yjMtoYWF4RDIxQXw8Kh4V5GdHaBUVt/7R0REREREMoZQtcCtW/IcfQ0bNqzhSmq5oiJ5+Jux+Ze0f8V6dzfVDo9zcwP8/YFHH703XHJ1lbuciGqIRlO1Q850j9f/R6I0QsihjqHgp3Hjyk1ybWVVfe8fERERERFVP4ZQtcCTTz4JgHfHK1VWVunhkvbucfpsbe8ESd27G57cu0kTtklQtVCr5a9nQgKQmVm5ECk/v3zXtrY2HAg1a1ax+Ym0z21t2exHRERERESGMYSi+5tGA9y8Wfb8S4aGx7m43AmSOnS4N1xydQUaNOAvZqpWGRnAxYvy36VLd55fvAhcvlx6l5FSaTjo0d4YsaJdRXZ2nHaMiIiISJcQosMTTzyRtnv37ksAUFxcjMaNG4e0bds29+DBg3HlPd+XX37peO7cOdu33377etVXW7bQ0NDWN27csLSxsdEAwJIlS5InTpyYrlQqO7Rq1SpfrVYLHx+f/B07diQ4ODhodNe7u7sX7tix41LDhg1v347l+vXryl69erUGgFu3blkqFArJ2dlZBQA7duyIDwsL87lw4cK5qnwN8+fPb25vb69eunSpgcl2DbOzs2uXl5f3r/76sLAwz0GDBmVOnDixUhO9f/jhhy4rV65sBgALFy5MfvbZZ1P198nPzxdPPvmk15kzZ+waNGig+uabby62bt266MiRI7azZs1qkZOTo1QoFNKiRYuStRPPh4WFef79998ODg4OagDYtGnTpW7dupXzPzPXDvwZQjVHOzyutHDp2rV7f6UrlXfuHhcYCPTrd+/8S82bc3gcmUVxMXDlyt3hkm7glK73P3POzoC3tzxt2JNPys89PeU8VD8ssrJiRkpERERkDra2tprY2FjbnJwcYW9vL3333Xf1mzRpUo5JCe42ZsyYTACZVVhiuUVERFx8+OGH83TXWVtba7STjA8ZMsRr1apVjd54440U3fXDhw/3fO+99xqtWLHidoDWtGlTtXa7fjgUGxtr0qQJxcXFsKzFt/dNSUlRrlixovnJkyejFAoF2rVrFzBq1KiMRo0a3XXv5DVr1jR0dHRUXbly5ez69eud5s+f77Zv376L9vb2mq1bt14KDg4uTEhIsOzUqZP/sGHDsrRh31tvvXW1siFZbcAQikp38iRw4QLQqpXcTWSqrCzjk3pr1xkaHmdndydI6tHD8OTeHB5HZiRJ8lz1hgKmixeBxES5YU/LykoOlby9gdBQ+VH75+UFODrW2EshIiIiolL06dMn85tvvmkwceLE9G3btjmHhYWlHTlyxB4ADh48aDd//nyPgoIChY2NjWbLli2XQkJCCt94440m586ds/3mm28Sjh07ZjtmzBjvf/75J3rz5s1OJ06cqBcREXElLCzM08bGRhMXF2eTlJRkvW7duktbtmxpePLkyXrt2rXL3blzZwJwdxfP5s2bnfbu3eu4c+fOBFOPL6/u3bvnnD59+p7/ct+lS5dcQ+tLo1arMWrUqBYnTpywb9KkSdHPP/8cZ29vL4WGhrYODQ3NOXr0qP3jjz+e0bdv3+z58+e75+XlKZycnFRffvllQosWLYrfeuutxps3b26kVColX1/fgr17914EgOjoaNvQ0NDW165ds5oxY0bKK6+8cgMA3njjjSZffvllQwB45plnbr722mt3/bjUaDSYMGGCx+HDhx3c3d0LpfLcDceI3bt3Oz788MNZTZo0UQPAww8/nLVr1y7H6dOnp+nut3fv3gZvvPHGNQCYOHFi+pIlSzw0Gg3atGlTqN3H09Oz2NnZWZWcnGyh23H2IGAIRca98ALw4Ydy4KNWA88+C7z9thwelTX/Uk7OvedzcbkTJHXqZHj+JUdHtn6Q2eXny/My6Q+X0wZO+l/npk3lQKl793tDpubNmZESERERVUZoaGhr/XXDhw9Pe+GFF25mZ2cr+vTp00p/+9ixY2/NnTs3NTk52eKJJ55oqbvt2LFjsaZc95lnnkl7/fXXm40cOTIjOjrabvLkyanaECokJKTg2LFjMZaWlti9e7fD4sWL3X7++ef4V199NaVz586tIyIiGrz77rvNPv744wQHBweN/rkzMzMt/vrrr/NfffVVg5EjR7b67bffYjp06JDfpk0b/yNHjtiWNfSqIsePGzfOWzscLzIyMrZp06a3w47i4mL8/PPP9fv165ele4xKpcLBgwcdJk+efMuU90zrypUrNl988cXFbt26XX788ce9IyIinGbNmpUGABkZGcrjx4/HFhYWii5durTet29fXPPmzVUbNmxwWrhwoes333yTEB4e3vTy5ctnbG1tpVu3bt3+f9NxcXE2R44cic3IyFD6+/sHLVq06OaxY8dsv/rqK5eTJ09GS5KEDh06+Pfp0yf7oYceuv0ebN26tUFcXJx1bGzsuatXr1oGBwcHTpgw4Z6hc6+++mqTb775xkV/fZcuXbK3bNmSqLsuKSnJ0s3NrUi77OrqWpSUlHRPa1dKSoqVl5dXEQBYWlrC3t5enZKSYtGsWTOVdp+DBw/aFRcXi4CAgNvB1Jtvvun6zjvvNOvRo0f2Rx99dNXW1rbyydl9iCFULTBz5kzzX/TkSSA8/O7Zjt99F1i1ClCp7t5XqZR/ebu6AkFBwGOP3RsuNW8O2NiY9zUQldBogOvXjXczXbt29/62tneCpd695XBJu+zpKQ+XIyIiIqK6pXPnzvlXr1613rBhg3Pfvn3vGkqXlpamHDlypFdCQoKNEEIqLi4WAKBUKhEREXGpY8eOgWPGjLnZr1+/XEPnHjhwYIZCoUD79u3zXFxcikNDQ/MBwNfXNz8+Pt66rBCqIscbGo5XWFio8PPzCyh5vdnz5s27pbs+KSnJKigoKG/o0KFZ+ucrjaura6G2hnbt2uUlJCRYa7c9/fTTaQBw+vRp6wsXLtj27t3bF5C7lRo1alQMAK1bt84fNmyY15AhQzLGjBmToT22X79+Gba2tpKtra3K2dm5+OrVqxaRkZH2jz/+eEb9+vU1Je9N+sGDBx10Q6jff//d4amnnkqzsLCAp6dncdeuXQ1MIgwsW7YsZdmyZSbNOWWom0oYaKAwst/tlZcvX7acOHGi92effXZJWfJfr99///0kd3f34sLCQjFmzJgWr776atOVK1cmm1JXbcMQqhYYOXKk+S/6999AYeHd65RK4PHH5TmYdEOmxo3Z+kE1Ljv7TrCk39F06dLdX2ch5K+vt7f8ddbtZvL2lr/SbMgjIiIiqhmldS45ODhoStverFkzlamdT4b0798/4/XXX3f/3//+F3vjxo3bv5eXLFni2rNnz+xffvklPjY21qp37963u7Wio6Nt7OzsNNevXzc64ZGNjY0EyKGVlZXV7UBCoVBApVIJ4O5AIz8/X5T3eFPozv1kaH1qaqqyX79+PsuXL2+sHfpmCt2alEqllJ+fr9AuazvDJEkSPj4++f/991+M/vEHDx68sH//fofdu3c3ePfdd5tfuHDhbElduueFSqUSpg6tMxQQ6StPJ5Sbm1vx77//7qBdTkpKsurZs+c94VbTpk2LLl26ZNWyZcvi4uJi5OTkKBs3bqwGgLS0NMWAAQN8XnvttaQ+ffrcDixbtGhRDAC2trbSpEmTUletWtXEpBdZCzGEqgUSE+Xvvru7u3kuGBkJvPrq3RPdAPJkN6+9Vr65oYiqiFotj/Q0NgH4zZt371+/vhwoBQQAgwbdGS7n7Q20aAFYWxu+DhERERE9uGbOnHnL0dFRHRoamr93797bgUNWVpZSOxRr3bp1DbXrU1NTlQsXLnT/7bffYmbOnOmxefNmp4pOLu3i4lL8zz//2ISEhBR8//33Tvb29mafK8jFxUUdHh5+5cknn/RZtGjRTd0QqLLatGlTkJaWZnHgwIF6ffv2zS0sLBRnzpyxbteuXUF8fLzV4MGDs/v165fTvHlz58zMTKNdDr17986ZNGmS57Jly65LkoQff/zRacuWLRd19+nZs2f2hg0bGs2ePTs1KSnJ8u+//3bQdmTpKk8n1NChQzOXLl3qevPmTSUA/P777/U/+OCDq/r7DRw4MGPTpk0uffv2zd28ebNT165dsxUKBQoKCsTAgQN9Ro0alTpp0qS7viOXL1+2bNGiRbFGo8GuXbsa+Pv718k74wEMoWqFZ555BgAQGRlZvReSJOCDD4DFiwEfH2D4cGDbtrvnhGIARdUoPd34kLnLl+8eCapUymGStzcwbNjdQ+a8vQEnJ3YzEREREVH5tGzZsvjVV1+9pwNoyZIl16dMmeIVHh7etEePHreHqs2YMcN98uTJN9u0aVP4+eefJ/Tu3bt1v379DA79Ksubb76Z9MQTT/g0a9as2M/PLz83N1dR9lFV76GHHsr39/fP37hxo9Ps2bPvCW4qysbGRvr666/j586d65Gdna1Uq9Vi5syZKcHBwYWjR4/2ys7OVkqSJKZPn55S2mTd3bt3zxs9enRq+/bt/QF5YnLdoXgl6zJ+/fXX+q1btw708vIqCA0NrdBnoqtJkybqRYsWXevQoYM/ACxevPiadpLy5557rnmnTp1yx4wZkzlv3rxbYWFhXh4eHkGOjo7q7du3xwPApk2bnI4fP26fnp5u8dVXXzUsWXepW7du+SNHjvRKS0uzkCRJBAQE5EVERFyubL33K5Nb2e5nHTt2lE6cOFHTZVSbXr16AajmECo3F5gyBfj6a/kX/ZYtcitJRe+OR2RAUZEcJhmbADwj4+79Gza8u4NJ98/NDbBgjE5EREQEABBCnJQkqWNN11ERp06dSggJCSnXRNhEdP86depUw5CQEE9D2/gTjoC4ODl4OndOvvvdCy/caSHp0IHhE5lMkuRhccaGzF29evcoTyurOwFTt253B05eXnIOSkRERERERHUDQ6gH3b59wJgx8timn36SZ2kmKkVeHpCQYHgC8IsX5e26mjWTQ6WePe/taGrWDFDUSJMxERERERERmRtDqAeVRgMsWwa88QbQrh2wa5d873l64Gk0wLVrxofMJevdKLRevTvhUt++dwImLy/5K2VnVyMvg4iIiIiIiO4zDKFqgQULFlTtCTMygLFj5S6oceOATz8FbG2r9hp0X8vKujtk0n2ekAAUFt7ZVwjA3V0OlgYMuLebqVEjTgBOREREREREZWMIVQsMHjy46k525ow8/9Ply8DHHwMzZzJBqINUKiAx0Xg30y29aR8dHYGWLYGgIGDIkLtDJg8Pee4mIiIiIiIiospgCFULxMbGAgBat25duRN9/TUwebKcOERGAg89VPniqEZIEpCebnwC8MuXAbXOTU0tLIAWLeRQKSzs7iFz3t6Ak1PNvRYiIiIiIiJ6MDCEqgWmT58OAIiMjKzYCVQqYMkS4P335eDpm2/kGaHpvlZYKIdJhobMXbwoD6nT1aiRHCh17gyMGnV3N5OrqxxEEREREREREdUU3peqrrtxA3j0UTmAevZZ4LffGEDdJyQJuH4d+Osv4Msv5XniJ06U7yLn4SFP09W6tTwP0+zZwIcfAtHRQPPm8lRe778P7N4NnDolB1I3bgB//w189RXwf/8nN7098ojcAcUAioiIiIjIuPj4eMs+ffq0bNGiRZC7u3vQxIkT3QsKCkqdt+TWrVvK5cuXN9IuJyQkWPbv39+7KuqZP39+89dee62JofWNGzdu4+fnF9CqVavAL7/80rE853V1dQ1OTk42+utgzZo1Ln5+fgF+fn4BlpaW7X19fQP8/PwCZs2a5WqspsoqqyZ94eHhLuPGjfMwtM3Ozq5dZevJz88XAwcO9Pbw8Ahq06aNX2xs7D2Tk2RnZyt69erl4+XlFejj4xM4a9YsV936nJycQrTv4/vvv9+wsjVVVFV9ZuHh4S5CiA7ff/+9g3ZdREREAyFEh82bN5drXA1/mtZlR4/KY69SU4GICOCZZ2q6ogdOXp7xCcAvXZK362reXO5ceuSRu4fLeXsDTZsCCsbGRERERETAoUN2iI62hr9/IXr0yCv7AOM0Gg2GDh3qM2XKlBvz5s2LV6lUGD16dIt58+a5rlu37qqx41JTU5WfffZZ4xdeeOEmAHh6ehb/9NNPFytTiylmzJiRsnTp0pR//vnHpk+fPq1HjRp1SqlU3t5eXFwMS0vLCp173rx5qfPmzUsF5HDo999/P9+sWTMVIAcaZR2v0WggSRJ066lt1qxZ09DR0VF15cqVs+vXr3eaP3++2759++75XBcsWJAyePDg7IKCAvHQQw/57tixo/5TTz2VBQCDBw9Oj4iIuGL+6iuntO9Oq1at8r/66ivnJ554IhsAtm/f7ty6dev88l6DIVRdtWEDMGeOnGocOQK0q3QgTAZoNEBSkuHhchcvAikpd+9vby8HSj4+QL9+dw+Za9GCNykkIiIiIirTzJmu2LKlMZRKeSLUiRNvYO3apIqe7ocffnCwtrbWaMMXCwsLfPrpp4ne3t5tVq5ceW3z5s1O33//fYOioiJFYmKidVhYWOqqVauSFyxY4JaYmGjt5+cX0LNnz6z58+ffGDRoUKsLFy6cCw8Pd9mzZ08DjUYjYmNjbWfPnn29qKhIsX37dhcrKyvN//73vwtNmjRRr1q1quHmzZsbFRcXC09Pz8Jvv/32koODg8aUutu3b1+gVCpx/fp1i2HDhrUMDQ3NOXr0qP3jjz+e0b59+7wXXnjBXa1WIyQkJC8iIuKyra2tBABLly5t8ueff9YHgG3btl0MCgoqLP1Kd0RHR9uGhoa2vnbtmtWMGTNSXnnllRuxsbFWAwYMaNWtW7fskydP2n///fdxW7dudfruu++ci4qKxMCBAzM++OCDa1lZWYohQ4Z4JycnW2k0GrF48eJrU6dOTQeAd999t/HPP//sqFKpxPbt2y+2a9euICUlRTlmzBjPK1euWNva2mrWr19/uXPnzneFHjExMVajRo3yVqlUok+fPpmmvo7S7N27t8Ebb7xxDQAmTpyYvmTJEg+NRgOFTkeAg4ODZvDgwdkAYGNjI7Vp0yYvMTGxwrdz+uCDDxquWbOmaePGjYu9vb0LrKyspIiIiCvXrl2zmDhxYoukpCQrAHj//fev9OvXL3f+/PnNExMTrS5fvmyt+1kAwJIlS5pu3769YfPmzYtcXFyK27VrlwcA586ds54xY4ZHWlqahY2NjWbjxo2X27VrVxAWFubp5OSkOnPmjF2bNm3yNmzYYDB47dy5c87Ro0ftCwsLRUFBgUhISLAODAwsdwDMEKquKSiQh91t3Ag89pg8zsvFpaarqtUyM+8NmLTLCQlAUdGdfRUKwN1dDpUGDbp3AvCGDXkzQiIiIiKiCjt0yA5btjRGQcGdRGDz5sZ4+un0inZEnTlzxjYkJOSuY52dnTXNmjUrioqKsgaA06dP1ztz5sw5e3t7Tbt27QKeeOKJzFWrVl0dNGiQbUxMTBQA6A/bOn/+vO2pU6ei8vPzFa1btw569dVXk6Kjo6MmT57svm7dOpfXXnvtxpgxY9IXLFhwCwDmzp3bPDw8vOHLL798w5S6f/vtt3oKhULSdiplZGQojx8/HpuXlye8vb2D//e//8W2adOmcNiwYZ7vvfdeo9dee+0GANSvX1995syZ6I8++sjl2WefdT948GCcqe9VXFyczZEjR2IzMjKU/v7+QYsWLboJAAkJCTYbNmxI+OKLL67s2rWrflxcnM3p06ejJUlC3759ffbv32+fkpJi0bRp0+LIyMg4QO4k0563YcOGqqioqOjly5c3Wr58eZPt27dfXrx4cfOQkJC8AwcOxO/Zs8dh/PjxXtr3WmvWrFkeU6ZMuTlnzpzUd955pxGM6NChQ+vc3Nx72rOWL1+eOHTo0GzddSkpKVZeXl5FAGBpaQl7e3t1SkqKhfZ91nfr1i3lL7/80mDRokW3WxD279/fwNfX197b27vgo48+SvTx8Sk2VltCQoLlypUrm/3zzz9RDRo00HTr1s03MDAwHwCmT5/uPn/+/JTHHnss58KFC1aPPfZYq4sXL54z9lkcO3bM9rvvvnM+c+ZMVHFxMdq2bRugDaGmTJnSYv369ZeDg4MLf/vtt3ozZ870+Pvvv88DQHx8vM3hw4fPW5Qyj4sQAg8//HDWrl276mdkZCj79++fkZCQYG30ACMYQtUCr7zyimk7JibKw++OHwdefhl4802gFrdBmktxsfzWGZsAPC3t7v2dnORAKSQEGDr07m4mDw+ggp2vRERERERUluho63t+4yiV8voKhlCSJEEIIRlZDwDo3r17VtOmTdUAMHDgwPTIyEj7kSNHZpR23m7dumU7OTlpnJycNPb29uoRI0ZkAEBwcHDe6dOn7QDg5MmTtq+99pprdna2Mjc3V9mzZ88yu3k+/fTTJjt27HCpV6+eOiIi4qK2Q+fpp59OA4BTp07ZuLm5FbZp06YQACZMmJD68ccfNwZwAwDGjx+fBgBTp05Ne+WVV9xNepNK9OvXL8PW1laytbVVOTs7F1+9etUCAJo1a1bUp0+fXAD46aef6v/xxx/1AwICAgAgLy9PERMTY9OnT5/sl19+2X3mzJmuTzzxRGb//v1ztOcdPXp0OgCEhobm7dmzxwkAjh075rBz5844ABgyZEj2tGnTLHSDKwD4559/7Pfv3x8PANOnT09dtmyZm6G6T548GWvqa5Ske74KBr8fgDx8bfjw4d7Tpk1LCQgIKAKAp556KmPq1Klptra20rvvvtto7NixXtqwx5BDhw7V69y5c3aTJk3UADBs2LD08+fP2wDA4cOH61+4cOH2eJmcnBxlenq6AjD8WRw8eND+8ccfz9B20/Xr1y8DADIzMxX//vuv/YgRI1pqz1VUVHS7PWL48OHppQVQWmPGjElbvXp1k+zsbOXq1asT33zzzXJPOM0Qqhbo27dv2TsdPAiMHCl3Qn33nZyOEAB5AvDUVMPD5S5dAq5ckbt4tSwtAU9PuXupY8e7QyYvL6BBg5p6JUREREREDzh//8K7/s87IP+feX9/k4eU6QsODs7//vvv75pcOS0tTXH9+nUrf3//wr///ttO6A1n0F82xMrK6nZwoVAoYGNjI2mfq1QqAQDTpk3z+vbbb+O6du2aHx4e7vL77787GDuflnZOKP312uDBUIiiS3dYmbFwxRhra+vb+yuVytuvw87O7vYQQkmS8NxzzyUvWrTolv7x//zzT9TOnTsdX375ZdcDBw5krVy5MhnA7ffGwsJC0p7T1DBIoVCU+RrK0wnVtGnTokuXLlm1bNmyuLi4GDk5OcrGjRur9Y8FgNGjR3t6e3sXaLvMSo6/ve/8+fNvLlu2zNXQsVqlfV6SJOHEiRPR9vb29+xk7LMw9N1Uq9VwcHBQ6XeSadnb25s0BPSRRx7Jmzlzpq2NjY1GG3KWF6c5rgX+++8//Pfff4Y3ShKwahXQt6881uv48QcygCooAGJjgf37gY8/BhYuBIYPB9q2BRwdgUaNgNBQYNQo4KWXgD175EnBu3YFXnwR+OwzOce7fBnIzwfOnwd+/hn45BNg0SK5waxdOwZQREREREQ1qkePPEyceAM2NhrUq6eBjY0GEyfeqMzk5EOGDMkuKChQfPTRRy4AoFKpMGvWLPcRI0bc0gY7f/75Z/2UlBRlTk6O+PHHHxv07Nkzx9HRUZ2bm1up39R5eXkKDw+P4sLCQvH11187V+ZcWm3bti1ISkqyOnv2rDUAREREuPTo0eN20BIREeEMAJ999plTu3btcqvimroGDBiQtXXr1oaZmZkKALh06ZJlUlKSRUJCgqWDg4Nm1qxZac8991zKf//9Z1faebp06ZK9efNmFwDYu3evg5OTk8rZ2fmusKR9+/Y5GzZscAaADRs2GJ2H5uTJk7ExMTFR+n/6ARQADBw4MGPTpk0uALB582anrl27ZisM3CFq7ty5zbOyspSfffZZou76y5cv3x4b89VXXzXw9vYu0C57eXkF6p+nR48euUePHnW4efOmsri4GLqBaPfu3bNWrFjRWLt85MiRUmcR7t27d86+ffsa5OTkiPT0dMUvv/zSAJCHl7q5uRVt2rTJCZAnkP/rr78qNCPx0qVLry5btqzCc7CxE6oWeO655wAAkZGRd2/IyQEmTwZ27JBTks2bAYcyg/NaSZKA69eNTwB+7Zq8j5aNzZ3upYcfvrubydNTniCciIiIiIhqobVrk/D00+lVdXc8hUKB3bt3x02bNq3Fe++910yj0aB3796Z4eHht39od+zYMWfkyJFeCQkJNmFhYakPP/xwHgB06NAhp1WrVoG9e/fOnD9/vklzOel64YUXroWGhvq7uroW+fv75+Xk5FR6PhU7Ozvp008/TRgxYkRL7cTkCxcuvKndXlhYKNq0aeOn0WjE119/XeV38xs+fHjWuXPnbDp16uRXUo/myy+/vBQTE2P94osvuikUClhYWEhr1669XNp5VqxYcW306NGevr6+Aba2tpotW7Zc0t9n7dq1V0aNGuW9du3aJkOGDEmvivrnzZt3KywszMvDwyPI0dFRvX379njtNj8/v4CYmJio+Ph4yw8//LCZl5dXQWBgYAAATJs27cb8+fNvlUyy3kCpVEoNGjRQbdmyJQEAkpOTLSRJuqdNycvLq/j5559P7tSpk3/jxo2LfX198x0dHdUAsH79+sQpU6Z4+Pr6BqjVatG5c+fsbt26Gb3rXvfu3fOGDRuWFhQUFOjq6loYGhp6e8jjtm3bLk6dOrXFihUrmqlUKjFs2LC0rl27lvvudto7AFaUKKtVrzbo2LGjdOLEiZouo9r06tULgF4IdeECMGwYEB0NvPOO3K5zH854ffKkXGqrVkCHDqXvm5trfALwS5fkDiVdrq53h0u6E4A3bXpfvh1ERERERNVCCHFSkqSONV1HRZw6dSohJCTknqFb94vw8HCXEydO1IuIiDD645+oLNu2bXOMj4+31t7FTldmZqbC0dFRU1xcjMcee8xnwoQJt8aNG5dRA2VWiVOnTjUMCQnxNLSNnVC10Q8/AGPHypMX/fyzPBTvPvTCC8CHH+L2nVNnzwbmzDE+AfgNvX8UHRzkQKl1a2DAgDsBk7c30KKF3O1EREREREREdL97+umnjU46v2jRouZ//PFH/cLCQtGzZ8+ssWPHZpixNLNiCFWbaDTyHe+WLgXatwd27ZLTmPvQyZNyAJWn0xj73nvyn5ZSKd9NzssLGDLk3o4mFxd2MxERERERUc2aO3duKoDUmq6D6q7169dfrekaAGDNmjUun3zySRPddZ06dcrZunVrlXUBMoSqLVQqYPBg4McfgQkTgLVrAdsKzSNmFhcuAPpzt1lZAePGyTfx8/YG3N3lZi4iIiIiIiIiqlnz5s1LnTdvXrUGrgyhaoG3J02Sb+F286Z8u7bp0+/7FqFWrYCiorvXWVgAM2aUPTcUEREREREREdU9DKHud199hW4zZgBOTsDvvwNdu9Z0RSZxdZU7oRQKwM5OHkn47LMMoIiIiIiIiIgeVAyh7lfFxcDixcDq1TgSEgIsW4ZutSSAAuRJyCUJ2LFDfimm3B2PiIiIiIiIiOouhlD3o5QU4KmngD/+AObNw0v//gusWoXIwYNrujKTfPutPGf68uVAWFhNV0NERERERERE9wNF2buQWf39t3znu+PHgS++AFavvu/nf9KVmip3QXXoACxYUNPVEBERERFRnaHRABERDaDRmLa+HK5cuWIxaNAgb3d396CWLVsG9uzZ0+f06dPWlay4XPbu3evwyy+/1DO0LTw83MXJySnEz88voGXLloGrVq1qWJ5zh4aGtv7jjz/sjG3fuXNnfT8/vwA/P78AOzu7dp6enkF+fn4Bw4YN8wwPD3cZN26cR3lfT2Vr0rd3716HRx55xMfQNldX1+Dk5ORKNdloNBpMmDDB3cPDI8jX1zfgzz//NFhbWFiYp6ura7D2/Tpy5EiN3TGsvO+hMWFhYZ62trbt0tPTb2dEEydOdBdCdKjs+6qPIdT9QpKAdeuAhx8GrK2Bv/4Cxoyp6arK7fnngbQ04LPP5InIiYiIiIiIqsQXXzTA+PEtMWWK++3ASaMBpkxxx/jxLfHFFw0qclqNRoMhQ4b4PPzww9mJiYln4+Pjz73zzjtJ165dM/le3iqVqtRlU/z2228Ohw4dsje2ffDgwekxMTFRf/zxR+xbb73lmpiYeNcvruLi4nJfUyssLCwrJiYmKiYmJiooKCgvIiLiYkxMTNR3332XYOo5KvKa7yfffPON48WLF20SEhLOfvLJJ5dnzZplNHh76623rmrfr27duuWbs87KKO0zcnd3L9y2bVsDAFCr1Th8+LBD48aNK/6lMoIh1P2goACYMkW+dVyfPsCJE0BISE1XVW4//ghs3SrfyK8Wlk9ERERERPezsWMzMHHiDWze3Ph2EDVlijs2b26MiRNvYOzYjIqcdu/evQ4WFhbS4sWLb2rXdevWLb9///45+t0348aN8wgPD3cB5O6bhQsXNuvQoUPrTZs2Oekv79q1q37btm39AgIC/AcMGOCdmZmp0B73/PPPNw8ICPD39fUN+Pfff21iY2OtIiIiGn366adN/Pz8An766SejYZSrq6vKw8OjMC4uziosLMxzypQpbp07d/adNWuW25EjR2xDQkL8fH19Ax599NGWN2/eVGqP27Jli0u7du38WrVqFXjw4MFydc9cv37dskePHq1atGgRNGPGDDftejs7u3bPPfdc8zZt2vj9+uuv9mvXrnUODg729/PzCxg9enQLlUoFlUqFsLAwz1atWgX6+voGvPnmm421x2/bts0pODjY39PTM0j7mvPy8sSTTz7p6evrG+Dv7x/www8/OBioR/nQQw+18vf3Dxg9enQLSZLK83IM+v777xuMGTMmVaFQoE+fPrlZWVkWly9fNjmINEatVmPs2LEePj4+gY888ohPz549fTZv3uwEAIcOHbLr1KlT68DAQP/u3bu30l4vNDS09cyZM13135ucnBwxaNAgb19f34CBAwd6FxQU3B42Vdr3Tfd7aazOsLCwtG+//dYZAPbt2+fQqVOnHAsLi8q/sXoYQpmLJAHffSc/6rp8GQgKAjZtAl59Fdi7F3B2rpkaKyErC5g+HQgIAF5+uaarISIiIiKiOkehADZuTLwdRCmVHW4HUBs3JkJRsZ+3p0+ftg0JCcmryLE2NjaakydPxk6bNi1dd3nw4MHZb7/9drM//vjjfFRUVHT79u3zli1b1kR7XMOGDVVRUVHRkyZNurl8+fImrVu3Lho3btzNGTNmpMTExET1798/x9g1o6KirBITE60DAgIKASA+Pt7m8OHD5zds2HB1woQJXm+//fbV8+fPRwUGBuYvWbKkufa4vLw8xb///hsTHh5+edq0aV7leZ1RUVF2u3fvvhgdHX1uz549TnFxcZYAkJ+frwgKCso/ffp0TKNGjVTffvut84kTJ2JiYmKiFAqF9Omnn7r89ddfdsnJyZYXLlw4d/78+ajZs2enas+rUqnEmTNnolesWJG4dOnS5gCwYsWKxgBw/vz5qK+++uritGnTPPPy8u6ao+aFF15o3rVr15zo6OioIUOGZCQnJ1sZqnvgwIHe2mFzun8fffSRi/6+ycnJlp6enkXa5WbNmhUZC6HefPNNV19f34DJkye75+fnlzp/TkREhFNiYqJVbGzsuc8//zzh33//tQeAwsJCMXfuXI/vv/8+/ty5c9Hjx4+/tXDhQtfS3puVK1c2trW11Zw/fz7qtddeS46KiqpXUrtFad83/e+pIb6+voWpqakWN2/eVH711VfOo0ePTivtdVUUB0yZy+7dwPDhwLx5wAcfyPM8HTgADBkC5OcDL7wALF1q8NDVq1ebtdSKWLwYuHZNnpTc2qwjp4mIiIiI6IGhDaI2b77dTVOZAKqyxo0bl25oOTIysl58fLxNaGioHwAUFxeLDh063A6WRo8enQ4AoaGheXv27DHanaLrhx9+cPLz87O3srLSrF69+nKTJk3UADB8+PB0CwsLpKamKrOzs5UDBw7MAYCpU6emjhgxwlvnmmkAMGDAgJycnBzFrVu3lA0bNlSbcu3u3btnubi4qAHAx8enID4+3trHx6dYqVRiwoQJ6QDw008/OZw9e9YuJCTEHwAKCgoUjRs3Vo0cOTIjMTHRevz48e6DBw/OHDZsWJb2vCNGjEgHgG7duuUuWrTICgCOHDli/+yzz94AgHbt2hU0b9686MyZMza69fz9998Ou3btigOAUaNGZU6fPt3g69i3b99FU14fABjqphIG5md+//33k9zd3YsLCwvFmDFjWrz66qtNV65cmWzsvIcOHbIfPnx4ulKphIeHh6pLly7ZAHD69GnrCxcu2Pbu3dsXkIeFNmrU6PbwN0PvzZ9//mk/d+7cGwDQuXPnfF9f3zyg7O+b/vfUmMGDB6dv2rTJ+Z9//qn35ZdfXjblmPJiCGUuQ4fKAdSaNXI3lKurHDxJEjBuHPD220YPbdu2rdnKrIjISHk6q/nzgc6da7oaIiIiIiKqs7RD8HRNmeJemSAqODg4f/fu3QaDIEtLS0mjM+F5YWHhXamEg4ODxtCyJEno3r171g8//HDJ0HltbGwkALCwsJBUKpVJd6IaPHhwekRExBX99fb29ibNyK4fqBgKWIyxsrK6ndAolUqpuLhYlKzXWJRMBixJkhgxYkTqxx9/nKR//NmzZ6O+++67+mvXrm28fft252+++SYBuOt9gFqtFiXnMakmhQmf98CBA73j4+Nt9NfPmTMnZc6cOam665o3b16ckJBwu6MqOTnZysPD4545kVq0aFEMALa2ttKkSZNSV61a1UR/H13GXo8kScLHxyf/v//+izG03dB7Axj+3Mr6vul/T40ZP358emhoqP+TTz6ZqlQqyz6gAjgcz1yEkDug5s0DwsOBJUvkAGrmTGDLllLvgHfgwAEcOHDAfLWWQ16ePJ1Vy5bAsmU1XQ0REREREdVZ+nNAqdUn75kjqgIGDx6cXVRUJHTvOPf777/b7du3z75ly5aFcXFxtvn5+SI1NVX5559/1jflnL169co9ceKE/dmzZ60BIDs7W1HW3fYcHBzU2dnZFf7l7+Lioq5fv75aO3/QZ5995tK1a9fb3TDbtm1zAoCff/7Z3sHBQa3tbKoq/fv3z9q7d69TUlKSBQCkpKQoz58/b5WcnGyhVqsxYcKEjLfeeivpzJkzpc5H1b1795wvvvjCGZC7hZKTk63atGlToLtPly5dsjdt2uQCADt27KiflZVl8H3bt2/fRe0E4rp/+gEUAAwZMiTjyy+/dNFoNPj111/rOTg4qLWBky7tED2NRoNdu3Y18Pf3zweAgwcP2g0bNsxTf/8ePXrk7N6920mtViMxMdHi6NGjDgDQpk2bgrS0NIsDBw7UA+SA88SJE/cEZsbem+PHj9ucP3/eDqjY982QVq1aFb300ktJzz333M2y964YdkKZkzaIWrPmzrqPPy41gAKAt956CwDQt2/f6qyuQl59FYiPl7uh7Cp9Y0giIiIiIiIjvviiwT1zQG3cmAgA2Ly5MXr1ysa4cRnlPa1CocCePXviZ82a5b569eqm1tbWkpubW+GHH36Y6OPjUzx48OB0f3//QC8vr4LAwECT5o5q3ry5at26dQmjRo3yLioqEgDw+uuvJ7Vp06bQ2DFhYWEZTz75ZMv9+/c3WL169ZXS5oUyZvPmzZdmzpzZYu7cuQoPD4/Cbdu2JWi3OTk5qdu1a+eXk5OjXL9+vcGOmcro0KFDwSuvvJLUp08fX41GA0tLSyk8PPyKnZ2dZvLkyZ4ajUYAwNKlS6+Wdp7FixffeOaZZ1r4+voGKJVKrFu3LsHW1vaudqLly5dfCwsL8w4ICPDv2rVrTrNmzYqMnc9UTz31VOa+ffscW7RoEWRra6vZuHFjgnZbz549fT7//PPLnp6exSNHjvRKS0uzkCRJBAQE5EVERFwGgISEBGv9OgG5u+jAgQMOvr6+gV5eXgUhISG5DRo0UNvY2Ehff/11/Ny5cz2ys7OVarVazJw5M6Vjx44F+ufQWrhw4Y1Ro0Z5+fr6BgQGBuYFBwfnAhX7vhmzaNGiW+U9pjxEVcwiX9M6duwonThxoqbLKJskAc8/f3cIpTtHlBG9evUCAERGRlZvfeV09CjQrRswbRrwySc1XQ0RERER0YNLCHFSkqSONV1HRZw6dSohJCSk7B++Go0cRI0dm3HX0Dtj64nMaPr06W6TJk1K7dy5c77+tszMTIWjo6Pm+vXryk6dOvkfPnw4xsPDQ1UTdZrDqVOnGoaEhHga2sZOKHPRDaC6dgX++guYM+dOIFVGEHW/KSwEJk2Sp7ZasaKmqyEiIiIiojpPoYDBTidj64nMaN26dUY7vB599NFWWVlZyuLiYrFo0aLkuhxAlYUhlLns3i0HTvPmyf+SPHVKnhtKqZTX9+wJDBtW01Wa7K23gKgo4McfgfomjYomIiIiIiIievAcO3YstqZrAIBnnnnG4/jx4/a662bOnJkyb968e+bIqi4Mocxl6FBg1y75ccoUwMnpzhxRPXvK62uJU6eA5cuBZ54BBgyo6WqIiIiIiIiIqCxbt2695+6K5sYQylyEuNPplJ4ONGhw73oj1q1bV721lYNKJQ/Dc3aW8zMiIiIiIiIiIlMwhKoJ6elyJ5SJWrduXY3FlM/KlcA//wDffAO4uNR0NURERERERERUW/DWATUhI6NcIdQPP/yAH374ofrqMVFsLPDGG0BYGPDkkzVdDRERERERERHVJuyEqgnp6UBwsMm7r1q1CgAwePDg6qqoTBoNMHkyYGcHfPRRjZVBRERERERERLUUO6FqQjmH490PPv4YOHwYWL0aaNq0pqshIiIiIiKqOvHx8ZZ9+vRp2aJFiyB3d/egiRMnuhcUFIjSjrl165Zy+fLljbTLCQkJlv379/euinrmz5/f/LXXXmtiaH3jxo3b+Pn5BbRq1Srwyy+/dCzPeV1dXYOTk5ONNqOsWbPGxc/PL8DPzy/A0tKyva+vb4Cfn1/ArFmzXI3VVFll1aQvPDzcZdy4cR6GttnZ2bWrbD35+fli4MCB3h4eHkFt2rTxi42NtdLfJzs7W9GrVy8fLy+vQB8fn8BZs2a56tbn5OQUon0f33///YaVramiquoz039Nw4YN86zouRhCmZtaDWRl3ZmYvBa4dAl44QWgf3/5jnhEREREREQ16dAh2K1fD6dDh2BX2XNpNBoMHTrUZ8iQIRmXL18+e+nSpbO5ubmKefPmuZZ2XGpqqvKzzz5rrF329PQs/umnny5Wtp6yzJgxIyUmJiZq+/bt8XPmzPFUq9V3bS8uLq7wuefNm5caExMTFRMTE9W4cePi33///XxMTEzU2rVrk0w5XqPRQL+e2mbNmjUNHR0dVVeuXDk7Z86clPnz57sZ2m/BggUply5dOnf27Nmoo0eP2u/YsaO+dtvgwYPTte/j/Pnzb5mv+sop7buj+5q+++67hIpegyGUuWVmyo+1pBNKkoBp0wCFAli3Tr6ZHxERERERUU2ZOROu/fqh9fz58OzXD61nzUKpYVFZfvjhBwdra2vNvHnzUgHAwsICn376aeL27dsbZmdnK8LDw1369OnTskePHq08PT2DFixY0AwAFixY4JaYmGjt5+cXMH36dLfY2FirVq1aBQJy50jfvn1b9u7d28fV1TX47bffbvTGG2808ff3DwgJCfFLSUlRAsCqVasaBgUF+bdu3Trgsccea5mdnW3yb/T27dsXKJVKXL9+3SI0NLT1nDlzXDt16tT6rbfeavL99987+Pv7B/j6+gaMGDHCMz8///YvuaVLlzYJDg72Dw4O9j979qx1ed6r6Oho29DQ0NZubm7Bb731VmMAiI2NtfL29g4cO3asR2BgYEB8fLzVq6++2iQoKMjf19c34Pnnn28OAFlZWYpevXr5tG7dOqBVq1aBGzZsuP2j+N13320cEBDg7+vrG/Dvv//aAEBKSoqyb9++LX19fQNCQkL8jh49aqtfT0xMjFXbtm39goKC/OfNm9e8PK/FmL179zaYNGlSKgBMnDgx/ciRIw4ajeaufRwcHDSDBw/OBgAbGxupTZs2eYmJifd0TJnqgw8+aOjp6RkUGhraetSoUS20nV7Xrl2zeOyxx1oGBQX5BwUF+f/vf/+rB8gdTiNGjPDU/ywAYMmSJU09PT2DunXr5nvhwoXbn++5c+ese/To0SowMNC/Q4cOrbXvc1hYmOeUKVPcOnfu7Dtr1iyDgVtVYghlbhkZ8mMtCaE2bQIOHADefRfwMNjwSEREREREZB6HDsFuyxY0LiiAIjcXioICKDZvRuPKdESdOXPGNiQkJE93nbOzs6ZZs2ZFUVFR1gBw+vTpet98883Fs2fPntuzZ4/zH3/8Ybdq1aqr7u7uhTExMVHr1q27qn/e8+fP2+7cufPi8ePHo9955x1XOzs7TXR0dFTHjh1z161b5wIAY8aMST979mx0bGxsVOvWrfPDw8NNHrr122+/1VMoFFKzZs1UAJCRkaE8fvx47JIlS25Mnz7da/v27fHnz5+PUqlUeO+9924PG6xfv776zJkz0dOnT7/x7LPPupfnvYqLi7P5/fffzx8/fjx65cqVzQsLCwUAJCQk2EycODE1Ojo66uzZszZxcXE2p0+fjo6Ojo7677//7Pbv32+/a9eu+k2bNi2OjY2NunDhwrnhw4dnac/bsGFDVVRUVPSkSZNuLl++vAkALF68uHlISEje+fPno5YtW5Y0fvx4L/16Zs2a5TFlypSbZ8+ejW7atKnRNp4OHTq01g4l0/3bvXu3g/6+KSkpVl5eXkUAYGlpCXt7e3VKSorR4YK3bt1S/vLLLw0GDBhw+/Xs37+/ga+vb0D//v294+LiLEt7TxMSEixXrlzZ7OjRo9GHDh06f+HCBRvttunTp7vPnz8/5ezZs9Hfffdd/IwZMzy12wx9FocOHbL77rvvnM+cORO1d+/euFOnTtXT7j9lypQWa9euvXLu3Lno99577+rMmTNv/8KPj4+3OXz48PkNGzbc8z3W+uGHH5y079uaNWtcSntNpeHE5OaWni4/lmM43tatW6unljJcuwYsWAA8/DAwfXqNlEBERERERHRbdDSslcq71ymV8voePZBn+KjSSZIEIYRkZD0AoHv37llNmzZVA8DAgQPTIyMj7UeOHJlR2nm7deuW7eTkpHFyctLY29urR4wYkQEAwcHBeadPn7YDgJMnT9q+9tprrtnZ2crc3Fxlz549M8uq99NPP22yY8cOl3r16qkjIiIuKhRyb8nTTz+dBgCnTp2ycXNzK2zTpk0hAEyYMCH1448/bgzgBgCMHz8+DQCmTp2a9sorr5QrhOrXr1+Gra2tZGtrq3J2di6+evWqBQA0a9asqE+fPrkA8NNPP9X/448/6gcEBAQAQF5eniImJsamT58+2S+//LL7zJkzXZ944onM/v3752jPO3r06HQACA0NzduzZ48TABw7dsxh586dcQAwZMiQ7GnTplmkpqbe9en/888/9vv3748HgOnTp6cuW7bMYCfPyZMnY019jZJ0z1fB4PcDkIevDR8+3HvatGkpAQEBRQDw1FNPZUydOjXN1tZWevfddxuNHTvW6++//z5v7HqHDh2q17lz5+wmTZqoAWDYsGHp58+ftwGAw4cP179w4cLtDrCcnBxlenq6AjD8WRw8eND+8ccfz3BwcNBo9wGAzMxMxb///ms/YsSIltpzFRUV3e6OGz58eLqFRenx0ODBg9MjIiKulLqTCRhCmZs2hCpHJ5S7e7n+vVAlJAmYORMoKgI++0wejkdERERERFST/P1RqD/lkFotr6/oOYODg/O///77u36gpaWlKa5fv27l7+9f+Pfff9sJvXlJ9JcNsbKyuh1cKBQK2NjYSNrnKpVKAMC0adO8vv3227iuXbvmh4eHu/z+++/3dObomzFjRsrSpUtT9NdrgwdDIYouhc6PO2PhijHW1ta391cqlbdfh52d3e3xapIk4bnnnktetGjRPXMh/fPPP1E7d+50fPnll10PHDiQtXLlymQAt98bCwsLSXtOU8MghUJR5mvo0KFD69zcXKX++uXLlycOHTo0W3dd06ZNiy5dumTVsmXL4uLiYuTk5CgbN25scKKr0aNHe3p7exe89tprN3SOv73v/Pnzby5btqzU4aKlfV6SJOHEiRPR9vb29+xk7LMw9N1Uq9VwcHBQxcTERBm6jr29vcbQ+upg9mhBCNFfCBErhIgTQrxgYLujEOIHIcQpIcQ5IcREc9dYrSowHG/79u3Yvn179dRj9JrAnj3AsmWAj49ZL01ERERERGRQjx7ImzgRN2xsoKlXDxobG2gmTsSNinZBAXKXTUFBgeKjjz5yAQCVSoVZs2a5jxgx4pY22Pnzzz/rp6SkKHNycsSPP/7YoGfPnjmOjo7q3NzcSv2mzsvLU3h4eBQXFhaKr7/+2rky59Jq27ZtQVJSkpV2vqeIiAiXHj163A5aIiIinAHgs88+c2rXrl1uVVxT14ABA7K2bt3aMDMzUwEAly5dskxKSrJISEiwdHBw0MyaNSvtueeeS/nvv/9KHULZpUuX7M2bN7sAwN69ex2cnJxUzs7Od4Ul7du3z9mwYYMzAGzYsMHoELGTJ0/GaifV1v3TD6AAYODAgRmbNm1yAYDNmzc7de3aNVthoCtj7ty5zbOyspSfffZZou76y5cv3x5+99VXXzXw9vYu0C57eXkF6p+nR48euUePHnW4efOmsri4GLqBaPfu3bNWrFhxe76nI0eO3DMvlq7evXvn7Nu3r0FOTo5IT09X/PLLLw0AeXipm5tb0aZNm5wAeQL5v/76q9RzVRezdkIJIZQAPgbwKICrAI4LIfZIkqSbxs0GECVJ0mAhRCMAsUKILyVJKjJnrdWmAsPxPvnkEwDAyJEjq6Gge928CTz7LBAaCjz3nFkuSUREREREZJK1a5H09NNIj46Gtb8/CisTQAFyZ9Du3bvjpk2b1uK9995rptFo0Lt378zw8PDbd4Tr2LFjzsiRI70SEhJswsLCUh9++OE8AOjQoUNOq1atAnv37p05f/78G8avYtgLL7xwLTQ01N/V1bXI398/Lycn555unfKys7OTPv3004QRI0a0VKvVCAkJyVu4cOFN7fbCwkLRpk0bP41GI77++usqv5vf8OHDs86dO2fTqVMnv5J6NF9++eWlmJgY6xdffNFNoVDAwsJCWrt27eXSzrNixYpro0eP9vT19Q2wtbXVbNmy5ZL+PmvXrr0yatQo77Vr1zYZMmRIelXUP2/evFthYWFeHh4eQY6Ojurt27fHa7f5+fkFxMTERMXHx1t++OGHzby8vAoCAwMDAGDatGk35s+ff+vdd99t/PPPPzdQKpVSgwYNVFu2bEkAgOTkZAtJku5pU/Ly8ip+/vnnkzt16uTfuHHjYl9f33xHR0c1AKxfvz5xypQpHr6+vgFqtVp07tw5u1u3bkaHxHXv3j1v2LBhaUFBQYGurq6FoaGht4c8btu27eLUqVNbrFixoplKpRLDhg1L69q1a35VvGflIcpq1avSiwnRFcAbkiQ9VrL8IgBIkvSOzj4vAnCHHEZ5AvgFgK8kSUbbwzp27CidOHGiGiuvQu++CyxZAmRnA/b2Jh3Sq1cvAEBkZGT11aVj9Gjg22+Bf/8FAu/JaYmIiIiI6H4jhDgpSVLHmq6jIk6dOpUQEhJy397GPjw83OXEiRP1qmI+HHpwbdu2zTE+Pt76lVdeuSeszMzMVDg6OmqKi4vx2GOP+UyYMOHWuHHjMmqgzCpx6tSphiEhIZ6Gtpl7TihXALqtalcBdNbb5yMAewBcA+AAYGRpAVStk5EBWFgA9eqVuWtN2LMH2LYNePNNBlBEREREREREVeHpp582Oun8okWLmv/xxx/1CwsLRc+ePbPGjh2bYcbSzMrcIZSh2dv0W7EeA/AfgN4AWgL4RQhxSJKkLN2dhBDTAEwDAA8PD9Qa6enyUDwTJrIzt4wMYMYMIDgYeOGe2bqIiIiIiIgePHPnzk0FkFrTdVDdtX79+qs1XQMArFmzxuWTTz5poruuU6dOOVu3bq2yLkBzh1BXIQ+103KD3PGkayKA5ZI8TjBOCHEJgB+AY7o7SZK0HsB6QB6OV20VV7X09HJNSm5OCxcCKSlyN5SVVU1XQ0RERERERETmMm/evNR58+ZVa+Bq7hDqOIBWQggvAEkARgEYrbfPFQB9ABwSQjQB0BpAlU+WVmMyMsodQn377bfVU4uOAweAzz4DFi8GOtbKkeREREREREREdD8zawglSZJKCDEHwM8AlAA2SZJ0Tggxo2T7pwCWAdgihDgDefjeEkmS7ttJ6spNOxyvHBo2bFg9tZTIyQGmTgV8fYE33qjWSxERERERERHRA8rcnVCQJOlHAD/qrftU5/k1AP3MXZfZpKcDXl7lOmTLli0AgAkTJlR9PQBefhm4fBn44w/A1rZaLkFEREREREREDzhFTRfwwMnIKHcn1JYtW24HUVXt8GHgww+B2bOB7t2r5RJERERERERERAyhzEqS7quJyQsKgMmTAQ8P4J13aroaIiIiIiIi4zQaICICDTQa09aXx5UrVywGDRrk7e7uHtSyZcvAnj17+pw+fdq6chWXz969ex1++eWXeoa2hYeHuzg5OYX4+fkFtGzZMnDVqlXlmrMlNDS09R9//GFnbPvOnTvr+/n5Bfj5+QXY2dm18/T0DPLz8wsYNmyYZ3h4uMu4ceOq/Jb0ZdWkb+/evQ6PPPKIj6Ftrq6uwcnJyZUa6aXRaDBhwgR3Dw+PIF9f34A///zTYG1hYWGerq6uwdr368iRIzU2nqi876Ex+q/prbfealwV9Rli9uF4D7S8PEClum9CqDffBGJjgZ9/Buzta7oaIiIiIiIi4774Ag3Gj0fLyEjc2LgRiQqFHEBNmQL3zZvRGED8uHHIKO95NRoNhgwZ4jN69OjUvXv3XgSAI0eO2F67ds2yTZs2haacQ6VSwcLCwuiyKX777TcHe3t79aOPPppraPvgwYPTIyIiriQlJVkEBQUFPvXUUxnu7u4q7fbi4mJYWlqW65paYWFhWWFhYVGAHGysXLky8eGHH84D5ADMlHNU5DXfT7755hvHixcv2iQkJJw9ePBgvVmzZnmcPn06xtC+b7311tWJEyemm7vGyirtMzLXa2InlDmll3ye5RyOVx3++Qd47z1g4kSgX92dgYuIiIiIiOqIsWORMXEibmzejMZTpsBdN4CaOBE3xo4tfwAFyB02FhYW0uLFi29q13Xr1i2/f//+OfrdN+PGjfPQhjKurq7BCxcubNahQ4fWmzZtctJf3rVrV/22bdv6BQQE+A8YMMA7MzNToT3u+eefbx4QEODv6+sb8O+//9rExsZaRURENPr000+b+Pn5Bfz0009G2wRcXV1VHh4ehXFxcVZhYWGeU6ZMcevcubPvrFmz3I4cOWIbEhLi5+vrG/Doo4+2vHnzplJ73JYtW1zatWvn16pVq8CDBw+Wq3vm+vXrlj169GjVokWLoBkzZrhp19vZ2bV77rnnmrdp08bv119/tV+7dq1zcHCwv5+fX8Do0aNbqFQqqFQqhIWFebZq1SrQ19c34M0337zdZbNt2zan4OBgf09PzyDta87LyxNPPvmkp6+vb4C/v3/ADz/84GCgHuVDDz3Uyt/fP2D06NEtJEkqz8sx6Pvvv28wZsyYVIVCgT59+uRmZWVZXL58uWKpng61Wo2xY8d6+Pj4BD7yyCM+PXv29Nm8ebMTABw6dMiuU6dOrQMDA/27d+/eSnu90NDQ1jNnznTVf29ycnLEoEGDvH19fQMGDhzoXVBQILTXKe37pvu9rOzrqSyGUOakDaFquBOquBiYNAlo1AhYtapGSyEiIiIiIjKJQgFs3IhEbRClVKKDNoDSdkZVxOnTp21DQkLyKnKsjY2N5uTJk7HTpk1L110ePHhw9ttvv93sjz/+OB8VFRXdvn37vGXLljXRHtewYUNVVFRU9KRJk24uX768SevWrYvGjRt3c8aMGSkxMTFR/fv3zzF2zaioKKvExETrgICAQgCIj4+3OXz48PkNGzZcnTBhgtfbb7999fz581GBgYH5S5Ysaa49Li8vT/Hvv//GhIeHX542bVq57pYVFRVlt3v37ovR0dHn9uzZ4xQXF2cJAPn5+YqgoKD806dPxzRq1Ej17bffOp84cSImJiYmSqFQSJ9++qnLX3/9ZZecnGx54cKFc+fPn4+aPXt2qva8KpVKnDlzJnrFihWJS5cubQ4AK1asaAwA58+fj/rqq68uTps2zTMvL0/o1vPCCy8079q1a050dHTUkCFDMpKTk60M1T1w4EBv7RAz3b+PPvronu6u5ORkS09PzyLtcrNmzYqMhVBvvvmmq6+vb8DkyZPd8/PzhaF9tCIiIpwSExOtYmNjz33++ecJ//77rz0AFBYWirlz53p8//338efOnYseP378rYULF7qW9t6sXLmysa2treb8+fNRr732WnJUVFS9ktotSvu+6X9PDXnllVfctO/PsWPHqm2IYe3tlauNMjLkx3KGUD/++GPZO5XDihXAqVPAd9/VeB5GRERERERkMm0QVTL8DoC8XNEAqrLGjRuXbmg5MjKyXnx8vE1oaKgfABQXF4sOHTrcDpZGjx6dDgChoaF5e/bsMelX2Q8//ODk5+dnb2VlpVm9evXlJk2aqAFg+PDh6RYWFkhNTVVmZ2crBw4cmAMAU6dOTR0xYoS3zjXTAGDAgAE5OTk5ilu3bikbNmyoNuXa3bt3z3JxcVEDgI+PT0F8fLy1j49PsVKpxIQJE9IB4KeffnI4e/asXUhIiD8AFBQUKBo3bqwaOXJkRmJiovX48ePdBw8enDls2LAs7XlHjBiRDgDdunXLXbRokRUAHDlyxP7ZZ5+9AQDt2rUraN68edGZM2dsdOv5+++/HXbt2hUHAKNGjcqcPn26wdexb9++i6a8PgAw1E0lxL350vvvv5/k7u5eXFhYKMaMGdPi1Vdfbbpy5cpkY+c9dOiQ/fDhw9OVSiU8PDxUXbp0yQaA06dPW1+4cMG2d+/evoA8LLRRo0bF2uMMvTd//vmn/dy5c28AQOfOnfN9fX3zgLK/b/rfU0PMNRyPIZQ5VXA4np1dpecZuy0qCli2DBg5Ehg6tMpOS0REREREVO20Q/B0102ZAvfKBFHBwcH5u3fvNhgEWVpaShqdGc8LCwvvSiUcHBw0hpYlSUL37t2zfvjhh0uGzmtjYyMBgIWFhaRSqUrtpNHSzgmlv97e3t6kKdn1AxVDAYsxVlZWtxMapVIpFRcXi5L1Gu0cQ5IkiREjRqR+/PHHSfrHnz17Nuq7776rv3bt2sbbt293/uabbxKAu94HqNVqUXIek2pSmPCBDxw40Ds+Pt5Gf/2cOXNS5syZk6q7rnnz5sUJCQm3O6qSk5OtPDw8ivWPbdGiRTEA2NraSpMmTUpdtWpVE/19dBl7PZIkCR8fn/z//vvP4LxTht4bwPDnVtb3Tf97WpM4HM+cKjgcb+3atVi7dm2lL69Wy8PwHByADz+s9OmIiIiIiIjMRn8OKLUaJ/XniKqIwYMHZxcVFQndO879/vvvdvv27bNv2bJlYVxcnG1+fr5ITU1V/vnnn/VNOWevXr1yT5w4YX/27FlrAMjOzlaUdbc9BwcHdXZ2trK0fUrj4uKirl+/vlo7f9Bnn33m0rVr19vdMNu2bXMCgJ9//tnewcFBre1sqir9+/fP2rt3r1NSUpIFAKSkpCjPnz9vlZycbKFWqzFhwoSMt956K+nMmTOldll0794954svvnAG5G6h5ORkqzZt2hTo7tOlS5fsTZs2uQDAjh076mdlZRl83/bt23cxJiYmSv9PP4ACgCFDhmR8+eWXLhqNBr/++ms9BwcHtTZw0qUdoqfRaLBr164G/v7++QBw8OBBu2HDhnnq79+jR4+c3bt3O6nVaiQmJlocPXrUAQDatGlTkJaWZnHgwIF6gBxwnjhx4p7AzNh7c/z4cZvz58/bARX7vtUUdkKZUwWH4+3YsQMAMGvWrEpdfs0a4OhR4Msv5fmgiIiIiIiIaosvvkAD/TmgNm5EIgBs3ozGvXohuyJ3x1MoFNizZ0/8rFmz3FevXt3U2tpacnNzK/zwww8TfXx8igcPHpzu7+8f6OXlVRAYGGjS3FHNmzdXrVu3LmHUqFHeRUVFAgBef/31pNLuthcWFpbx5JNPtty/f3+D1atXXyltXihjNm/efGnmzJkt5s6dq/Dw8Cjctm1bgnabk5OTul27dn45OTnK9evXG+yYqYwOHToUvPLKK0l9+vTx1Wg0sLS0lMLDw6/Y2dlpJk+e7KnRaAQALF269Gpp51m8ePGNZ555poWvr2+AUqnEunXrEmxtbe9qJ1q+fPm1sLAw74CAAP+uXbvmNGvWrMjY+Uz11FNPZe7bt8+xRYsWQba2tpqNGzcmaLf17NnT5/PPP7/s6elZPHLkSK+0tDQLSZJEQEBAXkRExGUASEhIsNavEwDGjx+ffuDAAQdfX99ALy+vgpCQkNwGDRqobWxspK+//jp+7ty5HtnZ2Uq1Wi1mzpyZ0rFjxwL9c2gtXLjwxqhRo7x8fX0DAgMD84KDg3OBin3faoqoilnka1rHjh2lEydO1HQZZXvjDeDNNwGVClCaHnD36tULABAZGVnhS8fFAW3aAH36AHv2AOXovCQiIiIiovucEOKkJEkda7qOijh16lRCSEjIrbL202jkIGrsWGTojsQytp7InKZPn+42adKk1M6dO+frb8vMzFQ4Ojpqrl+/ruzUqZP/4cOHYzw8PFQ1Uac5nDp1qmFISIinoW3shDKn9HSgfv1yBVBVQaMBpk4FLC2BTz9lAEVERERERLWPQgEY6nQytp7InNatW2e0w+vRRx9tlZWVpSwuLhaLFi1KrssBVFkYQplTRkaN3I5uwwYgMhJYvx5wdS1zdyIiIiIiIiKqIseOHYut6RoA4JlnnvE4fvy4ve66mTNnpsybN++eObKqC0Moc0pPL/ed8SorMRFYtAjo3RuYMsWslyYiIiIiIjKFRqPRCIVCUfvniiG6j23duvWeuytWtZK5v4zeJoAhlDmlp1eoE6qic0FJEjBjhnxXvA0bOAyPiIiIiIjuS2dv3rwZ0KhRo0wGUUS1l0ajETdv3nQEcNbYPgyhzCkjA2jVymyX+/JL4McfgdWrAW9vs12WiIiIiIjIZCqVasr169c3Xr9+PQgApxYnqr00AM6qVCqj47AYQplTBYfjrVy5EgCwcOFCk49JSQHmzQO6dgXmzCn3JYmIiIiIiMyiQ4cONwAMqek6iKj6MWU2pwpOTL53717s3bu3XMfMmQPk5ACffWb2m/EREREREREREd2DnVDmUlwM5OaaZWLyXbuAb78F/u//AH//ar8cEREREREREVGZ2AllLunp8mMFOqHKIy0NmDULaNtWviseEREREREREdH9gJ1Q5pKRIT9Wcwg1fz5w6xawfz9gaVmtlyIiIiIiIiIiMhlDKHPRdkJVYDiera2tSfv99BPw+efASy8B7dqV+zJERERERERERNWGIZS5VGI43v79+8vcJzsbmD4d8PMDXn213JcgIiIiIiIiIqpWDKHMpZqH473wApCYCBw+DNjYVMsliIiIiIiIiIgqjBOTm0slhuMtW7YMy5YtM7r999+BtWuBefOArl0rWB8RERERERERUTViCGUulRiO9+uvv+LXX381uC0vD5gyBfD2Bt56qzIFEhERERERERFVHw7HM5eMDHmcXBWPlXv9dSAuDvj1V6BevSo9NRERERERERFRlWEnlLmkp1doKF5pjh8H3n8fmDoV6N27Sk9NRERERERERFSlGEKZS3p6lU5KXlQETJoENGsGvPdelZ2WiIiIiIiIiKhacDieuWRkVDiEcnFxuWfd228DZ88CP/wAODpWsjYiIiIiIiIiomrGEMpc0tOBpk0rdOjOnTvvWj59Gvi//wNGjwYGDaqK4oiIiIiIiIiIqheH45lLJTqhdKlU8jA8JydgzZrKl0VEREREREREZA7shDKXSkxM/uKLLwIA3nnnHbz/PnDyJLB9O9CwYRXWR0RERERERERUjRhCmYNGU6lOqL/++gsAcP488PrrwNChwIgRVVceEREREREREVF143A8c8jOBiSpXCGUJAHffSc/ak2eDNjYcB4oIiIiIiIiIqp9GEKZQ3q6/FiO4Xi7dwPDhwPPPy8vJyUBf/4JdOwITJkibyciIiIiIiIiqi04HM8ctCFUOTqhhg4F5s2TJx9v2hS4cQPw8AAOHJDXDx1aLZUSEREREREREVULhlDmkJEhP5YjhBIC+OAD+fmaNW4AgCtX5ADqgw/k7UREREREREREtQWH45lDBYbjAXLQ9O67APBFyR8DKCIiIiIiIiKqnRhCmUMFhuMB8qTkU6feve755++erJyIiIiIiIiIqDbgcDxzqMBwPEmSA6eICAB4DiNGAM2br8aaNfJ2dkQRERERERERUW3CEMoc0tMBhQKwtzf5kN275UnJH34Y+OOP/5CUBGzfLm9bswbo2RMYNqx6yiUiIiIiIiIiqmocjmcO6enyfFAK09/uoUOBXbuAwEBAqQQsLe9MVr5rF++OR0RERERERES1C0Moc8jIKPd8UELInU5xcYCt7b3rORSPiIiIiIiIiGoThlDmoO2EqoALFwA7u6oth4iIiIiIiIjI3BhCmUMFOqEAoLAQuHIFcHPzha+vb9XXRURERERERERkJpyY3BzS0wE3t3IfdvEioNEAzz+/HmPHVkNdRERERERERERmwk4oc6jgcLwLF+THVq2qthwiIiIiIiIiInNjCGUOFRyOpw2h1q6dhmnTplVtTUREREREREREZlSu4XhCCAHADYA7gFOSJOVWS1V1SX6+PLlTBTuhnJ2By5fPV31dRERERERERERmZHInlBBiFoAkAJcBHALQumT9LiHEc9VSXV2Qni4/VrATikPxiIiIiIiIiKguMCmEEkIsAvA+gA0AegMQOpsjAYys8srqiowM+ZEhFBERERERERE9wEwdjjcbwGuSJL0rhFDqbYsF4Fu1ZdUh2k6ocg7Hy88HEhPlECoxserLIiIiIiIiIiIyJ1NDqKYAThrZpgFgUzXl1EEVHI538aL86OMDpKW1rdqaiIiIiIiIiIjMzNQQKg5ATwC/Gtj2MICoKquorqngcDztnfFatQJGj15dpSUREREREREREZmbqSHUagBrhRBFAL4tWddYCDEZwHwAU6uhtrqhgsPxdEMoIiIiIiIiIqLazqQQSpKkjUIIJwCvAXizZPWPAPIAvCFJ0lfVVF/tV4kQqmFD+bCxY8cCAL744ouqrY2IiIiIiIiIyExM7YSCJEnvCSE+BdAVQEMAaQD+kiQps7qKqxMyMgB7e8DSslyH6d4Z7+rVq1VfFxERERERERGRGSlM2UkIMU4I4SJJUrYkSf+TJOkrSZJ+kiQpUwjhLIQYV92F1lrp6eXuggLuDqGIiIiIiIiIiGo7k0IoAJsBtDSyzatkOxmSkVHuScnz8oCkJIZQRERERERERFR3mBpCiVK2uQDIqoJa6qb09HKHUHFx8iNDKCIiIiIiIiKqK4zOCSWEeALAEzqrXhVC3NTbzQZADwDHq6G2uiE9HfD0LNch+nfG69q1a9XWRERERERERERkZqVNTN4YQLDOcksATfX2KQLwPwBvVXFddUcFhuPph1DvvPNO1dZERERERERERGRmRkMoSZI2ANgAAEKIgwBmSpIUY67C6owKDMe7cAFo0gRwcKimmoiIiIiIiIiIzKy0TqjbJEl6pLoLqZNUKiA7u9x3x9O/M15YWBgAYOfOnVVYHBERERERERGR+ZgUQgGAEMIB8hxRvpDngrqLJEmLq7CuuiEzU36sQCfUgAF3llNTU6uwKCIiIiIiIiIi8zMphBJCtARwGIAdgHoAbgJwLjk+HUAmAIZQ+tLT5cdydEJlZwPXr/POeERERERERERUtyhM3O8DACcANAEgADwOwBbAWAA5AEZWS3W1nTaEKkcnVFyc/MgQioiIiIiIiIjqElOH44UCmAKgsGTZSpIkNYCvhBANAawB0K0a6qvdMjLkx3KEUPp3xiMiIiIiIiIiqgtMDaFsAGRJkqQRQqQBaK6z7SyAkCqvrC6owHA8bQjl43NnXZ8+faquJiIiIiIiIiKiGmBqCHUeQIuS5/8CmCGE+BGAGsBkANeqobbarwLD8S5cAJo3B+rVu7Pu1VdfreLCiIiIiIiIiIjMy9Q5ob4G0Lbk+asAOgPIApANeT6oN029oBCivxAiVggRJ4R4wcg+vYQQ/wkhzgkhfjf13Pcd7d3xytkJxaF4RERERERERFTXmNQJJUnS+zrP/xZCBAEYAHmY3m+SJJ015TxCCCWAjwE8CuAqgONCiD2SJEXp7NMAwFoA/SVJuiKEaGzqi7nvFBfLj5aWJh9y4QLwxBN3rxswYAAAYP/+/VVVGRERERERERGRWZk6HO8ukiQlAlgPAEI2UpKk7SYcGgogTpKkiyXHfg3gCQBROvuMBrBLkqQrJde6UZEa7wuSJD8KYdLumZnAzZv3dkLl5+dXcWFEREREREREROZl0nA8IUQjIe5OUoQQtkKIOQDiAHxl4vVcASTqLF8tWafLF4CTECJSCHFSCDHOxHPff8oZQvHOeERERERERERUVxkNoYQQdkKI9UKIPADXAaQLIRaWbJsOIAFAOOQQqpeJ1zOUxkh6yxYAOgAYCOAxAK8KIXwN1DdNCHFCCHHi5s2bJl7ezBhCEREREREREREBKH043msAxgPYBOAU5LvjvSSE6AJgOIDfALwoSdLxclzvKgB3nWU33HtnvasAbkmSlAsgVwjxB4AQyHfou02SpPUoGRLYsWNH/SDr/lDBEKply2qqh4iIiIiIiIiohpQWQg0HsFSSpP/Trii5U92PADZJkjSlAtc7DqCVEMILQBKAUZDngNL1PYCPhBAWAKwg34nvgwpcq+ZVIIRydwdsbe9eP2jQoCoujIiIiIiIiIjIvEoLoVoA+F1vnXb584pcTJIkVck8Uj8DUEIOs84JIWaUbP9UkqRoIcRPAE4D0ADYaOrd9+47FQihDA3FW7hwYRUWRURERERERERkfqWFUJYAivTWaZdzK3pBSZJ+hNxNpbvuU73l9wC8V9Fr3Dc0GpMDKEAOoUaMqMZ6iIiIiIiIiIhqSGkhFAA8K4RI1lnWJirzhBApOuslSZKWVG1pdYAkmRxCpaXJf4Y6oXr16gUAiIyMrLraiIiIiIiIiIjMqLQQ6gqA7gbWXwbwsN46CQBDKH3lCKF4ZzwiIiIiIiIiqsuMhlCSJHmasY66iSEUEREREREREREAQFHTBdRp5QyhFArA27uaayIiIiIiIiIiqgEMoapTOUMoDw/A2rqaayIiIiIiIiIiqgFlTUxOlVHOEMrYULynnnqqCosiIiIiIiIiIjI/hlDVycQQSpLkEGr0aMPbZ82aVcWFERERERERERGZF4fjVScTQ6hbt4DMTOOdUHl5ecjLy6vi4oiIiIiIiIiIzKfcnVBCCAGgGYAbkiSpqr6kOkSS5NnGyxAXJz8aC6Eef/xxAEBkZGQVFUZEREREREREZF4md0IJIR4XQhwFUADgCoA2JevXCyHGVlN9tZtGY1In1IUL8qOxEIqIiIiIiIiIqLYzKYQSQowDsAdADIBpesddADC56kurA0wcjnfhgtww5eVlhpqIiIiIiIiIiGqAqZ1QLwN4T5Kk8QC+0Nt2DkBAlVZVV5QjhPL0BKysqr8kIiIiIiIiIqKaYGoI1QLAL0a2FQCoXzXl1DHlCKE4FI+IiIiIiIiI6jJTJyZPBNAOwG8GtnUEEFdlFdUlJoRQkiSHUN26Gd9nwoQJVVsXEREREREREZGZmRpCfQbgdSFECoDdJeuEEKIPgMUAllZDbbWfCSHUjRtAdnbpnVAMoYiIiIiIiIiotjM1hFoBwB3A5wDUJeuOAFACWCdJUng11Fb7mRBCmXJnvFu3bgEAGjZsWFWVERERERERERGZlUkhlCRJEoDZQogPAPQG0BBAGoDfJEk6X4311W5VFEI9+eSTAIDIyMgqKoyIiIiIiIiIyLxMCqGEEHaSJOVJkhQHzv9kOhNDKAsL+e54RERERERERER1lal3x7slhNguhBgmhLCu1orqEhNDKC8vOYgiIiIiIiIiIqqrTA2hFgNoCuBbADeEEFuFEAOFEIxOSqPRAIrS3+ILF0ofikdEREREREREVBeYFEJJkvSRJEk9IU9O/jqAlgD2QA6kPhNCPFqNNdZeZXRCSRIQF8cQioiIiIiIiIjqvnJ1MkmSdA3AagCrhRAeAJ4C8DyA8eU91wOhjBAqORnIzS07hJo5c2YVF0ZEREREREREZF4VCo6EED4ARpb8NQOQWJVF1RllhFCm3BkPAEaOHFmFRRERERERERERmZ+pc0JBCOEphFgshDgJIBbAbACRAHpIktSimuqr3aoohEpMTERiInM+IiIiIiIiIqq9TOqEEkIcBdARQBqAXQAWAoiUJEmqxtpqPxNCKCsrwMOj9NM888wzAIDIyMgqLI6IiIiIiIiIyHxMHY4XDXlC8l8kSVJXYz11iwkhlLc3oFSasSYiIiIiIiIiohpgUgglSdKEaq6jbjIhhOKd8YiIiIiIiIjoQWA0hBJCPA7gT0mSskqel0qSpB+rtLK6oJQQSqMB4uKAfv3MXBMRERERERERUQ0orRNqL4AuAI6VPC+NBICDyvSVEkIlJQEFBeyEIiIiIiIiIqIHQ2khlBeAZJ3nVF4aDaAwfANCU++MBwALFiyowqKIiIiIiIiIiMzPaAglSdJl3UUAyZIkFevvJ4SwANC8Gmqr/UrphCpPCDV48OAqLIqIiIiIiIiIyPwMt+nc6xKAdka2hZRsJ31lhFA2NoCbW9mniY2NRWxsbBUXR0RERERERERkPibdHQ+A8Vu8ATYACquglrqnjBCqZUujo/XuMn36dABAZGRkFRZHRERERERERGQ+pd0drw2AtjqrHhdC+OntZgPgKQDnq760OqCMEKp1azPXQ0RERERERERUQ0rrhBoG4PWS5xKA14zsdwnA9Kosqs4wEkKp1UB8PDBoUA3URERERERERERUA0obDPY2AAcA9SEPx+tdsqz7Zy1JUktJkg5Ud6G1kpEQKjERKCoybVJyIiIiIiIiIqK6oLS74xUD0N4Nz9QJzEmXkRCqPHfGIyIiIiIiIiKqC0qbEyoAQLwkSYUlz0slSVJUlVZWF1RRCPXKK69UYVFEREREREREROZX2pxQZwF0AXCs5LlkZD9Rsk1ZtaXVAaWEULa2QLNmpp2mb9++VVwYEREREREREZF5lRZCPQIgSuc5lZdGAyjuHcl44QLg42Nwk0H//fcfAKBt27ZVVxsRERERERERkRmVNifU74aeUzmU0gkVFGT6aZ577jkAQGRkZNXURURERERERERkZib14gghGgshvHSWhRBimhBitRBicPWVV8sZCKFUKuDiRU5KTkREREREREQPFlPvercFwPM6y28CWAugP4DvhBATqrasOsJACHX5shxEMYQiIiIiIiIiogeJqSFUewC/AYAQQgFgJoCXJEnyA/B/AJ6rlupqOwMhVFyc/MgQioiIiIiIiIgeJKaGUI4AUkuedwDgDODLkuXfAPhUcV11g4EQ6sIF+ZEhFBERERERERE9SEq7O56uqwACABwCMBBAjCRJSSXbHAEUVENttZ+REMreHmja1PTTvP3221VcGBERERERERGReZkaQm0C8K4Qoi/kEOpFnW1dAERXdWF1gpEQysfH4E3zjOrWrVsVF0ZEREREREREZF4mhVCSJL0jhEgC0AnAs5BDKS1nABurobbaz0gI1a5d+U5z5MgRAAyjiIiIiIiIiKj2MrUTCpIkRQCIMLB+RpVWVJfohVDFxcClS8BTT5XvNC+99BIAIDIysgqLIyIiIiIiIiIyH5NDKCGEBYAwAN0hdz+lQZ4japckSarqKa+W02gAxZ253xMSALWak5ITERERERER0YPHpBBKCNEYwP8AtAGQACAFQFcAswGcEkL0kyTpZnUVWWvpdULxznhERERERERE9KBSlL0LAOB9AC4AOkuS5C1JUldJkrwBdC5Z/351FVirMYQiIiIiIiIiIgJgegj1OIAlkiQd111Zsvwi5DvmkT4DIVT9+kCjRjVYExERERERERFRDTB1TihrANlGtmUDsKqacuoYAyFUq1b33DCvTKtXr67auoiIiIiIiIiIzMzUEOpvAEuEEL9JkpSrXSmEqAdgScl20mcghOrcufynadu2bdXVRERERERERERUA0wNoRYAOAggUQjxP8gTkzcG8BgAAaBXtVRX2+mEUEVFwOXLwNix5T/NgQMHAAB9+/atyuqIiIiIiIiIiMzGpBBKkqT/hBCtACwE0AnyXfKSAXwK4H1Jkm5VX4m1mE4IdfEioNFUbFLyt956CwBDKCIiIiIiIiKqvcoMoYQQLgA8AVyXJOmFaq+oLpEkQCHP/c474xERERERERHRg8zo3fGEEA5CiB0AbgA4BuCKEOJvIURLs1VX2+l0QjGEIiIiIiIiIqIHmdEQ6v/bu/doycryTsC/txscxWTQ0JgYLupEICGJYSatiU4S8ZIZm4iMYkTHS3CSoKImJGIMRshFl3eycKINEodF1BiaQU1AW42grZmARkzaGwrBK62OCjp4AYOnzzd/VPWhPPal+tTeVdTp51nrrNO1966v3jq1V/dZv36/70vyp0k2JDkrya8leVaSQ5JcMIW6VofFxe/rhLr73ZODDppxTQAAAAAzsLvpeI9K8oLW2qt2HKiqjyfZUlUHttZu7r26ebesE0oXFAAAALCv2l0Ida8kH1p27IMZ7IZ3ryQf7auoVWNZCPXLv7yyYV772td2WBQAAADA9O0uhFqb5HvLjm0fOceeDEOo7343ueGGlXdCHXXUUd3WBQAAADBle9od7yVV9fWRxzX8/vKq+sbI8dZaO6nb0laBYQj16U8P/rjSEOqyyy5Lkhx//PEdFgcAAAAwPbsLod6fQcfTwcuOv2/4vOXHWW4YQk26M97ZZ5+dRAgFAAAAzK9dhlCttWOnWMfq1FEIBQAAADDv1sy6gFVtJIRaty65291mXRAAAADAbAih+jQSQumCAgAAAPZlQqg+CaEAAAAAkux5dzwm0VpuWbxzvvjF5L73Xfkwb3jDG7qrCQAAAGAGpt4JVVWPqKprq+r6qvrD3Vx3/6raXlWPnWZ9nVpczDe33zXJYE2olTrssMNy2GGHdVQUAAAAwPTtVQhVA4dV1YOq6q57+2JVtTbJa5JsSHJ0kidU1dG7uO5lSd61t69xh9JaFobNZvtN0HO2adOmbNq0qaOiAAAAAKZv7BCqqk5N8sUkn0/yD0mOGh5/S1WdNuYwD0hyfWvtM62125JclOSEnVz37CRvTvLVceu7Q2otC21tkslCqHPPPTfnnntuR0UBAAAATN9YIVRVPTfJnyf5yyQPTVIjp7ckOWnM1zskyQ0jj7cNj42+1iFJHp3kvDHHvONqLdszeQgFAAAAMO/GjUaemeSs1trLh1PlRl2b5Mgxx6mdHGvLHp+T5Hmtte1VO7t8OFDVKUlOSZLDDz98zJefso6m4wEAAADMu3GjkR9L8uFdnFtMcucxx9mWZHSF7UOTfGnZNeuTXDQMoNYlOa6qFlprfzt6UWvt/CTnJ8n69euXB1l3DB1NxwMAAACYd+OuCXV9kgfv4tyvJLlmzHE+lOSIqrpPVd0pyeOTXDp6QWvtPq21e7fW7p3kkiSnLg+g5sZIJ9Ta5f1jAAAAAPuQcftzzkmysapuyyAYSpJ7VNVvJvn9JL89ziCttYWqelYGu96tTXJBa+0TVfX04fn5XwdqVEedUJdccsmeLwIAAAC4AxsrGmmtva6q7p7krCR/Ojy8OcktSf6ktfamcV+wtbZ5+NzRYzsNn1prJ4877h1SRwuTr1u3rqOCAAAAAGZj7GiktfaKqjovyYOSHJTk60muaq3d3Fdxc6+jhckvvPDCJMnJJ588eU0AAAAAM7BX0Uhr7VsZTKVjHIuLQigAAACAjBlCVdWpe7qmtbZx8nJWGbvjAQAAACQZvxPq1bs514bfhVDLjYRQdscDAAAA9mVrxrmotbZm+VeSH0nyhCQfSXJ0n0XOrday0MHC5AAAAADzbsXRSGvt/yXZVFUHJnltkmM7qmn1aC3bTccDAAAAWHkINeKzSdZ3MM7q09GaUJs3b+6oIAAAAIDZmCiEqqp7JnlOBkEUy3U0He+AAw7oqCAAAACA2Rh3d7yv5fYFyHe4U5IfTvLdJI/puK7VobUstMGPeJKFyTduHKz5fuqpe9ykEAAAAOAOaZLd8b6bZFuSd7bWbuqupFWko+l4F198cRIhFAAAADC/9hiNVNX+SS5P8tnW2pf6L2kVsTseAAAAQJJkzRjXbE/yniQ/1XMtq8/iot3xAAAAADJGCNVaW0zyr0l+tP9yVpmOpuMBAAAAzLtxOqGS5I+SnFVVP9tnMauOEAoAAAAgyW7WhKqqX0nyz621byd5QZKDkmytqi8m+UqW7ZbXWntAn4XOpZEQapLd8bZs2dJNPQAAAAAzsrv+nPcmeWCSf0ry8eEXe0MnFAAAAECS3YdQteMPrbWnTqGW1ae1LLTBjMdJQqhXvvKVSZLTTz+9i6oAAAAApm7cNaFYidY62R3vbW97W972trd1VBQAAADA9O0pGjmuqn5ynIFaa6/voJ7VpaM1oQAAAADm3Z5CqLPGHKclEUItN5yOt2ZNskbPGQAAALAP21MI9ZAkV0+jkFWptSy0/XRBAQAAAPu8PYVQt7bWvjOVSlajxcUstDUT74x3l7vcpZt6AAAAAGZkwniE3Wot2zsIod7xjnd0Uw8AAADAjFipqE+tZWFx7cQhFAAAAMC822U80loTUE1quDvepCHUC1/4wiTJmWee2UFRAAAAANMnaOrTcHe8SUOoK664IldccUU3NQEAAADMgBCqT8PpeHbHAwAAAPZ1Qqg+ddQJBQAAADDvhFB96mh3PAAAAIB5Jx7pU0e74x100EHd1AMAAAAwI0KoPu2Yjrf/ZMO8+c1v7qYeAAAAgBkxHa9Pi4sWJgcAAACIEKpfHS1MfsYZZ+SMM87opiYAAACAGTAdr08drQl11VVXdVMPAAAAwIzohOrZ9lZ2xwMAAAD2eUKovrSWJJ10QgEAAADMOyFUX5ZCqMnXhAIAAACYd+KRvuwIodqaiXfHO/TQQzsoCAAAAGB2hFB96bAT6o1vfGMHBQEAAADMjul4fRmGUNtNxwMAAAAQQvVmZDrepCHUaaedltNOO23ymgAAAABmRI9OXxYXk3QzHW/r1q2T1wMAAAAwQzqh+mJ3PAAAAIAlQqi+jIRQk+6OBwAAADDvhFB90QkFAAAAsEQ80pcOd8c78sgjOygIAAAAYHaEUH3psBPq/PPP76AgAAAAgNkxHa8vSyFUmY4HAAAA7POEUH3psBPqlFNOySmnnNJBUQAAAACzoUenLx3ujnfdddd1UBAAAADA7OiE6ovd8QAAAACWCKH6sriYJNluTSgAAAAAIVRvWstiKotNJxQAAACAeKQvrWV7BotBTRpCHXPMMZPXAwAAADBDQqi+tJaF4Y930oXJzznnnMnrAQAAAJgh0/H6MhJCmY4HAAAA7OuEUH3pMIR60pOelCc96UkdFAUAAAAwG3p0+tLhmlDbtm3roCAAAACA2dEJ1RfT8QAAAACWCKH6IoQCAAAAWCKE6kuHu+MBAAAAzDs9On1ZXOysE+qBD3xgBwUBAAAAzI4Qqi8dLkz+kpe8pIOCAAAAAGbHdLy+WBMKAAAAYIkQqi8dhlAnnnhiTjzxxA6KAgAAAJgNPTp96TCEuummmzooCAAAAGB2dEL1xe54AAAAAEuEUH2xJhQAAADAEiFUXzrcHQ8AAABg3olH+tJhJ9TDHvawDgoCAAAAmJ2ph1BV9Ygkr0qyNsnrWmsvXXb+iUmeN3z47STPaK19ZLpVdqDDEOrMM8/soCAAAACA2ZnqdLyqWpvkNUk2JDk6yROq6uhll302yYNba/dL8sIk50+zxs4sLloTCgAAAGBo2mtCPSDJ9a21z7TWbktyUZITRi9orV3ZWvvG8OEHkhw65Rq70eHueBs2bMiGDRs6KAoAAABgNqYdQh2S5IaRx9uGx3blN5O8o9eK+tLhdLxbb701t956awdFAQAAAMzGtCeK1U6OtZ1eWPWQDEKoX9rF+VOSnJIkhx9+eFf1dcfueAAAAABLpt0JtS3JYSOPD03ypeUXVdX9krwuyQmttZt2NlBr7fzW2vrW2vqDDz64l2In0mEnFAAAAMC8m3YI9aEkR1TVfarqTkken+TS0Quq6vAkb0ny5NbadVOurztCKAAAAIAlU41HWmsLVfWsJO9KsjbJBa21T1TV04fnz0tyVpKDkmysqiRZaK2tn2adnehwYfJHPvKRHRQEAAAAMDtT79FprW1OsnnZsfNG/vxbSX5r2nV1rsNOqNNPP72DggAAAABmZ9rT8fYdFiYHAAAAWCKE6kuHnVDHHntsjj322MlrAgAAAJgRIVRfFhctTA4AAAAwJITqi93xAAAAAJYIofrS4e54AAAAAPNOCNUXnVAAAAAAS8QjfRnZHW/STqjHPe5xHRQEAAAAMDtCqL4MO6HWrGlZs6YmGurUU0/tqCgAAACA2TAdry/DEGq/tW3ioW655ZbccsstHRQFAAAAMBs6ofqyI4RaM3kIddxxxyVJtmzZMvFYAAAAALOgE6ovwxBqbQedUAAAAADzTgjVlw6n4wEAAADMOyFUXxYXsz1rhVAAAAAAEUL1RycUAAAAwBILk/elwxDq5JNPnrweAAAAgBkSQvVFCAUAAACwxHS8vuzYHa+Dn/CNN96YG2+8cfKBAAAAAGZEJ1RfOuyEeuxjH5sk2bJly8RjAQAAAMyCTqi+tDbYHW8/C5MDAAAACKH6Ync8AAAAgCVCqL4shVCzLgQAAABg9oRQfdmxMLlOKAAAAAALk/emtSxk/046oZ7xjGdMPggAAADADAmh+rK42NnC5CeddFIHBQEAAADMjul4felwYfIbbrghN9xwQwdFAQAAAMyGTqi+dLgw+ZOf/OQkyZYtWyYfDAAAAGAGdEL1ZUcI1cF0PAAAAIB5J4Tqy9LueLMuBAAAAGD2hFB96XA6HgAAAMC8E0L1pbXOdscDAAAAmHcWJu9Lh51Qz3nOcyYfBAAAAGCGhFB96XBh8uOPP76DggAAAABmx3S8viyFUDXxUNdee22uvfbaDooCAAAAmA2dUH1ZXBzujjd5J9TTnva0JMmWLVsmHgsAAABgFnRC9cXueAAAAABLhFB9Wdodb9aFAAAAAMyeEKovS2tCzboQAAAAgNkTQvVFCAUAAACwRETSl6UQavKFyV/wghd0UBAAAADA7Aih+jIModZ2sDD5wx/+8MkHAQAAAJgh0/F6sri9pWVNJ9Pxtm7dmq1bt04+EAAAAMCM6ITqyfbtg+9dhFCnnXZakmTLli2TDwYAAAAwAzqherKwvZIk++1XM64EAAAAYPaEUD1Z+N5gQXK74wEAAAAIoXpzeyfUjAsBAAAAuAMQQvVkRwjVxe54AAAAAPNOn05PulyY/MUvfvHkgwAAAADMkBCqJ0vT8faffKwHPehBkw8CAAAAMEOm4/VkYWHwvYvd8a688spceeWVE48DAAAAMCs6oXrS5cLkz3/+85MkW7ZsmXwwAAAAgBnQCdUTC5MDAAAA3E4I1ZMu14QCAAAAmHdCqJ4s7Y63/+RrQgEAAADMOyFUT7pcmBwAAABg3lmYvCddLkx+zjnnTD4IAAAAwAwJoXpy+5pQk3dCHXPMMROPAQAAADBLpuP1pMvd8S6//PJcfvnlkw8EAAAAMCM6oXrSZSfUi170oiTJwx/+8InHAgAAAJgFnVA92b44+N7FmlAAAAAA804I1ZOF7YMfbRedUAAAAADzTgjVky53xwMAAACYd0KonnS5JhQAAADAvNOn05Ol3fH2mzyEeu1rXzvxGAAAAACzJITqyfbtg+9ddEIdddRRE48BAAAAMEum4/Wky+l4l112WS677LKJxwEAAACYFZ1QPVlY7G5h8rPPPjtJcvzxx08+GAAAAMAM6ITqycL2wY/WwuQAAAAAQqje2B0PAAAA4HZCqJ7smI7Xxe54AAAAAPNOCNWT7TqhAAAAAJZMfWHyqnpEklclWZvkda21ly47X8PzxyW5JcnJrbV/nnadk1pY7G5NqDe84Q0TjwEAAAAwS1MNoapqbZLXJPnVJNuSfKiqLm2tXTNy2YYkRwy/fiHJucPvc6XLNaEOO+ywiccAAAAAmKVpT8d7QJLrW2ufaa3dluSiJCcsu+aEJK9vAx9IcrequueU65xYl51QmzZtyqZNmyYeBwAAAGBWpj0d75AkN4w83pYf7HLa2TWHJPlyv6V1a0cnVBcLk5977rlJkpNOOmnisQAAAABmYdqdUDtLZNoKrklVnVJVV1fV1V/72tc6Ka5LP37Y2vzCD308ZV1yAAAAgKmHUNuSjC5wdGiSL63gmrTWzm+trW+trT/44IM7L3RSp7zxV/KBb/3MrMsAAAAAuEOYdgj1oSRHVNV9qupOSR6f5NJl11ya5Ck18ItJbm6tzdVUPAAAAAC+31TXhGqtLVTVs5K8K8naJBe01j5RVU8fnj8vyeYkxyW5PsktSZ46zRoBAAAA6F619gPLLc2d9evXt6uvvnrWZfTmxhtvTJKsW7duxpUAAAB3RFX14dba+lnXAbA7094djxUQPgEAAADzbtprQrECF154YS688MJZlwEAAACwYkKoOSCEAgAAAOadEAoAAACA3gmhAAAAAOidEAoAAACA3gmhAAAAAOjdfrMugD3bvHnzrEsAAAAAmIgQag4ccMABsy4BAAAAYCKm482BjRs3ZuPGjbMuAwAAAGDFhFBz4OKLL87FF1886zIAAAAAVkwIBQAAAEDvhFAAAAAA9E4IBQAAAEDvhFAAAAAA9K5aa7OuYWJV9bUkn591HTuxLsmNsy6CVcv9Rd/cY/TJ/UWf3F/06Y56f92rtXbwrIsA2J1VEULdUVXV1a219bOug9XJ/UXf3GP0yf1Fn9xf9Mn9BbBypuMBAAAA0DshFAAAAAC9E0L16/xZF8Cq5v6ib+4x+uT+ok/uL/rk/gJYIWtCAQAAANA7nVAAAAAA9E4I1YGqekRVXVtV11fVH+7kfFXV/xye/2hV/adZ1Ml8GuP+euLwvvpoVV1ZVT83izqZT3u6v0auu39Vba+qx06zPubbOPdXVR1bVVur6hNV9b5p18h8G+PfyAOr6rKq+sjwHnvqLOpk/lTVBVX11ar6+C7O+/0eYAWEUBOqqrVJXpNkQ5Kjkzyhqo5edtmGJEcMv05Jcu5Ui2RujXl/fTbJg1tr90vywlingDGNeX/tuO5lSd413QqZZ+PcX1V1tyQbkzyqtfbTSX592nUyv8b8O+yZSa5prf1ckmOTnF1Vd5pqocyrC5M8Yjfn/X4PsAJCqMk9IMn1rbXPtNZuS3JRkhOWXXNCkte3gQ8kuVtV3XPahTKX9nh/tdaubK19Y/jwA0kOnXKNzK9x/v5KkmcneXOSr06zOObeOPfXf0/yltbaF5KkteYeY2+Mc4+1JD9cVZXkh5J8PcnCdMtkHrXW3p/B/bIrfr8HWAEh1OQOSXLDyONtw2N7ew3szN7eO7+Z5B29VsRqssf7q6oOSfLoJOdNsS5Wh3H+/joyyd2raktVfbiqnjK16lgNxrnHXp3kp5J8KcnHkvxua21xOuWxyvn9HmAF9pt1AatA7eTY8i0Hx7kGdmbse6eqHpJBCPVLvVbEajLO/XVOkue11rYPGglgbOPcX/sl+fkkD0tylyRXVdUHWmvX9V0cq8I499h/TbI1yUOT/ESSd1fVP7TWvtlzbax+fr8HWAEh1OS2JTls5PGhGfxv295eAzsz1r1TVfdL8rokG1prN02pNubfOPfX+iQXDQOodUmOq6qF1trfTqVC5tm4/z7e2Fr7TpLvVNX7k/xcEiEU4xjnHntqkpe21lqS66vqs0l+Msk/TadEVjG/3wOsgOl4k/tQkiOq6j7DhS4fn+TSZddcmuQpw100fjHJza21L0+7UObSHu+vqjo8yVuSPFn3AHtpj/dXa+0+rbV7t9buneSSJKcKoBjTOP8+/l2SX66q/arqgCS/kOSTU66T+TXOPfaFDDrtUlU/muSoJJ+ZapWsVn6/B1gBnVATaq0tVNWzMtg1am2SC1prn6iqpw/Pn5dkc5Ljklyf5JYM/lcO9mjM++usJAcl2TjsVllora2fVc3MjzHvL1iRce6v1tonq+qdST6aZDHJ61prO90OHZYb8++wFya5sKo+lsH0qee11m6cWdHMjar6mwx2VFxXVduS/HGS/RO/3wNMogbdyQAAAADQH9PxAAAAAOidEAoAAACA3gmhAAAAAOidEAoAAACA3gmhAAAAAOidEAqAvVZVf1JVbSdfl4/5/HsPr3/kFGr93Eh9t1XVp6rqzKq6U4evcfJw/B8aPr7H8Gd072XXHTu87me6eu091DX62dxaVZ+squdV1X4rGOsPqurY7qsEAGBfsde/hALA0M1JHrGTY3dEb0ryF0n+XZKHJPnjJAcmOb2j8d+e5IFJbhk+vsfwNbYk+dzIdf88vO7THb3uOM5OckmSuyR5ZJKXJtk/yYv2cpw/SPLqDN4TAADsNSEUACu10Fr7wKyLGNOXR2p9X1UdmuTpVfXc1lqbdPDW2teSfG2M676ZZNo/s8+NvPf3VtVPJ3lK9j6EAgCAiZiOB0CnquqeVXVBVX1mOAXsuqp60Z6mv1XVo6rqw1X1nar6RlV9sKoePHJ+TVX9YVVdX1X/Nhz3N1ZY5oeT3DXJuuHYDx2+3ner6itVtXHH1Lrh+f2r6pVV9YXha3+pqt664z2NTscbTsH72PCp790xHW543fdNx6uq91XVxTv5Wex4rRo+vnNVvbyqbhi+/keq6rgVvvePJDls2eu9tKo+VlXfrqptVfXXVfVjI+c/l+SgJH88Mr3v2OG5Lj8XAABWMZ1QAKzYTtYW2p5BsPP1JL+f5BtJjkzyJ0kOTvK0XYzzExlMGXtVkucmuXOSn0/yIyOX/UWS30jyZxlMa/vVJBdU1U2ttbftZen3TnJbkq9X1dFJ3pnk3UlOzCCgeWmS/5DbpxuekeSJSf4wyWeT/FiS45Ks3cnYXx5e+9dJnjmsdVcuSnJ2Vd21tfadJBkGT7+e5OKRLq1Lkjwggyl+n07yuCSXVtX61trWvXzvhw/fw6h7JHlxki9l8Dk9J8l7qupnW2vbkzw6yXuHdbxu+Jxrht+7/FwAAFjFhFAArNRBSb637NivttYuz8haS1X1j0m+k0Ew8ezW2m07Ges/JvlWa+25I8c2j4xx3yTPSPLU1tpfDQ9fXlX3zCCY2VPYUcPA7E5JHprk6Ukua61tr6qzknw+yaOGgUuq6utJNlXVA1trV2UQAL1p5LWT5Ac6mJKktfZvVfXR4cNr9jBl8ZIMQpzjMwikkuQXMwiKLhrW8rAkv5bk2Nba+4bX/H1VHZnkjzIIrHZnzfC971gT6jEZhEajNf+PHX+uqrVJrkqyLcl/TvL+1tq/VNVCkm2j76eDzwUAgH2I6XgArNTNSe6/7OuDNXBaVV1TVbdmEFT9dQaLgh++i7E+luTAqvqrqvovVXXXZecflmQxyVurar8dX0muSHLMMDjZnd8f1vGdJJcleX8GXUrJIGB6644AaujNSRaS/NLw8dYkJw93iLvfjmlykxquJfWeJCeNHD4pyadba1cPHz88yf9N8o87ee/rx3iZV2Xw3r+ZwQLtr2mtXTR6QVVtqKorq+rmDN73tuGpI/cw9qSfCwAA+xCdUACs1MJIULKkqn4vySszmNL2vgym5N0/yWsymGb3A1pr11bVCRlMd9uc5HtV9dYkvzsMatZlMPVtV7vv3TO3Byc788YMwph/y2Ch7m8te+5XltWzvapuyu3TAV+UQdhyapKXJfliVb2itfaq3bzmuC5KsrGq/n2Sb2fQ2XThyPl1GUz/W951lgymP+7JKzLo2jowyWlJfq+qLm+tbU6Sqrp/kkuTvDWDz+yrSVoGC6jv9PNaVtsknwsAAPsQIRQAXfv1JP+7tfZHOw4M113ardba25O8vaoOzGD62TkZTFV7fAZrTC1kMD1scSdP/+oehv/KzgKzoS9nsCbSkmEHz0HD101r7btJzkpyVlUdkcF0vnOq6trW2jv39N724K1Jzk1yQgbTAn88yaaR819P8sUk/22F439hx3uvqvdn0HX2iqp6x3DNqUdnsLPfSTvWoKqqe4059qSfCwAA+xAhFABdu0sGHUejnjjuk1trNyd5Uw12xnvg8PB7Mui4ObC19u5OqrzdB5M8uqqePzIl7zEZ/Bv5f3ZS379W1ekZTOfbsaj5cjvWvdpTJ1Faa9+oqr/PYBre55N8srX20ZFLrshgofBvt9Y+NeZ72tVrfa+qzsygM+r4DDqg7pLkeyOLoCc7/7xuyw++nz4/FwAAVhkhFABde3eS36mqD2awk9sTk9x3d0+oqqdlEDi9M4Md2o7IoKPq9cnSdL3zklxUVS9PcnUGgchPJzmytfZbE9T7oiT/kuRvq+rcJIdmMOXuXcNFyTOcGvjh4XW3JnlsBv+Gvn8XY35heN1vDNdZ+t5uOrGSQefTBRlMa3v1snPvTvKuJO+uqpcl+USSf5/kmCR3bq2dsVfvdrDe1acy2IXw0uH4p1XVORmsl/WgJE/ayfM+leTXquqdGUwbvLbnzwUAgFVGCAVA1/4sycEZhDtJ8pYkv5NBwLErH03yqCR/nsE6TF9O8pcZTIHb4ZlJrkvy28PX+GaSa5L8r0mKba19oqo2JHnxsNZvJvmbJH8wctmVGXQqPTeDTT2uSXLiroKl1tp3q+q3M9gh7n1J9k+yu8XM/y6DaW3rcvsueTvGalX1mCTPz2BNp8MzmAa3NYPpinultbZYVS9J8lfD3f82V9Xzkjw7g5/tVRnsonfdsqc+N4N1vd6e5IAkD0myJT19LgAArD71/d33AAAAANC9NbMuAAAAAIDVTwgFAAAAQO+EUAAAAAD0TggFAAAAQO+EUAAAAAD0TggFAAAAQO+EUAAAAAD0TggFAAAAQO+EUAAAAAD07v8DBe6NkIrfci0AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAH3CAYAAABqw+wQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdeVxUZdsH8N89+7ApO8giKMswILgvpblmmmnuFrZZimWapmlaaqa+Pq6ZWFbu2aqpuaaVpWhaLrggsoWCC8q+M8Mwy3n/OAwOMOwIatf3+cwH5pz7nHPPgD7Nz+u+DuM4DoQQQgghhBBCCCGENCVBc0+AEEIIIYQQQgghhPz3UChFCCGEEEIIIYQQQpochVKEEEIIIYQQQgghpMlRKEUIIYQQQgghhBBCmhyFUoQQQgghhBBCCCGkyVEoRQghhBBCCCGEEEKaHIVShBDyGGGMLWKMcSaPVMbYIcZYcBXjAxljOxlj6YyxYsZYAmNsMWPMsorx7UvHpzLGShhjdxlj2xljylrMzZkx9ilj7DpjTMMYy2GMHWGMPdPQ1/2wYIwJGGOfM8bSSt//Rc09J0IIIYQQQh5WouaeACGEkEaXB2BQ6fdeABYD+J0xFsBxXLZxEGOsL4DDAC4DmAYgFUBnAB8AGMwY68txXKHJ+JEAfgRwEsC7AFIAuAMIBXAagG1VE2KM+QM4DqAIwGoAMQBsADwL4ABjrCvHcVca+sIfAiMBTAHwBvjXeKd5p0MIIYQQQsjDi3Ec19xzIIQQ0khKK3OmchznYLKtO4C/AYznOO770m0WABIBXAfQj+M4rcn4YAAXAGzgOG5G6bZWAOIB7AXwGlfh/zwYY89xHHeomnldACAD8ATHcfkV9gUDyOU47lYDXrec4zh1fY9vLIyx+QBmchxn19xzeVAelveaEEIIIYQ8+mj5HiGEPP6MFUgeJtvGAHAF8KFpIAUAHMdFAfgOwMTS8AoAJgKQAJhVMZAqPaa6QOopAJ0AzKsYSBmvZwykGGMnGGO7Kxzfp3QpXFDpc6/S5+MZYzsYY7kADjLGvmaMnTNz/amMMTVjzKr0uYAxNpcxlli6jDCBMfZqVfM3OY8FYyy8dOliMWPsPGNsoMn+EwCWALA1WT7pVcW5ejDGDpQufyxijF1mjI03M64PYyzK5HpdGWOZFZcFMsaeZ4xdKB2XyhhbyRgT1/B6GGNsSenSzXzG2FbG2Aum867qvS7d580Y21d6bAFj7CBjzMfk/MZjn6tw3e2lIaXx+aLS1/QkY+xi6Wu4zBjrWeG4YYyxyNL3K4cxdpYx1ru610gIIYQQQh5uFEoRQsjjz7P0a5LJtqcA5HAcd7KKY/YBsATQsfR5bwAXOI7LrMf1ewPQAzhWj2OrsxpAAfiAbRn4pYVdGGNtKowbC+CwyVLE9QDmA9gIYAiAnwFsrRiemLEJwAQA/wdgBIDbAA6bhCdTAGwBv3yyR+njXhXnag1+yeNEAEMB7AGwjTH2onEAY8wNwC8A0gGMBvAV+LBQbnoixthY8BVs5wAMA/AxgDAA/6vh9cwAv1Tzy9LzqwGsrGJsufeaMSYF8AeAAACTALwGwBtABGOsPlViFgC+LZ3LGAC5AI4wxlwAgDHWFsBuAH+Cf7/GAzgE4LGtSCOEEEII+S+gnlKEEPIYYowZ/35vDeAz8H2j9psMcQNws5pT3DQZZ/x6qZ7TcQOQ8QCWfP3DcdzbxielrzkLfAi1vHSbG4CepdtQWsnzFoAJHMd9XXroMcaYK4CPwAcdlTDGAgC8aHocY+xXAFEAFgB4huO4GMbYHQA6juP+qW7iHMf9aHJuBr5Plzv4gOeH0l0zAKgADDW+d4yxfAA7Kxy7CsAOjuOmmGzXAPicMfY/juOyzLweIYA5AL7kOG5h6ebfGGPeKF9RZ1TxvX4TfNjpx3HcjdJtZwHcADAZNQdiFcnBV+0Zl5ceB3Cr9D2YC6ADgAKO42abHPNLHa9BCCGEEEIeMlQpRQghjx97ANrSRyL4D/QjOY7TNPC8DWlC+CAaGB4udwGO04GvGBpnsnkM+ObqxrH9ARgA/MwYExkf4Kt+2peGNeZ0AcAA/GRyPUPp855VHFMlxpht6VLAm7j/swoD4Ffhmr9XCPMOVDiVH/hwaFeF1/Mn+B5eQVVMwQOAi5nzVXxudLjC864ALhoDKQDgOO4O+OqvOr8fpX42OVchgN9LrwMAVwG0KF2iOZBVcXdIQgghhBDyaKFQihBCHj954AON7uCrViQAvmeMmf6dnwK+iqoqrU3GGb96VjG2JikAHBljsnoeX5U0M9t+BB8uGcOdcQAOmAQ7DgCE4N8jrcljO/jqYdcqruUKoJDjOJWZOViULmeri+2lc1sFYCD4n9dW8EGSkQuADNODOI4rBlBossnY0P4XlH89xqWa5qqejOdGxfObeW5U8b12NbPNOK4+S+oKzVTSpZdeBxzHxQN4HkAb8K81kzH2PWPMsR7XIoQQQgghDwlavkcIIY8fHcdxxkbSZxljagA7wFcNGZd+nQTwOmOsJ8dxf5k5xzDwFUaRpc9PAPiQMWbHcVx2HedzAsBi8FVKFStuKioGH6KZqirkMFd9dQJAKoBxjLEdALqh/FKybAA6AE+Cr5iqKL2Ka90DYMUYs6gQTDkDUNWlCq00nBsC/i6JX5psr/gPRakAHM0ca2WyyfizCIP55ZVJZrYZz42K5zfz3Kjie30PQKCZcc4mcyou/Vqbn6cVq3xXPyeY9OTiOO4w+B5eLcC/f5+C7w/2QhVzJoQQQgghDzmqlCKEkMfftwCuAXjfZNtP4D/w/59J/ykAAOPvcvcygE0mIcEW8BU4q81dgDE2pKqLcxx3Cny4tYwxZm3m2HaMMWNFzx0AigpDnq7q3GauZQDfEHsc+D5S+QCOmgz5E3ylVAuO4y6YeZRUcerz4IOZ0SbzZqXPzYV61ZGWzqEsyCp9X4aZuebTjDHTxuYVx8SDr0TzquL1VOonVeo2+GDq+QrbK56/KmcBdCrtQWV8DW4AnsD99yMd/O9MgMkYK/AN4M0ZUWHc0+Cbt5fDcVxeae+pnwEoazlfQgghhBDyEKJKKUIIecxxHMcxxpYB+I4x1p/juD84jlMxxsaDr1w6wRgLB7/0qhP4O7JdAd/A23iOu4yx1wD8wBhzB7/ULAV8E/Nx4O+wV92yrfEAjgO4wBhbCyAGgA2AZ8A39+4GPij5GcAbpWMOA+hbOqYudgKYCuBdAD+bBk0cx8Uzxr4E8CNjbCWAC+CXzAWCb9o90dwJOY6LZYz9AOAzxpgN+F5dk8AHaG/VZXIcx+Uxxs4DWFjauNwAvpl3Hvj3xOhTAG8DOFj6friUjlOVHgOO4wyMsVkAvimd1xEAJeCXuQ0HMNrMkkNwHKdnjK0CsIoxlgG+F9QwAO1Kh5irIjO1HXzIeYQxthD83RUXAcgEf5dA49z2A3i3tHdWLoBZ4O/yV5EafEBqBeAugPfAV1itAwDG2GTwYdbR0v2+4Cv/dtQwT0IIIYQQ8hCjSilCCPlv2AngX/B3XAMAcBx3HHwj6bsAPgfwG4A3AWwA0Ke02TRMxu8BHx7lgg8L/gTwCfhlfgOqu3hpT6CO4EOFOeCbWH8DvlF3KMdxV0rHHQYfio0GH1C1Bn8Htro4DT7gcgXfY6qitwEsAfAK+P5E28EvBztZw3knAfgafFi3v3Ruz1Wx/LEmoeCX1u0A/17uQYWAheO4lNJ5OYFv4D4NwOvgq6zyTcbtBF/x1B58BdxeAFMAXAQfUFVlLYBlpWP3ALAtfQ7T85tTulxxAIA48FV0X4O/Y2OfCss7p4L/eWwA/zv2A/jfm4pU4H8epnN5luM44/K9KPBLCz8B/3s6H8AmlK/+I4QQQgghjxjGcQ/ihkiEEEIIaWyMsZ4ATgHoVxoqNvb5NwN4muO46prgN/Y1F4Hvr+VQ01hCCCGEEPJ4oeV7hBBCyEOKMbYCfAPzVAD+4Ku0ogBENMK5g8AvvTwDfrneYAATQNVHhBBCCCGkiVAoRQghhDy8pABWgb+rXQH4pWszSxu6N1QRgJ7gl9hZgl9+9z6ANY1wbkIIIYQQQmpEy/cIIYQQQgghhBBCSJOjRueEEEIIIYQQQgghpMlRKEUIIYQQQgghhBBCmtxj0VPKwcGB8/Lyau5pPDBJSUkAAG9v72aeCSGEEEIIIeRhFBkZmclxnGNzz4MQQurisQilvLy8cOHCheaexgPTp08fAMCJEyeadR6EEEIIIYSQhxNj7GZzz4EQQuqKlu8RQgghhBBCCCGEkCZHoRQhhBBCCCGEEEIIaXIUShFCCCGEEEIIIYSQJvdY9JR63PXo0aO5p0AIIYQQQgghD0RkZKSTSCTaDCAIVDhByOPEACBap9NN7NSpU7q5ARRKPQL+97//NfcUCCGEEEIIIeSBEIlEm11cXAIcHR1zBAIB19zzIYQ0DoPBwDIyMpSpqambAQwzN4ZSaEIIIYQQQgghzSnI0dExnwIpQh4vAoGAc3R0zANfBWl+TBPOh9TTqFGjMGrUqOaeBiGEEEIIIYQ8CAIKpAh5PJX+2a4ye6Lle4+ArKys5p4CIYQQQgghhBBCSKOiSilCCCGEEEIIIf9pQqGwk0KhUPr6+gb269fPJzMzU2jcd+HCBVn37t39vLy8glq3bh00e/ZsV4PBUHbsrl27bIKCggLatGkT6O3tHRgWFuZe2+uq1Wr2xBNP+CkUCuWmTZtsG/llPXCHDh2yVigUSh8fn8AuXbr4G7e7ubm18/PzUyoUCmVQUFBAc86RPNwolCKEEEIIIYQQ8p8mlUoNcXFxMf/++++1li1b6latWuUIAIWFhWzEiBE+c+bMSU1OTo6Ojo6OOXv2rNWKFSscAeD8+fOyWbNmeX7zzTdJN27cuJaQkHCtTZs2mtpe98yZMxZarZbFxcXFTJo0KedBvT5zMjIyhDWPqlpmZqZw+vTpngcPHkxMTEy8tm/fvuum+yMiIhLi4uJioqOjYxs2U/I4o+V7hBBCCCGEEEIeDq+/7oHoaItGPWdQkApbt96u7fDu3bsXRUVFyQFg06ZN9p07dy4cOXJkPgBYW1sbvvjii1v9+/f3nzdvXsayZctcZs2ada9Dhw7FACAWizF37tyMiudMS0sTjh8/3uvWrVtSuVxu2Lhx4013d3fthAkTvHNyckQKhUK5Z8+e64GBgWWB1po1axy2bdvmqNVqmZeXl2b37t1J1tbWhmvXrklDQ0O99Xo9GzBgQN7GjRudVSrVJQBYsGCB888//2xXUlLChgwZkrt27dq7Vb3Ojh07BrRv375o0qRJmc8991yBQFC3mpXNmzfbDRkyJMfX17cEANzc3HR1OgEhoEqpR0L//v3Rv3//5p4GIYQQQgghhDzWdDodjh8/bj18+PBcALh27ZqsY8eOKtMxgYGBGpVKJcjOzhbEx8fLu3XrpjJ7MhNz5sxpFRISokpISIhZsmRJyquvvurt5uam27Bhw83OnTsXxsXFxZgGUgAwfvz4nOjo6Nj4+PgYf39/dXh4uAMATJ061WPKlCnp0dHRsa1atdIax+/du9cmMTFRFhUVFRsbGxtz+fJliyNHjlhVNaekpKTo0NDQ7M8++8zJx8cncO7cuS7Jycli4/433njDQ6FQKCs+PvjgAxcASEhIkOXk5Ii6du3qHxgYGPDZZ5/Zm56/f//+voGBgQGrV692qOn9If9dVCn1CFiwYEFzT4EQQgghhBBCHrw6VDQ1Jo1GI1AoFMqUlBRJUFCQavjw4fkAwHEcY4yZPaaq7eacO3fOes+ePYkAMGzYsIKwsDBRVlZWtcvnIiMj5QsXLnQrKCgQFhUVCXv37p0HAJcuXbL67bffEgFg4sSJWYsWLXIHgKNHj9qcPHnSRqlUKgFApVIJ4uLiZIMHDy40d36RSIQXX3wx78UXX8y7e/eu6N1333Xz8fEJ/v3332P79u2r2rJlS7U/C51Ox6KioixOnTqVUFRUJOjevbviqaeeKgwODtacPn06zsvLS5uSkiLq16+fX2BgYHFV8yD/bVQpRQghhBBCCCHkP83YUyo5OflqSUkJW758uRMABAYGqiMjI8stJ4yJiZFYWFgYbG1tDX5+fsVnz56tcbkhx3GVtjHGKm80ERYW5v3ZZ5/dSkhIiHn//ffvajSaaj+/cxyHGTNm3IuLi4uJi4uLuXXrVvS7776bWd0xWVlZwtWrVzs8++yzPtevX5etXbs2uVu3bmqg5kopd3f3kv79++fb2NgYXF1ddd26dSu4cOGCBQB4eXlpAX5J35AhQ3L//vtvy2rfIPKf1aShFGNsK2MsnTEWXcV+xhgLZ4wlMsaiGGMdm3J+D6vBgwdj8ODBzT0NQgghhBBCCHms2dvb68PDw299/vnnzhqNhoWFhWWdP3/eet++fdYA3/j87bff9pw2bVoqAMybNy/1k08+cY2KipICgF6vx6JFi5wrnrd79+4F27Ztswf4O9bZ2trq7OzsDBXHmVKpVAJPT0+tRqNhP/74o51xe/v27Qu3b99uCwBbt24t2z548OD8b775xiEvL08AAElJSeKUlJQqV0c9//zz3u3btw+4ceOG9Jtvvkm6cOFC/LRp07IsLCw4ANiyZcttY8Bl+li2bFkqAIwePTr377//ttJqtSgoKBBcunTJql27dur8/HxBTk6OAADy8/MFx48ftwkODlbX7idA/muaevnedgCfAdhRxf7BAHxLH90AfFH69T9NraY/v4QQQgghhBDSFJ588kl1QECAevPmzbZvv/129t69exOnTp3qOWPGDLHBYMCYMWOy5s2blw4A3bp1U69YseL2iy++2EatVgsYYxgwYEBexXOuWLHibmhoqJefn59SLpcbtm/fnlTTPObOnXu3a9euAW5ubiUBAQGqwsJCIQCsX7/+9vjx473Dw8NdBg4cmGtlZaUHgJEjR+Zfu3ZN1qVLFwUAWFhYGL777rukqhqQjx07Nnv37t1JYrHY3O4adezYsXjAgAF5CoUiUCAQ4OWXX87o0qVLcUxMjGTEiBE+AKDX69moUaOyRo8enV+vi5DHHjNXRvhAL8iYF4BDHMcFmdn3FYATHMf9UPo8HkAfjuPuVXfOzp07cxcuXHgQ030o9OnTBwBw4sSJZp0HIYQQQggh/zUcx0Gr06KoUIW8rDyo1cUIaOff3NOqhDEWyXFc5+aeR31cuXIlOSQkpNplZuS+goICgaWlpUEgEGDjxo22O3futPvjjz+uN/e8CKnKlStXHEJCQrzM7XvYGp27ATBtpnandFu1oRQhhBBCCCGkeXEcBz2nh1avhdaghc6gK/teqy99Xvp9VftL9FqoS7RQa7QoLtZArSpGsUqN4uJiFBeXQKMphqakBMWaEpRoS6DRalGi00KjK4FWr0WJoQRaTgstp4WO00EHHXRMCz3TQQ899EwHg4D/yrH7zw1MD47pYGAGGJi+7MFBDwMrv8LK0mCNwnZU9EGaz+nTpy2mT5/uyXEcbGxs9Nu3b09u7jkRUl8PWyhl7vYFZku5GGNhAMIAwNPT80HOiRBCCCGEkEbDcRwMnKHGgKYu++t6TIlBixKtDhqdFhqtFhqdFlqtFiVaDUq0JSjRl0Cr00GrLyk9lj9ex+mg47TQoTTkgRZ66GAoDXeaEuMEEEAAoUgAgVgAIYQQlP7P3PdCCCEq2yaCgJOCGYRgBiEEnAgCvQiC0u+FBiGEnAgCTgghJ4aIE0EEEcRMBGuBVZO+TkIqGjRoUGF8fHxMbcampqYK+/TpU6m078SJE/EuLi5N+4eWEDMetlDqDgAPk+fuAO6aG8hx3EYAGwF++d6Dn1rzee6555p7CoQQQgghzUJv0DdKaNMo+xtwPq1eV7qd39akDALAIAYMIkAv5r/Xlz43iME4ER/OcHwgwzghBBBCADEEkEHICSFgAgjBIGQCyCGAiAkgZIBIIICIMYgEgFjAQSxA6fcMYhEHkYBBJKg6KKoYGpVt04sg5MQQGkQQQwQxJBAzMSRMDKlQAolAAplUArFYDIlEBKlUAplcCqmFFHJLKeRWMsit5ZBYWkAsk5WO48eLxWKIRCIIhcKm/TkQ0gxcXFz0cXFxtQqwCGkOD1sodQDAVMbYj+AbnOfV1E/qv+C9995r7ikQQggh5CFn4AxNG9CY2/8Aqnw480XzDwTjGB/ElFbICAwiMIMIzCAu/Srkwxy9qDTYEYHT80GPQScHZxDBoJOA00ug10tg0EvAGaT3g6AqQiGz+w0iPgQSMIgYg1jABz9SgQ4ygR5ygR4yoQ4yoR4ygR4yEQepSA+pyACpGJCKDBCLOUjFgEjMQSjRQyAyQCDWg4k4QGoAExrMr1OogUgghFgoglgkLA17xBBLJGUPiVQKUWn4Y+5hGg6Ze4hEIggETXqTcEIIIc2kSUMpxtgPAPoAcGCM3QHwEQAxAHAc9yWAXwA8CyARgArAhKacHyGEEEIefxzHNazi5SGoujG338BVe2fxRicWiCESiCEWiCFkYgiZCEKUfg8xBBDdD3hKAx2mF0NgkPGhjk4IoV4IoU4EqU4ETicEdCJwOjEMpc8NWjH/0Imh14mh10pKv0qh00ug00qh00uh08lh0EuqDnhqCoBK93OcEHoAegASaCCCBtLShwQlZd/LBGrIxBrIpRrIpSWQSrWQyrSQSrWQyHQQS/SQyPQQSfUQSQwQWRoglBggkHAQSDgwsYEPhkQcIDKAExaDE6hhEBigZwYYYIC+HmEcY6xCwCMxGwCJRKJahUNVBUaM1SPJIoQQQsxo0lCK47gXa9jPAXi7iabzyKC77xFCCGkOxvDmUV82VXF/84Q3IoiFfIAjFpY+L/3e3H6pSApLZlUW8jDOGPDwD3Cl1TucGMw0VNGL+GBHIwCnFcBQIgRXIoShRAhDiQB6jQgGjRD6Ev6h04ihLxFBVyKGrkQErUYMXYkE2hIptCViaLUSaEvk0GilKNHKUKKVw6CXAZwQWgBaAOoGvj9SFJsNfio+lzAtpAIdpEIdpCIdJEJDaWWQHhJxEaTiAkjEBkgtOIjlHCRy/qtQxkEk4yCUAUI5g0ACMCnAJAAk4P95VARwIsAgBAwCDjrGQQdAazDcf+j1fI8lnQ56fd3asOgBQCiEQCyGsDQsqmsYVJuqI4FAQIERIYSQR8rDtnyPEEIIeeRwHFcWfDxqAU5119BzTdv/1DSoqSm0Me6XiqSwElhVHfrUcD6RgK/qQekSLZQ+jEuyOJ0YnEEMg5av4OH0fOWOTisqq+LRFwugUzPo1Qw6tQA6tQBatQA6tRAlagFKNICmmOO/agBNCVCiZdCUMGi0AhRrBSjRCaDRCqHRC1GiF0KjF8HANd7yJQZDjcGPVdn3+fw+VgKJUM+HQEJ9aeBjXB5mgETCQSrmIJVwkEgZpFLwDxmDRCaAVMYglQsgsRBCKhdCYiGASC4AsxBBIGcQyAQwSEXQiYTQCoXQCgTQMnb/AaCE46DlOGgNBuh0Omi12nKPkpKSytu4OlQYcQBKAJFBBDEnhhilvzOi0sBHLIZlPQOiitVF1L+IEEIIqYxCKUIIIU2mobcLfxirbnQGHXQGXZO+j0ImrFPVjXG/hdjC/H5Wtyqe+uwXCfiqHn5plhj60pDHoBVDrxVDrxWipITxoY0GKCmB2e81GqCk2ACNSg+NSo8StR4atYF/FHMo0RigKgY0Gq70OGP4w/ggSCuARivggx8d/+DQeOGPAPoKwU9x5YoflMAaGjhUDInKQiA9pFI9H/yUBkBSCVcaBKEs/JFIGR/8yBikcgaJTAipXACphRASCxGkFkJILUWQWooglEvAZFJAJrt/grKHJTiJLbQiER8MCQR8FZTBUG34Y+5RoNUiu9y24nL7oUadS6uqCoDkcjlsbGzKLUerbc+iig+qLiKECIXCTr6+vmq9Xs88PDw0u3btSnJwcNADwIULF2RTp071TE1NlXAch7Fjx2atWLHinrH32a5du2wWL17splKpBBzH4emnn87buHHjndpcV61Ws/79+/tmZ2eLZs2adW/SpEk5D/BllklMTBSPHz/eOyMjQywQCPDqq69mLFiwIN24///+7/+cNm3a5CQSibgBAwbkffnll5Vez/Tp01sdOXKkpUAggL29vfa7775L9vLy0hYXF7OXXnqpdVRUlAVjDGvWrLn93HPPFTTF6yKPHgql/iMi70bi3+x/4Wvni06tOjX3dAghNTCGN49a1U1t9jclIRPWK1CRiWT1qrppiv0iQfX9XDgO0GrNBzqVwh3j8+Kq9xVpgBINx4dAaj00KgMfChUbTKp/uNIKIMYfVyKApjQAKtEJoNHx1T8c11gf/AUQwgAJDJBWCHsqVgC1qLY6qIRf+iW6X/0jFRsgKa3+kUq4ciGQVC6ARMYglQlKv+cDIGP4I7EQQWQhqRz6lAuCLAGpnfl9VVTSGEzCoeoCouLSUKjK0KiwENqcHLP7dLq6/9k09i8yFwBZWVk1yrI0oVBIgREhpElIpVKD8S51I0eO9Fq1apXjihUrUgsLC9mIESN81q1bd2vkyJH5BQUFgiFDhrRdsWKF47x58zLOnz8vmzVrlueBAwcSO3ToUKzVarFmzRrH2l73zJkzFlqtljX1HfLEYjHWrFlzp2fPnqqcnBxBhw4dlM8++2x+p06dig8ePGh9+PDhlrGxsdfkcjmXkpJiNjf46KOPUtetW3cXAJYuXer0wQcfuH7//fe31q5d6wAACQkJMSkpKaKBAwf6Dh48OJYqRok5FEr9B8w9Nhfrz62HkAmh5/SY1nUalg9Y3tzTIqTRPKy3C2/oNZqSgAnqFZjIRLJ6L5t60PtFAhEE7MHdvYnj7gc3VYY9RZX3FdQqJOL44Eeth0bNQVNsQEkxB42mBJriktLghw+BNCUmFUA6IUp0jfsffCJoK1X5mFv6ZVtTPyCTEIjvAWTggyBj8CPh+GzGuBTMuPSrNAAyPowVQEKLitU+5kIgC0BqW3VAJGrYfwZxHAe9Xl8W7KhrqiQqKYG2qKgsWDK3HM1c6GQw1L0HllAorLbCqCF9i6h/ESHkQXr9dXhER8OiMc8ZFATV1q24Xdvx3bt3L4qKipIDwKZNm+w7d+5cOHLkyHwAsLa2NnzxxRe3+vfv7z9v3ryMZcuWucyaNetehw4digE+7Jk7d25GxXOmpaUJx48f73Xr1i2pXC43bNy48aa7u7t2woQJ3jk5OSKFQqHcs2fP9cDAQI3xmDVr1jhs27bNUavVMi8vL83u3buTrK2tDdeuXZOGhoZ66/V6NmDAgLyNGzc6q1SqSwCwYMEC559//tmupKSEDRkyJHft2rV3zb3G1q1ba1u3bq0FAFtbW0Pbtm3Vt27dknTq1Kn4iy++cJwzZ849uVzOAYCbm5vZf7mws7Mr+z+ooqIigfH/E2JiYuT9+vXLNx5rY2OjP3nypEXfvn1Vtf0ZkP8OCqUeAWPHjq33sZF3IxF+Nhxq3f1a+RWnV+DLC19CKKCkmjyaKoZQTXq7cLB6BSaWEsvqA5UHFNDU9pgHGd40lMHAhzXlAhwV/zy/pnCn1vs4aNTGCiCutAKIg6bYTA+gEgFKdOyBhD+1afZsWWPwU2GfyFAaAvHLv8qCH9OCHhnjgyALIf+9nK/+kciFEMolVVT8VAyCzARAFY8TiYAmCjE4jjMf+lSoFqqq6kin09VqyRpXl/5FpSouNTMNfiwtLSGRSKodU5sQybikhBBCSN3odDocP37c+o033sgEgGvXrsk6duxYLkwJDAzUqFQqQXZ2tiA+Pl4+Z86ctJrOO2fOnFYhISGqY8eOXT9w4ID1q6++6h0XFxezYcOGm2vWrHE+fvx4YsVjxo8fnzNr1qxMAHjnnXdahYeHO3z44YfpU6dO9ZgyZUr65MmTs1euXFlWlbV3716bxMREWVRUVCzHcRgwYIDPkSNHrAYPHlxY3dzi4+MlMTExFr179y4EgBs3bsgiIiKsFy5c6CaVSrnVq1ff7t27t9lAadq0aW4//fSTvbW1tT4iIiIeAEJCQlQHDx5sOWnSpOzr169LoqOjLW7evCkBQKEUqYRCqUfAlClT6n3skcQjKNYVl9smFojRzb0b/Oz8Gjo1QpqFgAmaZdmUWCh+qMObhjKGP/UJd+oeBPHBj0bN9wDSVOoBhLLwR6tr3PdcjBK+d48xwOH4vj/mev7UOvgxfS683wOobBmYmR5AZRVApeGPQFbTsi/ThwyQtay5UkgsbrIQqC4MZppW17ZnUV0e9VFVAGRhYVGuaXVdexZR/yJCCKmdulQ0NSaNRiNQKBTKlJQUSVBQkGr48OH5AMBxHKvq7+26/H1+7tw56z179iQCwLBhwwrCwsJEWVlZ1f4LV2RkpHzhwoVuBQUFwqKiImHv3r3zAODSpUtWv/32WyIATJw4MWvRokXuAHD06FGbkydP2iiVSiUAqFQqQVxcnKy6UCovL08wcuTItsuXL79trHzS6/UsJydHePny5biIiAiL0NDQtrdv375q7h881q9fn7J+/fqUefPmuaxatcpp7dq1d6dPn54ZGxsrb9eundLNzU3TsWPHQlEDq5PJ44t+Mx4BKhUfKFtY1L6KleM4rDu7Dh9HfFxpn1goxrJ+y6i3FCHNRK+vTyVPQ/dxJhVA5noAMej0jRv+SFgJfwv30gbOUk4DCTSQcsWQcnwIJIOmhp4/tdhnEgKVVQDJWPkQSM7fCUwsF0Egr82yrwoBkLRFLSqFZIBE8lCGQHVhuhytro/aLknT6+t+Vz/GWJVBUEP6F5mek/oXEULIf5exp1RWVpZw4MCBPsuXL3eaP39+emBgoPrUqVNWpmNjYmIkFhYWBltbW4Ofn1/x2bNnLXr06FHtbRzMVdYyxqottw0LC/PevXt3Yo8ePdTh4eH2ERER1jVdY8aMGfdmz56dWd04I41Gw4YMGdJ2zJgx2a+++mqucbuLi0vJ6NGjcwUCAfr27asSCARcamqq6J133nGPjo62cHZ2LomIiChX2TVhwoTsIUOG+K5du/auWCzGli1bysLFDh06KAICAspXShBSikKpR8Czzz4LADhx4kStxucW5+L1/a/j57if8bz/8/Bq6YVNFzeV6ylFgRT5L9DrH2zwU9/z1OPzeLWkgtLwh/E9e8rd9YsrhoTTQG5Qo2VDgh/TfUJ9uQqgsmVgpcGPRMb3AWKy2lT8mNtnU/vjJBLgP7JMqWL/oprCIXPL0WpTldRc/Ytqqjyi5qiEEEKagr29vT48PPzW6NGjfWbPnp0RFhaW9cknn7ju27fPevjw4QWFhYXs7bff9pw2bVoqAMybNy91zJgxbfv161cYHBys0ev1WLJkifOiRYvKLenr3r17wbZt2+xXrVp179ChQ9a2trY6055M5qhUKoGnp6dWo9GwH3/80c7V1VULAO3bty/cvn277aRJk3K2bt1qZxw/ePDg/EWLFrUKCwvLbtGihSEpKUkskUg4cz2hDAYDXnjhhdZ+fn7FFec6dOjQ3GPHjlk/99xzBVFRUVKtVitwcXHR7d69O9l03NWrV6Xt2rXTAMBPP/3Usm3btmoAKCgoEHAcBxsbG8PPP/9sIxQKuU6dOlEoRcyiUOoxE3k3EmN+GoPb+bexZuAavNv9XTDG8HLwy3T3PfLY0OuB+Hjg4kXg0iX+cf16+UBIo+GXozUm0zxEIjH/3NISsG3JQSrgK4OkBjUkOhWkuiJItYWQlBRAWpwPaXEupKpcSIpyIC3KhlRbUHUoJNCVbwQtBb/0S8YglgnLhz91DoFs6nacRFLlHcL+y6rqX9TYS9Iaq3+RRCKBTCaDtbV12XK0uvYsov5FhBBCHldPPvmkOiAgQL1582bbt99+O3vv3r2JU6dO9ZwxY4bYYDBgzJgxWfPmzUsHgG7duqlXrFhx+8UXX2yjVqsFjDEMGDAgr+I5V6xYcTc0NNTLz89PKZfLDdu3b0+qaR5z586927Vr1wA3N7eSgIAAVWFhoRAA1q9ff3v8+PHe4eHhLgMHDsy1srLSA8DIkSPzr127JuvSpYsCACwsLAzfffddkrlQ6vfff7fat2+fva+vr1qhUCgB4OOPP04ZN25c3jvvvJM5btw4L19f30CxWGzYuHFjkrn/r3/vvffcb9y4IWOMce7u7iVbtmy5CQB3794VPfPMM34CgYBzcXHRfv/99zW+VvLfxerzH7gPm86dO3MXLlxo7mk8MH369AFQfaUUx3HYcH4DZv42E86Wztg5eid6ePRomgkS8gAVFwPR0ffDp4sXgagoQF1aIC2TAcHBgL8/IJdXHxiZe16rfVwxRDkZYFmZQEYG/8jMNP81IwPIzq46EbO2BhwdAQeH8l/NbXNwAKysGnyHsP86Y/+iB9GzyHTJWn00pC9RbSqPRCIRLUcjhJD/CMZYJMdxnZt7HvVx5cqV5JCQkFotOSN8JZKlpaVBIBBg48aNtjt37rT7448/rjf3vAipypUrVxxCQkK8zO2jTzqPgXxNPiYdnIRd13bhWd9nsWP4Dthb2Df3tAips/x84MqV++HTpUtATAxg/LxvYwN06ABMngx07Mh/r1DUMbMxGIC8vPJBUlI1YVNGBlBUZP5cAkH5ACkwsOaQSSpt8Pv0OKlr/6KKwVJtlqQ1d/+iqs5D/YsIIYQQUh+nT5+2mD59umfpEjn99u3bk5t7ToTUF4VSj7jLqZcx9qexuJFzA8v7L8fsJ2c/1ncHI4+P9PT71U/GECrRpF2iszMfPD33HB8+degAeHubaR9UUgLcraZqyVxFU1UhhYVF+UBJoag+ZGrZ8rHtZ1RT/6LGqjpq7P5FlpaWlZaj1WdZGvUvIoQQQsjDatCgQYXx8fExtRmbmpoq7NOnj3/F7SdOnIh3cXFp5E6nhNQdhVKPgNdee63SNo7jsOniJrxz5B3YW9jj+KvH0at1r6afHCE14Djg1q3y4dOlS0BKyv0x3t586PTqKxw6BqjRwS0driy1fCXTuSpCpvx88xdmDLCzux8i+foCTzxR9bI5Bwc+lHoEmPYvelBL0hrav6hiAFSxf1FDlq1R/yJCCCGEkNpxcXHRx8XF1SrAIqQ5UCj1CKgYShWWFGLyocn4/ur3GNh2IL4d8S0cLR2bZ3KEmNDrgX//NQmfLhpw6RKQncOHCALGQeGcgz5Od9DRKxEdJNfQXh8J29wk4J9M4FAmX/lkjlRaPkRq27bqJXKOjnwg1QzVLgaDoV49icwtR6sqdGrs/kUWFhb17llk+pz6FxFCCCGEEELqgkKpR0BmJt/zz8HBAdHp0Rjz0xgkZCVgSd8l+KDXB7RcjzQNjuN7K5VWKGnuZePaZS0uRYtx6boNLt5xxJUsd6j0MgCABBoEIwqjcAkdSh/BXBQsUtVAKvilb8aQycsL6NKl+qVylpZ89VOjvBQOKpUKhYWFjb4krT79iwQCQZXBj7G6yNi0ui49i6h/ESGEEEIIIeRhRqHUI2D06NEAgFfXvoq3f3kbLWQtcOzlY+jr3beZZ0YeaXo9f5e4WvRhKkxX4UpGK1wqUeIiOuISOuAa+kILCQDAGvloL4nBxJZn0dH5Djp4ZCGgjQZi59Llc479AIex90Mme3tALH7gL5HjOBQVFSE9PR0ZGRnlHmrj7ftqULF/kTEAkkgklfoX1XdJGvUvIoQQQgghhPwXUSj1CDBwBiRkJeD1A6+jr1dffD/qe7hYuTT3tMjDRq2uurG3ubApK4uvfqogC3a4ZNETF2VP4BLrgEvFSiQUtQIHviLP0VqNDj4FGBSUgQ6dhejQ0xJtQ6whEHYH0L2JXzSP4zgUFBRUCp4yMjJQXFxcNk4mk8HR0REBAQFwdHSEjY1NtZVHIpGI+hcRQgghhBBCyANCodRDLjYjFpH3IqEqUWHhUwuxsPdCCAVUVfHYMxiA3Nzq7yJXcVtRkflzCYX3G3k7OgJBQYCjIzgHR9wReeFSfltcynDDxVsOuJRgidt3RYAKgApo3Rro0AsILb37XceOQKtWcjAmb8p3owzHccjPzzcbPmk0mrJxcrkcjo6OCAwMhKOjY9nDysqKlrARQgghhJBKhEJhJ19fX7Ver2ceHh6aXbt2JTk4OOgB4MKFC7KpU6d6pqamSjiOw9ixY7NWrFhxz/iPl7t27bJZvHixm0qlEnAch6effjpv48aNd2pzXbVazfr37++bnZ0tmjVr1r1JkyblPMCXWYlOp0O7du2ULi4uJcePH08EgLS0NOGIESPapKSkSN3c3DT79++/4ejoaLZHxf/93/85bdq0yUkkEnEDBgzI+/LLL8te97///isJCQkJfO+99+4uXrw4raleE3m0UCj1EPs26lu8eehNaPVaBDsH4+O+Hzf3lEh9aTR8cFRdyGS6LyuLX15njqVl+V5LAQHm7yZn/NqyJQwQIDGx/N3vLv3EXxLgWzX5+wM9e/PBU4cOQPv2/Cq75sBxHPLy8syGTyUmjdAtLCzg5OSEdu3alQVPTk5OsLCwoPCJEEIIIYTUmlQqNRjvUjdy5EivVatWOa5YsSK1sLCQjRgxwmfdunW3Ro4cmV9QUCAYMmRI2xUrVjjOmzcv4/z587JZs2Z5HjhwILFDhw7FWq0Wa9asqfVdqM6cOWOh1WpZc90hb+nSpc4+Pj7qwsLCssqHjz76yLVPnz4Fy5Yt+/eDDz5wWbhwocsXX3yRUvHYgwcPWh8+fLhlbGzsNblczqWkpJTLF6ZOnerRu3fvvKZ4HeTRRaHUQ0itVWP60enYdHETenn2gq6VDhKhpLmnRYw4DsjPr131knFbQYH5czHGJz/GEMnfH3jyyepDJnn1VUpaLRATA1w8XRo+XQIuXwYKC/n9YjFfLPX883z41KEDEBwMWFk17ttUGxzHITc312z4pNVqy8ZZWVnB0dERISEhZcGTg4MDLC0tm37ShBBCCCHkgdm/f79Henq6RWOe08nJSfX888/fru347t27F0VFRckBYNOmTfadO3cuHDlyZD4AWFtbG7744otb/fv39583b17GsmXLXGbNmnWvQ4cOxQAgFosxd+7cjIrnTEtLE44fP97r1q1bUrlcbti4ceNNd3d37YQJE7xzcnJECoVCuWfPnuuBgYFl5f9r1qxx2LZtm6NWq2VeXl6a3bt3J1lbWxuuXbsmDQ0N9dbr9WzAgAF5GzdudFapVJcAYMGCBc4///yzXUlJCRsyZEju2rVr71b1Oq9fvy7+9ddfW8ybN+/e2rVrnY3bjx492jIiIiIeACZPnpzVu3dvfwCVQqkvvvjCcc6cOffkcjkHAG5ubmW3iP7mm29aenl5aSwtLQ21fd/JfxOFUg+ZhKwEjP1pLK6kXcG8nvOwuO9i7LHY09zTerxptXxlUm1DpsxM/hhzZLLyIZKPT+W7yJl+b2vLL6+rp6IiICqqfAVUdDRgLCaytOQrnl577f7yO6USkDRxxmkwGMrCp/T0dGRmZpaFTzpd2f93wdraGo6OjujYsWNZ5ZODgwMsLBr1v0sIIYQQQggxS6fT4fjx49ZvvPFGJgBcu3ZN1rFjR5XpmMDAQI1KpRJkZ2cL4uPj5XPmzKlxadqcOXNahYSEqI4dO3b9wIED1q+++qp3XFxczIYNG26uWbPG2bh0ztT48eNzZs2alQkA77zzTqvw8HCHDz/8MH3q1KkeU6ZMSZ88eXL2ypUry6qy9u7da5OYmCiLioqK5TgOAwYM8Dly5IjV4MGDC83N6e233/ZYuXLlnby8vHIfSLKyskStW7fWAkDr1q212dnZZnODGzduyCIiIqwXLlzoJpVKudWrV9/u3bu3Kj8/X7BmzRqXiIiIhI8//piaIZNqUSjVxDiOw764fRiuGF5ueRHHcXjvt/ew8eJGSIQSHA49jGd9nwUAjBs3rrmm++jhOD6pqW0fpowMvndTVWxt74dI3t5Aly7mq5eM2yws+OqnByAnp8Lyu0tAfDzffgrgC646dABmzLhfAeXj06DMq84MBgNycnLK7nZnDJ8yMzPLhU82NjZwdHRE586dy/V8kslkTTdZQgghhBDy0KlLRVNj0mg0AoVCoUxJSZEEBQWphg8fng8AHMexqtpC1KVdxLlz56z37NmTCADDhg0rCAsLE2VlZVX7X+qRkZHyhQsXuhUUFAiLioqExqVwly5dsvrtt98SAWDixIlZixYtcgeAo0eP2pw8edJGqVQqAUClUgni4uJk5kKpH374oYWDg4OuV69eqkOHDlnX+oWY0Ov1LCcnR3j58uW4iIgIi9DQ0La3b9+++t5777WaOnVqWosWLahKitSIQqkmti9uH0buGonp3aZj7TNrwRiDWqtGt83dcDX9Kvzt/fH7y7/Do4VH2TG3b/N/L3t4eFR12seXXg9kZ9duiZzxe5OG1+WIxeUDpU6dql4i5+jIpzyipv8jwnHAvXvlw6eLF4GbN++PcXfnq57Gjr1fAeXu/sDysEr0ej2ys7PLqp0yMzORnp6OrKws6E16YbVo0QKOjo7w9vYuFz5JpdKmmSghhBBCCCG1YOwplZWVJRw4cKDP8uXLnebPn58eGBioPnXqVLlGFzExMRILCwuDra2twc/Pr/js2bMWPXr0UFd3fs7MXa8ZY5U3mggLC/PevXt3Yo8ePdTh4eH2ERER1YZHHMdhxowZ92bPnp1Z3TgA+Ouvv6x+//33lm5ubi00Go2gqKhI8Pzzz3vv378/yd7eXnfz5k1x69attTdv3hTb2dnpAGD06NFe0dHRFs7OziURERGJLi4uJaNHj84VCATo27evSiAQcKmpqaLIyEjLw4cP23700Ufu+fn5QoFAAJlMZvjggw8qLWskhEKpJjZcMRzTu03HurPrAABTu0zFk1ufRLoqHR1dO+Lv1/+GRFR+bdXLL78MADhx4kRTT7e8yEjg338BX18+0KkPlar2fZgyM/lAysxf4AAAG5v7gZK7O5/OVLdUztq66VKbWjIYgBs3yodPly4B6en8fsb4t7t7d+Ctt+43IXdwaJr56fV6ZGVlVer3lJWVBYPh/j98tGzZEo6OjvDx8Sm37I7CJ0IIIYQQ8iixt7fXh4eH3xo9erTP7NmzM8LCwrI++eQT13379lkPHz68oLCwkL399tue06ZNSwWAefPmpY4ZM6Ztv379CoODgzV6vR5LlixxXrRoUbklfd27dy/Ytm2b/apVq+4dOnTI2tbWVmdnZ1dtJZFKpRJ4enpqNRoN+/HHH+1cXV21ANC+ffvC7du3206aNCln69atdsbxgwcPzl+0aFGrsLCw7BYtWhiSkpLEEomEM+31ZPT555+nfP755ykAcOjQIes1a9Y479+/PwkAnnnmmdyvvvrKftmyZalfffWV/aBBg3IBYPfu3cmm5xg6dGjusWPHrJ977rmCqKgoqVarFbi4uOgiIyPjjWNmzpzZysrKSk+BFKkKhVJNjDGGtc+sBQCsO7uuLJwa6jcU+1/Y//DeMWzuXGD9en4tmF4PTJsGLFvGrymrbR+mjAw+lDJHKCwfKAUHV71EzsGBfzR1Y6QG0umA2Njy4dPly3zPdIAvygoMBIYMub/8LiSEz9Ie/Nx0ZsOn7OzscuGTnZ0dHB0d4efnV9Zw3N7eHpJH7GdBCCGEEEJIVZ588kl1QECAevPmzbZvv/129t69exOnTp3qOWPGDLHBYMCYMWOy5s2blw4A3bp1U69YseL2iy++2EatVgsYYxgwYEClO86tWLHibmhoqJefn59SLpcbtm/fnlTTPObOnXu3a9euAW5ubiUBAQEq4x3y1q9ff3v8+PHe4eHhLgMHDsy1srLSA8DIkSPzr127JuvSpYsCACwsLAzfffddkrlQqjoff/zxvREjRrRt3bq1Q6tWrUr27dt33dy4d955J3PcuHFevr6+gWKx2LBx48YkgUBQl0sRAmaujPBR07lzZ+7ChQvNPY064TgOgsX3/8AaFhqqDKT69OkDoBkrpSIjgV69AHWFilRjQGWOlVX1VUsVv7Zs+dBVMTWEWn2/AbkxhLp69f7KQgsLPnAyhk8dO/KB1IMuLNLpdOWajJuGT8a/CxhjZeGTg4MDnJyc4OjoCHt7e4jF4gc7QUIIIYQQUi+MsUiO4zo39zzq48qVK8khISE1LjkjvIKCAoGlpaVBIBBg48aNtjt37rT7448/zAZHhDwMrly54hASEuJlbh9VSjUDjuPw7q/vltv27q/vlvWYeuhERd2/nZuRWMyX9PTpUzlkcnAA5PJmmWpzyM3lK55MK6Di4u7ndba2fPA0bdr9EMrP78E2INdqtWXhk+nd7nJycsqFT/b29nByckJgYGDZsjt7e3uImqGXFiGEEEIIIaRmp0+ftpg+fbonx3GwsbHRb9++Pbm550RIfdEnzyZmDKTWnV2H1i1aw9nSGT08epQt43vogqmcHGDt2soVUWIxMH9+/XtLPaJSUyvfAe/Gjfv7W7Xiq55GjrxfAeXp+eCKwEpKSsqajJve7S4nJ6dsjEAggL29PVxcXNCuXbty4ZOwKW/NRwghhBBCCGmwQYMGFcbHx8fUZmxqaqqwT58+/hW3nzhxIt7FxaWKZS+ENB0KpZrYvrh9WHd2HaZ3m44zt8/AVm5brsdU79a9MSJgRLljZs2a1RxT5XtADRzIl/2MGAH8+mv5nlKPcSDFcUBSUuUG5Kmp98f4+PBvwcSJ9xuQOzk9mPloNJpyy+2MQVRe3v3l6kKhEPb29mjVqhVCQkLKwic7OzsKnwghhBBCCPkPcnFx0cfFxdUqwCKkOVAo1cSGK4Zj79i9GK4YDr/P/OBj51PW/Lx3694Yrhhe6ZihQ4c2/URTUoABA4DkZODAAWDQoMa5+95DSKcD4uMrNyDPzeX3C4WAUsnnc8bwKSQEaNGi8edSXFxcqd9TRkYG8o3d0MGHTw4ODvD09ISDg0O58IkaCxJCCCGEEEIIeVRQKNXEGGNllVDZ6mzYymwrba8oPp6/o6a/f6WqywcjKQno35+/Y96vvwJPPcVv79TpkQ+jiouB6Ojyy++uXOG3A4BMxt/474UX7vd/ateO396Y1Gq12fCpoKCgbIxIJIKjoyO8vLzKwicnJye0bNmSwidCCCGEEEIIIY88CqWaiYEzILc4F3ZyuxrHTp48GUAT3X0vLo6vkFKpgD/+ALp0efDXfEDy8ys3II+Jud8eq0ULPnR66637FVD+/kBj9vhWqVRmw6fCwsKyMWKxGI6OjmjTpk1Z1ZOjoyNatGhB4RMhhBBCCCGEkMcWhVLNpEBTAANngK3ctrmnct+VK8DTT/NduU+c4EuGHhHp6ZUbkCcm3t/v4sKHTsOG3a+A8vZuvAbkRUVFZsOnoqKisjESiQSOjo7w8fGpFD49VM3tCSGEEEIIIYSQJkChVDPJVmcDQNnyvWZ39izfN8rKiq+Q8vNr7hmZxXHArVvlw6eLF4G7d++P8fbmK59ee+1+AOXq2hjX5sqFT+np6WV3u1OpVGXjpFIpHB0d4efnVy58srGxofCJEEIIIYSQh5BQKOzk6+ur1uv1zMPDQ7Nr164kBwcHPQBcuHBBNnXqVM/U1FQJx3EYO3Zs1ooVK+4ZVzXs2rXLZvHixW4qlUrAcRyefvrpvI0bN96pzXXVajXr37+/b3Z2tmjWrFn3Jk2alFPzUQ+HL774wm7t2rUuAGBpaWnYsGHDzR49eqgBwM3NrZ2lpaVeIBBAJBJx0dHRsc07W/KwolCqmeQU83/X1Gb53gN34gQwdCjg7AwcOwZ4eTXJZWvqm67XAwkJlSugckr/mhYIgIAAoF+/+8vv2rcHWrZs2Lw4jkNhYSHS09Mr3e2u2Nh8CoBMJoOjoyMUCkW58Mna2prCJ0IIIYQQQh4hUqnUYLxL3ciRI71WrVrluGLFitTCwkI2YsQIn3Xr1t0aOXJkfkFBgWDIkCFtV6xY4Thv3ryM8+fPy2bNmuV54MCBxA4dOhRrtVqsWbPGsbbXPXPmjIVWq2UPyx3yiouLWUlJCbOxsTHUNNbHx0dz+vTpeEdHR/2uXbtsJk+e3DoqKirOuD8iIiLB1dVV92BnTB51FEo1k7JKqeZevnfkCDByJNCmDfD770CrVk1y2blzgfXr+Tvb6fV8X6fQ0MoNyI0FSFIp33B8zJjyDcgtLOo/B47jkJ+fb3bZnUajKRsnl8vh5OSEwMDAsuDJyckJlpaWFD4RQgghhBDSiF7f/7pHdHp0A/4rv7IgpyDV1ue33q7t+O7duxdFRUXJAWDTpk32nTt3Lhw5cmQ+AFhbWxu++OKLW/379/efN29exrJly1xmzZp1r0OHDsUA3y927ty5GRXPmZaWJhw/frzXrVu3pHK53LBx48ab7u7u2gkTJnjn5OSIFAqFcs+ePdcDAwPLPoisWbPGYdu2bY5arZZ5eXlpdu/enWRtbW24du2aNDQ01Fuv17MBAwbkbdy40VmlUl0CgAULFjj//PPPdiUlJWzIkCG5a9euvVtxLuZcvHhR9sUXXzj88ssvtrt27Up88skn1TUd8/TTT5f1Kunbt2/R1KlTJbW5FiGmKJRqJjnq2ldKzZ8//8FMYs8e4MUXgaAg4LffAAeHB3OdCiIj+UDKZMUb1qzhHwBgbc2HTpMm8V87dgQUCkAsrt/1OI5DXl6e2fCppKSkbJylpSUcHR3Rrl27suDJ0dERFhYWFD4RQgghhBDyH6DT6XD8+HHrN954IxMArl27JuvYsaPKdExgYKBGpVIJsrOzBfHx8fI5c+ak1XTeOXPmtAoJCVEdO3bs+oEDB6xfffVV77i4uJgNGzbcXLNmjfPx48cTKx4zfvz4nFmzZmUCwDvvvNMqPDzc4cMPP0yfOnWqx5QpU9InT56cvXLlyrKqrL1799okJibKoqKiYjmOw4ABA3yOHDliNXjw4MKK5waA/Px8wbZt22x37NjhwHEce+mllzJXrlx5zdbW1gAAb7zxhsfp06etKx43cuTI7GXLlqWablu/fr1D375980y39e/f35cxhgkTJmS89957mTW9R+S/iUKpZmJcvlebnlIDBgxo/Al88w3fdKl7d+Dw4YaveauD+HhAV6GIUyLhq6WmTuWLtupz0zmO45Cbm2s2fNJqtWXjrKys4OjoiPbt25dbdmfRkLIrQgghhBBCSIPVpaKpMWk0GoFCoVCmpKRIgoKCVMOHD88HAI7jWFX/QF2Xf7g+d+6c9Z49exIBYNiwYQVhYWGirKwsYXXHREZGyhcuXOhWUFAgLCoqEvbu3TsPAC5dumT122+/JQLAxIkTsxYtWuQOAEePHrU5efKkjVKpVAKASqUSxMXFyaoKpVq1ahXi7++v2rx5801jpZepLVu21OpncfDgQetvv/3W4cyZM2VL906fPh3n5eWlTUlJEfXr188vMDCwuKp5kP82CqWaSV2W712+fBkA0L59+8a5+Jdf8glQv37A/v18c/MmUlwMbN8OmBQoAQBEIuDllwEfn5rPYTAYqgyfdCZpl7W1NRwdHdGxY8dy4ZNcLm/cF0UIIYQQQgh5pBl7SmVlZQkHDhzos3z5cqf58+enBwYGqk+dOlXuA1NMTIzEwsLCYGtra/Dz8ys+e/ashbHBd1U4jqu0jTFWeaOJsLAw7927dyf26NFDHR4ebh8REVGpaqniNWbMmHFv9uzZtapK2rFjx/UtW7Y4jBo1qu3IkSOzw8LCsvz8/Mo+qdWmUurs2bPyKVOmtD58+PC/Li4ueuMYLy8vLQC4ubnphgwZkvv3339bUihFzKFQqpnkqHMgFUohF9UckMyYMQMAcOLEiYZfePVqYPZs4LnngJ9+AmSyhp+zljIygOHDgTNngD59+Bv+iUR8T6lp0yo3OzcYDMjJyal0p7vMzMxy4ZONjQ0cHR3RuXPncuGTrAlfGyGEEEIIIeTRZ29vrw8PD781evRon9mzZ2eEhYVlffLJJ6779u2zHj58eEFhYSF7++23PadNm5YKAPPmzUsdM2ZM2379+hUGBwdr9Ho9lixZ4rxo0aJyS/q6d+9esG3bNvtVq1bdO3TokLWtra3Ozs6u2mbiKpVK4OnpqdVoNOzHH3+0c3V11QJA+/btC7dv3247adKknK1bt5b1gxk8eHD+okWLWoWFhWW3aNHCkJSUJJZIJJybm5vZZuMjR47MHzlyZH5qaqpw06ZN9sOGDfOxs7PTbdu2Ldnf37+kpkqpf//9VzJmzJi2W7duTQoODi7rhZWfny/Q6/WwtbU15OfnC44fP27z4Ycf1qq3FfnvoVCqmWSrs2Ert226XkUcByxaBCxeDIwdC3z7bf2bNNVDfDwwZAiQksJnYaNH37/7Xtu2enh75yAmJr0sdDJ+1evLwna0aNECjo6O8Pb2Lhc+SaXSJnsdhBBCCCGEkMfbk08+qQ4ICFBv3rzZ9u23387eu3dv4tSpUz1nzJghNhgMGDNmTNa8efPSAaBbt27qFStW3H7xxRfbqNVqAWMMAwYMyKt4zhUrVtwNDQ318vPzU8rlcsP27duTaprH3Llz73bt2jXAzc2tJCAgQFVYWCgEgPXr198eP368d3h4uMvAgQNzrays9AAfMl27dk3WpUsXBQBYWFgYvvvuu6SqQikjFxcX/YIFC9IXLFiQfvz4cQuhUFhtBZfR/PnzXXNzc0XTpk1rDQAikYiLjo6OvXPnjmjEiBE+AKDX69moUaOyRo8enV+bc5L/HmaujPBR07lzZ+7ChQvNPY06Gb1rNGIzY3FtyrUax/bp0wdAAyqlOA6YNQtYuxaYMAHYtIm/7V0junv3LrKzs2FnZ4dWFe7gd/IkXyElkejx7bdZcHXNKAud0tPTkZWVBYPh/j8S2NrawtHREQ4ODmUNxx0cHCCR0M0cCCGEEEIIMYcxFslxXOfmnkd9XLlyJTkkJIQaYddSQUGBwNLS0iAQCLBx40bbnTt32v3xxx/Xm3tehFTlypUrDiEhIV7m9lGlVDPJKc6pVZPzBtPrgSlTgI0b+TVyn35avy7i1Th27BjOnTsHxhg4jkPnzp0REhKCjIwM/PlnBs6cycBrr2WgZctsnD59P3yys7ODo6Mj/Pz8yu50Z29vT+ETIYQQQgghhFTh9OnTFtOnT/fkOA42Njb67du3Jzf3nAipLwqlmkm2OhvuNu4P9iI6HX+Hve++A+bNA/7v/4BGXi549+5dnDt3rtzd7f7++2/8/fffAACDgaF1azsEBTnCzS2gbMmdvb09xE24fJAQQgghhBBCHgeDBg0qjI+Pj6nN2NTUVGGfPn38K24/ceJEvGljckKaC4VSzSRHnYNg5+BajV22bFndL6DRAC+8AOzbByxbxodSD0B2draZvlgi3LgxAEePemHwYHts3CgCFT8RQgghhBBCSNNycXHRx8XF1SrAIqQ5UCjVTOqyfO+JJ56o28lVKmDECOC334DwcH7Z3gNiZ2dXrh+USiXDTz+9gKSk1liyBPjww0YvziKEEEIIIYQQQshjgEKpZqAz6JCvya91KHXmzBkAtQyn8vOB554DTp8GtmwBXn+9IVOtUatWrdCiRQtkZWWhoMABX3/9AvLybPHdd0Bo6AO9NCGEEEIIIYQQQh5hFEo1g9ziXACAndyuVuM/+OADALW4+152NjBoEHDpEvD998C4cQ2YZe0Y757n7NwZ69Y9A44T4I8/BOjV64FfmhBCCCGEEEIIIY+wxr0NG6mVbHU2AMBW3oh330tLA/r0AaKigL17mySQAoCTJ09CIJBg7tx+sLcX4exZCqQIIYQQQgghjxbGWKfhw4d7G59rtVrY2tqG9O3b16c+5/vuu+9afPDBBy6NN8O66dq1q7+Xl1eQQqFQKhQK5bZt22wBQCgUdlIoFEpfX9/AwYMHtykoKBBU3N6vXz+fzMxMoen5UlNThcZzOTg4hDg5OQUbn0dFRUl9fX0DG/s1zJw5s9XChQud63KMhYVFB3PbR40a5WV8Dxpi/fr19q1btw5q3bp10Pr16+3NjVGr1WzIkCFtPD09g4KDgxXx8fESADhz5oy8ffv2Ch8fn0A/Pz/lpk2byuYzatQoLzc3t3bG9/TMmTPyhs71UUGVUs0gR50DoPaVUjW6fRvo3x9ISQEOH+a/bwLp6Rm4du0aTp3qiaAgOfbtAxwcmuTShBBCCCGEENJo5HK5IT4+Xl5YWMisrKy4n3/+2cbZ2Vlb85HmjR8/Pg9AXiNOsc527Nhx46mnnlKZbpNKpQZj4/Nhw4Z5r1mzxnHRokVppttHjhzptWrVKscVK1akGo8zbZg+c+bMVlZWVvrFixenAYAxdKmJVqt9pO/AnpaWJlyxYkWryMjIGIFAgA4dOihfeOGFXEdHx3J3MVy3bp1DixYtdLdu3YreuHGj7cyZM90PHz58w8rKyvDNN98ktWvXTpOcnCzu0qVLwIgRI/IdHBz0ALB06dI7EyZMyGmeV9d8qFKqGeQU879nte0pVa3ERKBXL75S6rffmiyQ0mqB1atPoaREDFfXHjh2jAIpQgghhBBCyKOrf//+eT/99FNLAPjhhx/sRo0alW3cd/z4cYsOHTooAgIClB06dFBcuXJFCgCLFi1yHjNmjBcAnDt3Tu7r6xtYUFAgCA8Pt3/llVc8Ab4KZvz48Z7dunXzc3d3b3f48GGrMWPGeLVp0yZw1KhRXsZrmFb5bNu2zda4r7bH11XPnj0LExMTpRW3d+/evSglJaVO90/X6/V44YUXWvv4+AQ++eSTvoWFhQzgK7amTp3q1qVLF/+lS5c6nzp1yqJLly7+gYGBAT179vS9efOmGACWLl3q1LZt20A/Pz/lc88918Z43tjYWHnXrl393d3d2y1dutTJuH3RokXOvr6+gb6+voGLFy92qjgfg8GAV155xbNt27aBffr08cnMzGxwQc6+fftaPPXUU/nOzs56R0dH/VNPPZW/d+/eFhXHHTp0qOXrr7+eBQATJkzIOXPmjLXBYEBwcLCmXbt2GgDw8vLS2tnZ6e7du/efLxT6z78BzaHRlu/FxAADBgAlJcDx40DHjo0wu5rl5QEvvZSFjh2jwXE98PXXFhBQvEkIIYQQQghpBF27dvWvuG3kyJHZc+fOzSgoKBD079/ft+L+l156KfOdd97Junfvnuj5559va7rv3Llz8bW57ssvv5z90UcfuY4bNy43NjbW4o033sg6c+aMFQCEhIQUnzt3Lk4sFmPfvn3Wc+bMcf/111+vL1iwIK1bt27+O3bsaLly5UrXzz//PNna2tpQ8dx5eXmiv//+O+H7779vOW7cON8///wzrlOnTurg4OCAM2fOyJ944gl1dXOrz/GvvPJKG5lMZgCAEydOxLu4uJRV9Gi1Wvz66682AwcOzDc9RqfT4fjx49ZvvPFGZm3eM6Nbt27Jvv322xtPPPHEzWeffbbNjh07bKdMmZINALm5ucLz58/HazQa1r17d//Dhw8ntmrVSrdp0ybb9957z+2nn35KDg8Pd7l58+ZVuVzOmS4dTExMlJ05cyY+NzdXGBAQEDR79uyMc+fOyb///nv7yMjIWI7j0KlTp4D+/fsXPPnkk2XvwTfffNMyMTFRGh8ff+3OnTvidu3aBb722mtZFee9YMEC559++qnSMrzu3bsXbN++/bbptpSUFLG7u3uJ8bmbm1tJSkpKpdKvtLQ0ibe3dwkAiMViWFlZ6dPS0kSurq4645jjx49baLVaplQqNcZtH3/8sdv//vc/1169ehV89tlnd+RyOVeXn8GjikKpZlDX5Xuffvpp5Y0XLwIDBwISCRARAQQ2+hJes27eBIYMAfz9T0EoFGHWrCcokCKEEEIIIYQ88rp166a+c+eOdNOmTXYDBgwot/QuOztbOG7cOO/k5GQZY4zTarUMAIRCIXbs2JHUuXPnwPHjx2cMHDiwyNy5hwwZkisQCNCxY0eVvb29tmvXrmoA8PPzU1+/fl1aUyhVn+PNLd/TaDQChUKhLH29BdOnT8803Z6SkiIJCgpSDR8+PL/i+arj5uamMc6hQ4cOquTk5LIKrBdffDEbAKKioqT//vuvvF+/fn4AX83k6OioBQB/f3/1iBEjvIcNG5Y7fvz4XOOxAwcOzJXL5ZxcLtfZ2dlp79y5Izpx4oTVs88+m2tjY2MofW9yjh8/bm0aSkVERFiPHTs2WyQSwcvLS9ujR48Cc/NesmRJ2pIlS9Jq8xo5rnJGxBir7biyjTdv3hRPmDChzZYtW5KEQj5/++STT1I8PDy0Go2GjR8/vvWCBQtcVq9efa8283rUUSjVDMoqpWq5fK99+/blN5w5AwweDLRsCfzxB+BTr957dXb+PDB0KCCVZiM4OArdu3eHpaVlk1ybEEIIIYQQ8t9QXWWTtbW1obr9rq6uutpWRpkzaNCg3I8++sjjt99+i09PTy/7vPz++++79e7du+D333+/Hh8fL+nXr19ZNVdsbKzMwsLCkJqaWmXDJJlMxgF8iCWRSMoCCoFAAJ1Ox4DyAYdarWZ1Pb42THtHmduelZUlHDhwoM/y5cud5s+fn17b85rOSSgUcmq1uqx0wVg5xnEc8/HxUV++fDmu4vHHjx//98iRI9b79u1ruXLlylb//vtvdOm8TM8LnU7HzIU+5pgLjCqqS6WUu7u7NiIiwtr4PCUlRdK7d+9KYZeLi0tJUlKSpG3btlqtVovCwkKhk5OTHgCys7MFgwcP9lm4cGFK//79ywLM1q1bawFALpdzr7/+etaaNWvq1OD9UUY1Ls0gpzgHVhIriIW1a/J27NgxHDt2jH/yxx/A008Dzs7AX381WSC1bx/QuzcglwOLF5+CSCTEE0880STXJoQQQgghhJCm8NZbb2XOmjXrrrESySg/P19oXLr11VdflXXTzcrKEr733nsef/75Z1x2draoIXd4s7e31168eFGm1+uxf//+RrxVe53moA8PD7/1+eefO2s0mlqHXbURHBxcnJ2dLTp27JglAGg0GnbhwgWZXq/H9evXJUOHDi3YsGHDnYKCAmFeXp6wqvP069ev8JdffmlZUFAgyM/PF/zyyy+2ffv2LRcO9e7du+Cnn36y0+l0uHnzpviff/6xNneuJUuWpMXFxcVUfFQMpABg+PDheRERETYZGRnCjIwMYUREhM3w4cMrNbMfMmRI7tatW+0BvjdYjx49CgQCAYqLi9mQIUN8XnjhhazXX3+9XENzY28tg8GAvXv3tgwICKi2cu5xQpVSzSCnOKdOTc6XLl0KABigVgNjxgC+vsDvvwMuD/4OoxwHfPopMGsW0KUL8O23Ofjhhyvo2rUrrKysHvj1CSGEEEIIIaSptG3bVrtgwYJKFULvv/9+6sSJE73Dw8NdevXqVba07c033/R44403MoKDgzVff/11cr9+/fwHDhxodqlYTT7++OOU559/3sfV1VWrUCjURUVFzVJE8uSTT6oDAgLUmzdvtn377bezaz6idmQyGffjjz9ef+eddzwLCgqEer2evfXWW2nt2rXThIaGehcUFAg5jmOTJ09OM96RzpyePXuqQkNDszp27BgAAC+//HKG6dK90m25f/zxh42/v3+gt7d3cdeuXev1MzHl7Oysnz179t1OnToFAMCcOXPuOjs76wFgxowZrbp06VI0fvz4vOnTp2eOGjXK29PTM6hFixb6nTt3XgeArVu32p4/f94qJydH9P333zuUbkt64okn1OPGjfPOzs4WcRzHlEqlaseOHTcbOt9HRa1L3x5mnTt35i5cuNDc06i15398Hsm5ybjy5pVaje/Tpw+Qno4T//4LdOgAHD0K2NWuH1VD6HTAjBnA558Do0YBO3YAf/xxEFeuXMH06dNhbW02bCaEEEIIIYQ0McZYJMdxnZt7HvVx5cqV5JCQkDo11iaEPDquXLniEBIS4mVuHy3fawY56pxaNzkHAKSmArGxwBNPAMeONUkgVVAAPP88H0i99x6waxdQUpKLy5cvo2PHjhRIEUIIIYQQQgghpEFo+V4zyFZnw8/er3aD168H4uMBW1vgyBHAwuLBTg5ASgrw3HPA1avAF18Ab77Jb//rr7/AGEPPnj0f+BwIIYQQQgghhBDyeKNQqhnkFNeyUup//wM++ABwcAACApokkLp8mQ+k8vOBQ4eAQYP47Xl5ebh06RI6dOgAGxubBz4PQgghhBBCCCGEPN4olGoGOeoaGp1zHPDhh3woNX48vpo3DxA9+B/VL78AY8fyRVl//QUEB9/fd/r0aQBAr169Hvg8CCGEEEIIIYQQ8vijUKqJFeuKodapYSuvIpQyGPju4uvXA2FhwBdfwF/w4Ft/bdgATJsGhITwFVKtWt3fV1BQgIsXL6J9+/Zo0aLFA58LIYQQQgghhBBCHn/U6LyJ5ahzAMD88j29Hpg4kQ+kZs4EvvwSEAhw8OBBHDx48IHMR68HZs0C3n4bePZZ4OTJ8oEUwFdJcRxHvaQIIYQQQgghhBDSaKhSqonlFPOhVKXle1ot8PLLwM6dwEcf8Q/GAABr1qwBAAwdOrRR51JUBLz0ErBvH18ltXYtIBSWH1NYWIjIyEgEBwfD1raaJYeEEEIIIYQQQgghdUCVUk0sW5UFALCVtby/sbgYGDWKD6RWrgQWLSoLpB6U1FSgTx9g/35g3TogPLxyIAXwVVJ6vZ56SRFCCCGEEEIeW9evXxf379+/bevWrYM8PDyCJkyY4FFcXFzth7LMzEzh8uXLHY3Pk5OTxYMGDWrTGPOZOXNmq4ULFzqb2+7k5BSsUCiUvr6+gd99912d+qu4ubm1u3fvXpXFKevWrbNXKBRKhUKhFIvFHf38/JQKhUI5ZcoUt6rm1FA1zami8PBw+1deecXT3D4LC4sODZ2PWq1mQ4YMaePp6RkUHBysiI+Pl1QcU1BQIOjTp4+Pt7d3oI+PT+CUKVPcTOdna2sbYnwfP/nkE4eGzulh8H//939OXl5eQT4+PoFvvvmmOwDEx8dLZDJZR+NrDQ0NNftzqQ6FUk0s58QRAIDdF9v5huaFhfzt7ozL83x8HvgcoqOBbt2AmBi+Suqdd8yPKyoqwoULFxAcHAw7u1rcLZAQQgghhBBCmsKpUxbYuNEWp041+BblBoMBw4cP9xk2bFjuzZs3o5OSkqKLiooE06dPd6vuuKysLOGWLVucjM+9vLy0R48evdHQ+dTkzTffTIuLi4vZuXPn9alTp3rp9fpy+7Vabb3PPX369Ky4uLiYuLi4GCcnJ21ERERCXFxczIYNG1Jqc7zBYEDF+Txq1q1b59CiRQvdrVu3oqdOnZo2c+ZMd3PjZs2alZaUlHQtOjo65uzZs1a7du0qu0390KFDc4zv48yZMzObbvaV5efnC2oKWGty8OBB68OHD7eMjY29lpiYeG3BggWpxn0eHh4a42v9/vvvb9X13BRKNbHsED8AgO22H4EpU4BnngH+/JPfOX06MHz4A73+778DTz4JlJTw/aOGDat67JkzZ6hKihBCCCGEEPJweestNwwc6I+ZM70wcKA/TKpU6uPgwYPWUqnUMH369CwAEIlE+PLLL2/v3LnToaCgQBAeHm7fv3//tr169fL18vIKmjVrlisAzJo1y/327dtShUKhnDx5snt8fLzE19c3EOCrZQYMGNC2X79+Pm5ubu2WLVvmuGjRIueAgABlSEiIIi0tTQgAa9ascQgKCgrw9/dXPvPMM20LCgpq/Rm9Y8eOxUKhEKmpqaKuXbv6T5061a1Lly7+S5cudd6/f791QECA0s/PTzlmzBgvtVpdFkosXrzYuV27dgHt2rULiI6OltblvYqNjZV37drV393dvd3SpUudAL5apk2bNoEvvfSSZ2BgoPL69euSBQsWOAcFBQX4+fkp33333VYAH4706dPHx9/fX+nr6xu4adOmsv4wK1eudFIqlQF+fn7KS5cuyQAgLS1NOGDAgLZ+fn7KkJAQxdmzZ+UV5xMXFydp3769IigoKGD69OmtKu6vj0OHDrV8/fXXswBgwoQJOWfOnLE2GAzlxlhbWxuGDh1aAAAymYwLDg5W3b59u1JFVW2NHz/eMygoKMDHxyfQ+H4BwM6dO1t4e3sHdurUyf+1117z6Nu3rw/Av5djxozxCgoKCggICFB+++23Las699WrV6Vt27YNmjRpkvvFixdl9ZnfF1984Thnzpx7crmcAwA3Nzddfc5jDoVSTSynOBcAYPfqZL6R+ZkzfMXU9Ol8U6cHuGxvyxa+mXnr1sDZs0CnTlWPValUOH/+PIKCgmBvb//A5kQIIYQQQgghtXbqlAW2b3dCcbEARUUCFBcLsG2bU0Mqpq5evSoPCQlRmW6zs7MzuLq6lsTExEgBICoqyvKnn366ER0dfe3AgQN2J0+etFizZs0dY5XIV199dafieRMSEuR79uy5cf78+dj//e9/bhYWFobY2NiYzp07F3311Vf2ADB+/Pic6Ojo2Pj4+Bh/f391eHh4rZd6/fnnn5YCgYBzdXXVAUBubq7w/Pnz8e+//3765MmTvXfu3Hk9ISEhRqfTYdWqVWXLDG1sbPRXr16NnTx5cvq0adM86vJeJSYmyiIiIhLOnz8fu3r16lYajYYBQHJysmzChAlZsbGxMdHR0bLExERZVFRUbGxsbMzly5ctjhw5YrV3714bFxcXbXx8fMy///57beTIkfnG8zo4OOhiYmJiX3/99Yzly5c7A8CcOXNahYSEqBISEmKWLFmS8uqrr3pXnM+UKVM8J06cmBEdHR3r4uJSZYlYp06d/I1LzEwf+/bts644Ni0tTeLt7V0CAGKxGFZWVvq0tLQqlxdmZmYKf//995aDBw8uez1Hjhxp6efnpxw0aFCbxMREcU3v6yeffJISHR0dGxcXd+306dPWZ8+elatUKjZ9+vTWR44c+TcyMjI+KyurbA4ffPCBa9++ffOjo6NjT506FT9//nz3/Px8s/nOk08+qY6Ojr4WEBBQPHHiRK9OnTr5r1u3zt50fE3vz40bN2QRERHWwcHBii5duvhHRESU/Xm7c+eOJCAgQNmlSxf/o0ePWtX0WiuiRudNLEedAwaGFqvWA59+dX9HNYHUN99806BrGgzAhx8Cy5cDAwcCP/0E2NhUf8zff/8NrVZLVVKEEEIIIYSQh0dsrLRSM1yhkN/eq5fK/EHV4zgOjDGuiu0AgJ49e+a7uLjoAWDIkCE5J06csBo3blxuded94oknCmxtbQ22trYGKysr/ZgxY3IBoF27dqqoqCgLAIiMjJQvXLjQraCgQFhUVCTs3bt3Xk3z/fLLL5137dplb2lpqd+xY8cNgYDPFl588cVsALhy5YrM3d1dExwcrAGA1157Levzzz93ApAOAK+++mo2AEyaNCl7/vz5dQqlBg4cmCuXyzm5XK6zs7PT3rlzRwQArq6uJf379y8CgKNHj9qcPHnSRqlUKgFApVIJ4uLiZP379y/48MMPPd566y23559/Pm/QoEGFxvOGhobmAEDXrl1VBw4csAWAc+fOWe/ZsycRAIYNG1YQFhYmysrKKvfDv3jxotWRI0euA8DkyZOzlixZYnapXWRkZHxtXyPHVfpVMPv7AfBLJUeOHNkmLCwsTalUlgDA2LFjcydNmpQtl8u5lStXOr700kve//zzT0J11/z666/ttm/f7qDT6VhGRob4ypUrMr1eDw8PD41CoSgBgBdeeCF78+bNjgBw4sQJm19//bVleHi4CwBoNBqWmJgo6dixY7G589va2hpmzpyZOXPmzMzIyEjZxIkTvT788EPPwsLCS7V5f/R6PcvJyRFevnw5LiIiwiI0NLTt7du3r3p6emqTkpKiXFxc9KdOnbIYM2aMT0xMTLSdnZ2huvOZolCqiWWrs9FC1gKCaRUaOb37bpXBlIdHnf6eKEetBl57Ddi1CwgLAz77DBDXkNOq1WqcO3cOQUFBcHR0rH4wIYQQQgghhDSVgAANKvYs0uv57fXUrl079f79+8vdajw7O1uQmpoqCQgI0Pzzzz8WrMLntIrPzZFIJGVBhkAggEwm44zf63Q6BgBhYWHeu3fvTuzRo4c6PDzcPiIiolLlTkVvvvlm2uLFi9Mqbre2tjYA5kMVU8YQq/R1VD+4AqlUWjZeKBSWvQ4LC4uyEILjOMyYMePe7NmzK/VSunjxYsyePXtafPjhh27Hjh3LX7169T0AZe+NSCTijOesbTgkEAhqfA2dOnXyLyoqqnRrr+XLl98ePnx4gek2FxeXkqSkJEnbtm21Wq0WhYWFQicnJ7ONskJDQ73atGlTvHDhwnST48vGzpw5M2PJkiXVLi+Ni4uTfPbZZ86RkZGxjo6O+lGjRnkVFxcLqvs5chyH3bt3J4aEhNT69z4hIUHy1Vdf2e/du9dOqVSqFyxYcNe4r6b3x8XFpWT06NG5AoEAffv2VQkEAi41NVXUqlUrnVwu1wNAr169VJ6enpro6GjZU089VeuAuMmX7zHGBjHG4hljiYyxuWb2t2CMHWSMXWGMXWOMTWjqOT5IOcU5sCvi+KV7AL+mbvp0/hZ4777LL+WrYOfOndi5c2edr5WRAfTvzwdSK1fyl6wpkAL4KqmSkhKqkiKEEEIIIYQ8XHr1UmHChHTIZAZYWhogkxkwYUJ6faukAL4Kp7i4WPDZZ5/ZA4BOp8OUKVM8xowZk2kMev766y+btLQ0YWFhIfvll19a9u7du7BFixb6oqKiBn2mVqlUAk9PT61Go2E//vhjo9xdqn379sUpKSkSY7+oHTt22Pfq1asseNmxY4cdAGzZssW2Q4cORY1xTVODBw/O/+abbxzy8vIEAJCUlCROSUkRJScni62trQ1TpkzJnjFjRtrly5erXXLZvXv3gm3bttkDwKFDh6xtbW11FStwOnbsWLhp0yY7ANi0aVOVfWciIyPjjc24TR8VAykAGDJkSO7WrVvtAWDbtm22PXr0KDAN8ozeeeedVvn5+cItW7bcNt1+8+bNsk/d33//fcs2bdqUVS95e3sHVjxPTk6OUC6XG+zs7PS3b98WnThxogUAhISEFN++fVtqvPvfzp07y34/+vbtm79mzRpnY6+r06dPV+q3ZRQfHy954okn/IYNG+bTsmVL/d9//x13+PDhG6bLJ2t6f4YOHZp77NgxawCIioqSarVagYuLi+7u3bsinY5vLxUTEyNJTk6W+vv71ykgbtJKKcaYEMDnAJ4GcAfAecbYAY7jYkyGvQ0ghuO4oYwxRwDxjLHvOI4racq5PijZybGwTcsDQkOB778HbG35CimAD6Z69wZGjCh3zBdffAEAGDduXK2vEx/P94+6e5dfrjd6dO2OM1ZJKZVKODk51XwAIYQQQgghhDSlDRtS8OKLOYiNlSIgQNOQQArgK4f27duXGBYW1nrVqlWuBoMB/fr1ywsPDy+741znzp0Lx40b552cnCwbNWpUlrESpFOnToW+vr6B/fr1y5s5c2Z61Vcxb+7cuXe7du0a4ObmVhIQEKAqLCysVK1SVxYWFtyXX36ZPGbMmLZ6vR4hISGq9957L8O4X6PRsODgYIXBYGA//vhjo98tcOTIkfnXrl2TdenSRVE6H8N3332XFBcXJ503b567QCCASCTiNmzYcLO686xYseJuaGiol5+fn1Iulxu2b9+eVHHMhg0bbr3wwgttNmzY4Dxs2LCcxpj/9OnTM0eNGuXt6ekZ1KJFC/3OnTuvG/cpFAplXFxczPXr18Xr16939fb2Lg4MDFQCQFhYWPrMmTMzV65c6fTrr7+2FAqFXMuWLXXbt29PBoB79+6JOI6rVGLXo0cPdVBQkMrX1zfQ09NT06lTp0IAsLKy4j755JObgwYN8rWzs9OZBojLly+/GxYW5qlQKJQcxzF3d3fN8ePHE829HqFQyP3f//3fnb59+9b7z8k777yTOW7cOC9fX99AsVhs2LhxY5JAIMBvv/1mtXTpUjehUMgJhULu008/vens7Fyn2y+ymkr7GhNjrAeARRzHPVP6fB4AcBz3P5Mx8wB4gA+nvAD8DsCP47gq1yR27tyZu3DhwgOceePpsbkHrPPU+K3Tp0Dfvvyd9/r25Suk9u3j775XoRS0T58+AIATJ07U6hoREXyuJRIBBw4A3bvXfn4nTpxAREQE3nzzTTg7O9f+QEIIIYQQQkizYYxFchzXubnnUR9XrlxJDgkJqbTU62ERHh5uf+HCBcsdO3bU+Xb3hBj98MMPLa5fvy6dP39+rcPLvLw8QYsWLQwGgwGvvPKKp6+vb/FHH31U5/CzuV25csUhJCTEy9y+pu4p5QbAtLTtDoBuFcZ8BuAAgLsArAGMqy6QetTkFOfAs3UIkFfav65lS/4rY5UqpOrjm2+AN94A2rYFfvkF8K50f4KqFRcX4+zZs1AoFBRIEUIIIYQQQgghjeTFF1+ssYl9RZ9++qnDDz/84KDVallgYKBq5syZD214W19NHUqZ6wZXsVTrGQCXAfQD0BbA74yxUxzH5ZsOYoyFAQgDAE9Pz8af6QOSrc6GrcwWyMrlNxhDqQbiOODjj/lH377Anj38ysC6OHfuHIqLi/HUU081ypwIIYQQQggh5FH3zjvvZAHIau55kP+ejz76KL22lVF79uyx+fDDD8vdfdDDw0Pz+++/X6/qmIdBU4dSd8AvzTNyB18RZWoCgOUcv64wkTGWBEAB4JzpII7jNgLYCPDL9x7YjBsRx3F8o3O5HZCby29shFBKowEmTgS+/Za/095XXwESSV3PocHff/8NPz8/uLq6NnhOhBBCCCGEEEIIaRqjRo3KHzVqVEzNIx8uTR1KnQfgyxjzBpAC4AUAoRXG3ALQH8ApxpgzAH8Ajd58rTkUlhRCZ9DxlVI5pT3YbGxqPG737t1V7svO5lf9nTwJLFkCfPhhpZZUtWKskurdu3fdDyaEEEIIIYQQQgipoyYNpTiO0zHGpgL4FYAQwFaO464xxt4s3f8lgCUAtjPGroJf7vc+x3GPxbrJnGI+iLKV2wK5KXwgJaz55goODg5mt1+/zt9hLzkZ+O47/oZ+9VFSUoK///4bvr6+aNWqVf1OQgghhBBCCCGEEFIHTV0pBY7jfgHwS4VtX5p8fxfAwKaeV1PIUfOhVNnyvVou3du+fTsA4LXXXivbduYM8PzzgMEAHDsG9OpV/3mdP38earWaekkRQgghhBBCCCGkyQiaewL/JdnqbADgl+/VMZQyBlMAsHMn0K8ff/jffzcskCopKcGZM2fQtm1buLu713wAIYQQQgghhBBCSCOgUKoJGZfv1bVSyojjgP/9D3jhBaBzZz6Q8vNr2JwiIyOhUqmolxQhhBBCCCHk4WYwADt2tITBULvtdXDr1i3Rc88918bDwyOobdu2gb179/aJioqSNnDGdXLo0CHr33//3dLcvvDwcHtbW9sQhUKhbNu2beCaNWvM93ipQteuXf1PnjxpUdX+PXv22CgUCqVCoVBaWFh08PLyClIoFMoRI0Z4hYeH27/yyiuNfsv7muZU0aFDh6z79u3rY26fm5tbu3v37jVoJZjBYMBrr73m4enpGeTn56f866+/zM5t1KhRXm5ubu2M79eZM2fkDbnuw6C4uJi9+OKLrb28vIK8vb0Dt2/f3hIo/3unUCiUn3zySZ1+72qjyZfv/ZcZl+/xPaVyAS+vWh/LccCkScCWLcCLLwJbtwIyWcPmo9Vqcfr0aXh7e8PDw6PmAwghhBBCCCGkuXz7bUu8+mpbnDiRjs2bb0Mg4AOpiRM9sG2bE4DreOWV3Lqe1mAwYNiwYT6hoaFZhw4dugEAZ86ckd+9e1ccHBysqc05dDodRCJRlc9r488//7S2srLSP/3000Xm9g8dOjRnx44dt1JSUkRBQUGBY8eOzfXw8NAZ92u1WojF4jpd08j0zm1du3b1X7169e2nnnpKBfDBRG3OUZ/X/DD56aefWty4cUOWnJwcffz4ccspU6Z4RkVFxZkbu3Tp0jsTJkzIaeo5mpORkSF0dHTUN+Qc8+bNc3V0dNQmJydH6/V6pKenl/0gjb93DZ+peVQp1YRqWr7HccDPP/NfTel0QGQkH0jNnw98+23DAykAuHjxIoqKiqhKihBCCCGEEPLwe+mlXEyYkI5t25wwcaJHuUBqwoR0vPRSbn1Oe+jQIWuRSMTNmTMnw7jtiSeeUA8aNKiwYnXOK6+84mkMadzc3Nq99957rp06dfLfunWrbcXne/futWnfvr1CqVQGDB48uE1eXp7AeNy7777bSqlUBvj5+SkvXboki4+Pl+zYscPxyy+/dFYoFMqjR49aVTVfNzc3naenpyYxMVEyatQor4kTJ7p369bNb8qUKe5nzpyRh4SEKPz8/JRPP/1024yMjLI7a23fvt2+Q4cOCl9f38Djx4/XukIJAFJTU8W9evXybd26ddCbb75Z1vfFwsKiw4wZM1oFBwcr/vjjD6sNGzbYtWvXLkChUChDQ0Nb63Q66HQ6jBo1ysvX1zfQz89P+fHHHzsZj//hhx9s27VrF+Dl5RVkfM0qlYqNHj3ay8/PTxkQEKA8ePCgtZn5CJ988knfgIAAZWhoaGuu4ofoeti/f3/L8ePHZwkEAvTv378oPz9fdPPmzfqlfCby8vIEPXr08DP+vL/99tuWxn2zZ8929fb2DnziiSd8hw4d6r1w4UJnALh27Zq0V69evoGBgQGdOnXyv3TpUpUJwLZt2+x8fX0DFy5c6Hz37t16pYI//PCDw9KlS1MBQCgUwtXVVVfTMY2FQqkmlFOcA5FABCuJldlQat8+YORI4N137wdTSUnA2bNAURHw9tvAkiWAoBF+ajqdDqdPn4aXlxdat27d8BMSQgghhBBCyIMkEACbN98uC6aEwk5lgZSxcqoeoqKi5CEhIar6HCuTyQyRkZHxYWFhOabPhw4dWrBs2TLXkydPJsTExMR27NhRtWTJEmfjcQ4ODrqYmJjY119/PWP58uXO/v7+Ja+88krGm2++mRYXFxczaNCgwqquGRMTI7l9+7ZUqVRqAOD69euy06dPJ2zatOnOa6+95r1s2bI7CQkJMYGBger333+/7PbqKpVKcOnSpbjw8PCbYWFh3nV5nTExMRb79u27ERsbe+3AgQO2iYmJYgBQq9WCoKAgdVRUVJyjo6Nu9+7ddhcuXIiLi4uLEQgE3Jdffmn/999/W9y7d0/877//XktISIh5++23s4zn1el07OrVq7ErVqy4vXjx4lYAsGLFCicASEhIiPn+++9vhIWFealUKmY6n7lz57bq0aNHYWxsbMywYcNy7927JzE37yFDhrQxLj0zfXz22WeVqr/u3bsn9vLyKjE+d3V1LakqlPr444/d/Pz8lG+88YaHWq1m5sYYWVhYGA4fPpwYExMTGxERkfDBBx+4GwwGnDx50uLgwYO2V69ejTl8+PD1qKiosqWbEydObL1hw4Zb165di121atWdt956q8rlk3PmzMk4cuRIglqtFvTs2dN/0KBBbXbv3m2j1/PFU1euXJGaew8UCoUyMzNTmJmZKQSAmTNntjIGqLdv3y4Lt44cOdLSz89POWjQoDbGn3tjenRr6x5B2eps2MpswTgOyM+vFEoNHw5Mnw6sW8c/Dw0F+vYFdLpfMGwYsH59483l4sWLKCgowIgRIxrvpIQQQgghhBDyIBmDKX65Hq8BgVRDvfLKKznmnp84ccLy+vXrsq5duyoAQKvVsk6dOpUFTaGhoTkA0LVrV9WBAwdsa3OtgwcP2ioUCiuJRGL49NNPbzo7O+sBYOTIkTkikQhZWVnCgoIC4ZAhQwoBYNKkSVljxoxpY3LNbAAYPHhwYWFhoSAzM1Po4OBQq2VfPXv2zLe3t9cDgI+PT/H169elPj4+WqFQiNdeey0HAI4ePWodHR1tERISEgAAxcXFAicnJ924ceNyb9++LX311Vc9hg4dmjdixIh843nHjBmTAwBPPPFE0ezZsyUAcObMGatp06alA0CHDh2KW7VqVXL16tVylUL//POP9d69exMB4IUXXsibPHmy2ddx+PDhG7V5fQBgrtqKscp50yeffJLi4eGh1Wg0bPz48a0XLFjgsnr16ntVnddgMLAZM2a4//PPP1YCgQDp6emSO3fuiE6cOGE1ePDgXCsrKw4A9/TTT+cCfGXVpUuXrMaMGdPWeI6SkpJqgy8fHx/tqlWr7q1YseLe7t27baZMmeK1YcMG1Z9//pkYEhKiiYuLi6nq2Hv37onS0tLEPXv2LNy8efOdRYsWOU+bNs1j3759SWPHjs2dNGlStlwu51auXOn40ksvef/zzz8J1c2lriiUakI5xTl8k/P8fL4UqkIoxRiwdi3//bp198Opl16ywI4d/P7GYKyS8vT0hFcd+loRQgghhBBCSLMyLtkzNXGiR0OCqXbt2qn37dtnNhgSi8WcwaSBukajKfepzNra2mDuOcdx6NmzZ/7BgweTzJ1XJpNxACASiTidTlerT3pV9faxsrKqVYf3igGLucClKhKJpCyxEQqFnFarZaXbDcY+UhzHsTFjxmR9/vnnKRWPj46Ojvn5559tNmzY4LRz5067n376KRko9z5Ar9ez0vPUak6CWvy8hwwZ0ub69euVlr5NnTo1berUqVmm21q1aqVNTk4uq7i6d++exNPTU1vx2NatW2sBQC6Xc6+//nrWmjVrnCuOMfXVV1/ZZWVlia5evRorlUo5Nze3dmq1WlDV69Tr9bC2ttZVFySZc/z4cYvNmzc7nDp1yua5557LmTJlSgbAV0qNGzeurblj/vrrr3hnZ2edTCYzvPzyy7kA8NJLL2V/++23DgDg4uJSFvbNnDkzY8mSJW51mVNt0PK9JpSjzrnf5Bwwe/c902DKqHv3Dfjiiw2NNo/Lly8jPz8fvXv3rtNfRIQQQgghhBDSbCr2kNLrIyv1mKqHoUOHFpSUlDDTO9pFRERYHD582Kpt27aaxMREuVqtZllZWcK//vrLpjbn7NOnT9GFCxesoqOjpQBQUFAgqOluftbW1vqCggJhdWOqY29vr7exsdEbezNt2bLFvkePHmXVWT/88IMtAPz6669W1tbWemPlU2MZNGhQ/qFDh2xTUlJEAJCWliZMSEiQ3Lt3T6TX6/Haa6/lLl26NOXq1avV9rPq2bNn4bfffmsHAFFRUdJ79+5JgoODi03HdO/evWDr1q32ALBr1y6b/Px8s+/b4cOHb8TFxcVUfFQMpABg2LBhud999529wWDAH3/8YWltba03BlCmjEv6DAYD9u7d2zIgIEAN8KHQiBEjvCqOz8vLEzo4OGilUil38OBB67t370oAoE+fPoW//vprC5VKxfLy8gTHjh1rCQB2dnYGd3f3kq1bt9oar/P3339XeYe/vXv32vj5+Snnz5/v1qdPn4KEhIRrW7duvd25c+diADBWSpl7ODg46Et7aOUdPnzYGgB++eUXG19fX7XpawWA77//vmWbNm2Kzc+i/qhSqgllq7PhZOlUbSjFcXxPKVP/+98u+PgAU6ZMafAc9Ho9/vrrL7i7u8Pbu07LiAkhhBBCCCGk+Xz7bctKPaQ2b74NANi2zQl9+hTU5+57AoEABw4cuD5lyhSPTz/91EUqlXLu7u6a9evX3/bx8dEOHTo0JyAgINDb27s4MDCwVr2nWrVqpfvqq6+SX3jhhTbGpVcfffRRSnV38xs1alTu6NGj2x45cqTlp59+equ6vlJV2bZtW9Jbb73V+p133hF4enpqfvjhh2TjPltbW32HDh0UhYWFwo0bN5qt4GqITp06Fc+fPz+lf//+fgaDAWKxmAsPD79lYWFheOONN7wMBgMDgMWLF9+p7jxz5sxJf/nll1v7+fkphUIhvvrqq2S5XF6urGj58uV3R40a1UapVAb06NGj0NXVtaSq89XW2LFj8w4fPtyidevWQXK53LB58+Zk477evXv7fP311ze9vLy048aN887OzhZxHMeUSqVqx44dNwEgOTlZWnGeADBx4sTswYMH+wQFBQUEBgaqvL29i0vPqRo0aFCeUqkMdHNz0wQHBxe1aNFCDwA//PDDjUmTJrVesWKFq06nYyNGjMju0aOH2ty8HR0ddYcOHUr08/Or93vwySef3AkNDfV+7733hPb29rodO3YkA8DKlSudfv3115ZCoZBr2bKlbvv27cnVn6nuWGN0qW9unTt35i5cuNDc06hR2/C26OHeA9/aTeSbRR0/DvTpU7bfGEitWwc4OwNBQfxj3bo+cHMDbt8+0eAlfBcvXsTBgwcxfvx4+Pj41HwAIYQQQggh5KHHGIvkOK5zc8+jPq5cuZIcEhKSWeNAg4EPpl56KbfcUr2qthPShCZPnuz++uuvZ3Xr1s1seGROXl6eoEWLFoaCggJBjx49/L/88subPXv2rFfT/YfZlStXHEJCQrzM7aM/sU3I2OgcOaW98MzcfW/dOuCdd/i77SmV/FI+NzcgJYXf3xB6vR6nTp2Cm5sb2rY1u6SUEEIIIYQQQh5OAgHwyiuVg6eqthPShL766qs7dQmkAOCll15qrVAolMHBwQFDhw7NeRwDqZrQ8r0mYuAMyCvO4xudp+XyG83cfW/vXqBTJyA8nA+lGAN8fPihw4c3bA5RUVHIzc3F4MGDqZcUIYQQQgghhBDSjKpqhG/O+++/77J//347023PP/989ooVK1Ibf2ZNh0KpJpJXnAcOXLWNzhkDRowAfv2Vfx4QcH+fg0PD7r5nMBhw6tQpuLq6wtfXt/4nIoQQQgghhBBCSJNasWJF6qMeQJlDoVQTyVZnAwC/fC/3Bp8w2Zi/cUNsLP9VqeS/njhxosHXv3r1KnJycvDCCy9QlRQhhBBCCCGEEEKaHS26bSI5xXwfKTu5HV8pZWODqtY8x8QA9vaAo2PjXNtgMODkyZNwdnaGn59f45yUEEIIIYQQQgghpAEolGoiZZVSxuV7FZbumYqJuV8lBQCrV6/G6tWr633ta9euITs7G71796YqKUIIIYQQQgghhDwUKJRqIjlqvlKKX76XC9jamh3HcZVDqUOHDuHQoUP1uq6xSsrJyQkKhaJe5yCEEEIIIYQQQghpbBRKNZFKy/eqqJRKTwdycso3OW+ImJgYZGZm4qmnnqIqKUIIIYQQQggx4/r16+L+/fu3bd26dZCHh0fQhAkTPIqLi6v9AJWZmSlcvnx5WdOV5ORk8aBBg9o0xnxmzpzZauHChc7mtjs5OQUrFAqlr69v4HfffdeiLud1c3Nrd+/evSp7S69bt85eoVAoFQqFUiwWd/Tz81MqFArllClT3KqaU0PVNKeKwsPD7V955RVPc/ssLCw6NHQ+arWaDRkypI2np2dQcHCwIj4+XlJxTEFBgaBPnz4+3t7egT4+PoFTpkxxM52fra1tiPF9/OSTTxwaOqeG+Pnnn20CAwMD/Pz8lIGBgQEHDhywNu4rLi5mL774YmsvL68gb2/vwO3bt7c0d45evXr5+vv7K318fAJDQ0M9dTodACAhIUHSo0cPPz8/P2XXrl39r1+/Lq7r/CiUaiK1Xb4XE8N/Na2Uqi+O43Dy5Ek4OjpC2RgnJIQQQgghhJCHwKlTsNi4EbanTsGioecyGAwYPny4z7Bhw3Jv3rwZnZSUFF1UVCSYPn26W3XHZWVlCbds2eJkfO7l5aU9evTojYbOpyZvvvlmWlxcXMzOnTuvT5061Uuv15fbr9Vq633u6dOnZ8XFxcXExcXFODk5aSMiIhLi4uJiNmzYkFKb4w0GAyrO51Gzbt06hxYtWuhu3boVPXXq1LSZM2e6mxs3a9astKSkpGvR0dExZ8+etdq1a1fZncyGDh2aY3wfZ86cmdl0s6/MyclJe/jw4cSEhISY7du3J02cONHbuG/evHmujo6O2uTk5OjExMRrzzzzTKG5c+zfv/96fHx8TEJCwrWsrCzx1q1bbQFg+vTp7qGhoVkJCQkx8+fPvztr1iyz71V1KJRqIjnqHMhFcshEsmpDKeOd9xqjUio2NhYZGRno1asXVUkRQgghhBBCHgtvvQW3gQPhP3MmvAYOhP+UKag2PKrJwYMHraVSqWH69OlZACASifDll1/e3rlzp0NBQYEgPDzcvn///m179erl6+XlFTRr1ixXAJg1a5b77du3pQqFQjl58mT3+Ph4ia+vbyDAV8sMGDCgbb9+/Xzc3NzaLVu2zHHRokXOAQEBypCQEEVaWpoQANasWeMQFBQU4O/vr3zmmWfaFhQU1PozeseOHYuFQiFSU1NFXbt29Z86dapbly5d/JcuXeq8f/9+64CAAKWfn59yzJgxXmq1uuwD4eLFi53btWsX0K5du4Do6GhpXd6r2NhYedeuXf3d3d3bLV261AkA4uPjJW3atAl86aWXPAMDA5XXr1+XLFiwwDkoKCjAz89P+e6777YCgPz8fEGfPn18/P39lb6+voGbNm0q62mzcuVKJ6VSGeDn56e8dOmSDADS0tKEAwYMaOvn56cMCQlRnD17Vl5xPnFxcZL27dsrgoKCAqZPn96qLq+lKocOHWr5+uuvZwHAhAkTcs6cOWNtMBjKjbG2tjYMHTq0AABkMhkXHBysun37dqWKqtoaP368Z1BQUICPj0+g8f0CgJ07d7bw9vYO7NSpk/9rr73m0bdvXx+Afy/HjBnjFRQUFBAQEKD89ttvW1Z17ieffFLt5eWlBYBOnToVl5SUCIy/Dz/88IPD0qVLUwFAKBTC1dVVZ+4cdnZ2BgDQarVMq9UyY77w77//yp999tl8AHjuuecKjh07VuU8qkKhVBPJKc7hq6SAGiulrK0BN5O/VuVyOeTySn/+qmWskrK3t0dgYGD9Jk0IIYQQQgghD5FTp2CxfTucioshKCqCoLgYgm3b4NSQiqmrV6/KQ0JCVKbb7OzsDK6uriUxMTFSAIiKirL86aefbkRHR187cOCA3cmTJy3WrFlzx8PDQxMXFxfz1Vdf3al43oSEBPmePXtunD9/PvZ///ufm4WFhSE2Njamc+fORV999ZU9AIwfPz4nOjo6Nj4+Psbf318dHh5e66Vef/75p6VAIOCMQUJubq7w/Pnz8e+//3765MmTvXfu3Hk9ISEhRqfTYdWqVWXLDG1sbPRXr16NnTx5cvq0adM86vJeJSYmyiIiIhLOnz8fu3r16lYajYYBQHJysmzChAlZsbGxMdHR0bLExERZVFRUbGxsbMzly5ctjhw5YrV3714bFxcXbXx8fMy///57beTIkfnG8zo4OOhiYmJiX3/99Yzly5c7A8CcOXNahYSEqBISEmKWLFmS8uqrr3pXnM+UKVM8J06cmBEdHR3r4uJSZYlYp06d/I3L6Uwf+/bts644Ni0tTeLt7V0CAGKxGFZWVvq0tLQqlxdmZmYKf//995aDBw8uez1Hjhxp6efnpxw0aFCbxMTEGpe0ffLJJynR0dGxcXFx106fPm199uxZuUqlYtOnT2995MiRfyMjI+OzsrLK5vDBBx+49u3bNz86Ojr21KlT8fPnz3fPz8+vMd/5+uuvbZVKpUoul3OZmZlCgF8SqlQqAwYPHtzm9u3bVb7Onj17+jo6OoZYWlrqJ0yYkAMAAQEBqu+//94WAL755puWRUVFgtTUVGFN8zBFoVQTyVZn803O9XogP7/aSimlEjAtbDpy5AiOHDlSp+vFx8cjLS0NTz31FAQC+jETQgghhBBCHn2xsZAKK3zkFQr57fU9J8dxYIxxVWwHAPTs2TPfxcVFb2VlxQ0ZMiTnxIkTVjWd94knniiwtbU1tGrVSmdlZaUfM2ZMLgC0a9dOlZycLAWAyMhIeadOnfz9/PyUe/bssb927ZqspvN++eWXzgqFQjl79mz3HTt23DB+3nvxxRezAeDKlSsyd3d3TXBwsAYAXnvttay//vqrLHx59dVXswFg0qRJ2ZcuXarxdZgaOHBgrlwu51xdXXV2dnbaO3fuiADA1dW1pH///kUAcPToUZuTJ0/aKJVKZWnllCwuLk7WsWNH9alTp2zeeustt6NHj1rZ29uXrfMLDQ3NAYCuXbuqbt++LQWAc+fOWb/xxhtZADBs2LCC3NxcUVZWVrmf/sWLF60mTZqUDQCTJ0/OqmrekZGR8cbldKaP4cOHF1Qcy3GVfhXM/n4A/FLJkSNHtgkLC0tTKpUlADB27NjcW7duXU1ISIjp169fwUsvvVQpTKvo66+/tlMqlQFKpVL577//yq5cuSK7fPmyzMPDQ6NQKEoA4IUXXsg2jj9x4oTN2rVrXRUKhbJnz57+Go2GJSYmVlupdeHCBdnChQvdNm3adLN07iwtLU3cs2fPwpiYmNhu3boVVRdS/vXXX/+mpqZeKSkpERw8eNAGANavX3/n1KlT1gEBAcoTJ05YOzk5acXiurWVqnUzMdIwOcU5fJPz/NLwtJpKqUGDGnYtjuMQEREBOzs7BAUFNexkhBBCCCGEEPKQCAiApmLLIr2e317fc7Zr1069f//+crdHz87OFqSmpkoCAgI0//zzj0XFdii1aY8ikUjKggyBQACZTMYZv9fpdAwAwsLCvHfv3p3Yo0cPdXh4uH1ERESlyp2K3nzzzbTFixenVdxubW1tAMyHKqZMixaqCluqIpVKy8YLhcKy12FhYVG2vo3jOMyYMePe7NmzK/VSunjxYsyePXtafPjhh27Hjh3LX7169T0AZe+NSCTijOesbTgkEAhqfA2dOnXyLyoqqlTBs3z58tsVgykXF5eSpKQkSdu2bbVarRaFhYVCJycns42yQkNDvdq0aVO8cOHCdJPjy8bOnDkzY8mSJdUuL42Li5N89tlnzpGRkbGOjo76UaNGeRUXFwuq+zlyHIfdu3cnhoSE1Or3/vr16+LRo0f7bNmyJSkwMFADAM7OzjqZTGZ4+eWXcwHgpZdeyv72228ddDodgoKClAAwaNCg3E8//fSu8TwWFhbcc889l/vzzz+3HDFiRL6Xl5f2t99+uw4AeXl5gl9++cXWNGysDSqhaSLZ6mx++V4Ofxc+c6FUTg6Qmlq5yfmSJUuwZMmSWl8rISEBqamp6NWrF1VJEUIIIYQQQh4bvXpBNWEC0mUyGCwtYZDJYJgwAem9ekFV89HmDRs2rKC4uFjw2Wef2QOATqfDlClTPMaMGZNpDHr++usvm7S0NGFhYSH75ZdfWvbu3buwRYsW+qKiogZ94FKpVAJPT0+tRqNhP/74o11DzmXUvn374pSUFImxX9SOHTvse/XqVRa87Nixww4AtmzZYtuhQ4eixrimqcGDB+d/8803Dnl5eQIASEpKEqekpIiSk5PF1tbWhilTpmTPmDEj7fLly9UuuezevXvBtm3b7IH/Z+/O46Is1/+Bf+4ZdkFWV3YFHAYEFdMwS9PqaIZlZJp6TM3QPJZm2Z6V+S2t9BgVR1vUzDJLzVxKf21oZXrS3HBYBAURcWEHWYSZ+/fHMBzEAQaYAaTP+/XiFc92P9czPHrkOtd93cDOnTudXF1dqwy9jQwGDBhQ8tFHH7kBwEcffeRe31hNqZQaM2ZMwZo1a9wBYO3ata6RkZHFxn6vfuKJJ3oWFRUpP/nkk8za+zMyMmpKhb744guXXr16lRu2/f39r+utk5+fr7S3t9e5ublpMzMzreLj450BIDw8vDwzM9PWsPrfpk2bat6P22+/vWj58uXdDL2ufv/993r7/eTk5CjvvvvuwFdfffXcXXfdVfPzVigUGDlyZOGuXbucAOC7777rHBgYWGZlZQXD57Ny5crzhYWFCsMzVVZWYvfu3c4qlaoMALKzs60Mje1feumlHg899FCTm7qzUqqV5JflY0CPAfp+UoDRpFR9Tc5/+uknAMDLL7/c6H0MvaRcXV3Rt2/fFkRMRERERETU/sTFIeuhh5CfmAjb4GBUtCQhBeh/Od+2bVtqTEyM79tvv91Dp9NhxIgRhbGxsTUrzg0cOLBkwoQJ/unp6XbR0dG5t912WykARERElAQGBoaMGDGicMGCBZfqv4txzz333PlBgwYFe3p6Xg0ODi4tKSlpUj8eYxwcHOSqVavSx48f31ur1SI8PLz06aefvmw4XlFRIcLCwlQ6nU58+eWXZl8t8P777y86efKk3U033aSqjkf3+eefn0lKSrJ9/vnnvRQKBaysrGRcXFxGQ+MsW7bs/KRJk/yCgoLU9vb2unXr1p2pe05cXNzZiRMn9oqLi+s2duzYfHPEP2/evJzo6Gh/Hx+fUGdnZ+2mTZvSDMdUKpU6KSlJk5aWZv3ee+/18Pf3Lw8JCVEDQExMzKUFCxbkvPXWW1337NnjolQqpYuLS9W6devSAX0CR0p5XYldZGRkWWhoaGlgYGCIj49PRURERAkAODo6yhUrVmSMGjUq0M3Nrap2AnHp0qXnY2JifFQqlVpKKby8vCp++eWXVGPP89Zbb3U9e/as7dKlS3suXbq0JwD89NNPKZ6enlUrVqw4N2nSJP+nn35a6e7uXrV+/fr0utcXFRUpxowZE3D16lWh0+nELbfcUrRw4cLLALB7926nV1991VMIgcGDBxevW7fubFM/b9FYad+NYODAgfLQoUNtHUaDnN50wqMDHsUK63uAkSOB+Hhg2LBrzvn4Y+DRR4G0NKBXr//tHz58OAAgPj6+0fucOnUKX3zxBaKiojBgwADzPQAREREREbVbQojDUsqBbR1Hcxw7diw9PDy8yRUWrSU2Ntb90KFDndavX9/kX7iJDDZu3OiclpZm+9JLL5mcvCwsLFQ4OzvrdDodpk6d6hMYGFj+yiuvNDn52daOHTvmER4e7mfsGCulWkGlthIlV0v0jc5zC/Q766mUsrcHfH2bdx9DLylnZ2eEh4c3O14iIiIiIiIiMp+HHnqosKnXrFy50mPjxo0elZWVIiQkpHTBggXtNnnbXExKtYL8cn0VoZu9W4PT9zQaoE8f/eoRzXH69GlkZWXhnnvugbK5gxAREREREVGNJ554IhdAvSu7EVnKK6+8csnUyqgtW7Z0fvHFF71q7/P29q744Ycf0uq7pj1gUqoV5JXpV250tXcFCi7od9aTlBo69Prr3d3r7ddWw1Al1blzZ1ZJEREREREREf2NREdHF0VHR2vaOo6mYlKqFeSX1a6USgKEAJyuXemzpAQ4e/b6lfcAYMuWLY3e48yZM8jMzMTdd98NKyv+WImIiIiIiIiofWvR8pVkGsP0PVc7V/30PWdnoM6SkklJ+v/WXXnPVPv27YOTkxP69+/fgkiJiIiIiIiIiFoHk1Kt4NrpewWAq+t152iqi+yMVUo9//zzeP755+sdPz09HRkZGbjllltYJUVERERERERENwQmpVrBtdP3Cupdec/KCujd+/rr//jjD/zxxx/1jr937144OjpiwIABZoqYiIiIiIjo7+Ps2bNW99xzTy9vb+/Q3r17hwwbNizg+PHjtq0Zw86dO51++OGHTsaOxcbGuru6uoarVCp17969Q5YvX+7RlLEHDRrUZ9++fQ71Hd+yZUtnlUqlVqlUagcHh/5+fn6hKpVKPW7cOL/Y2Fj3qVOn+jT1eVoaU107d+50uv322wOMHfP09OybnZ3dogoNnU6HadOmefv4+IQGBQWpf/vtN6OxRUdH+3l6evY1fF779++3b8l9W+rVV1/t1rt375CgoCB1ZGRkUEpKio3h2KlTp2xuueWWwF69eoX07t07JDk52abu9SkpKTYhISHBKpVKHRAQEPLWW291MRzbvn27k1qtDg4MDAy5//77/SorK80eP5NSrcBQKeVi51JvUkqjAYKCAGvrpo2dkZGB9PR03HLLLbBu6sVEREREREQ3CJ0OWL8eLjqdaftNH1eHsWPHBtx2223FmZmZCWlpaSfffPPNrPPnz5v8C1ZVVVWD26b4+eefnX799VfH+o5HRUXlJyUlafbt25e8ZMkSz8zMzGuSMC1JGERHRxclJSVpkpKSNKGhoaXr168/nZSUpPnmm2/STR2jOc/cnnz99dfOp0+ftktPT0/4z3/+kzFnzpx6E3FLliw5Z/i8hgwZUtaacdYVERFRevTo0cSUlBTNfffdl//kk0/WrMA3efJk/6effvri6dOnT/7111+JPXv2vO6H5OPjU3no0KGkpKQkzeHDhxPffffd7unp6dZarRYxMTH+X3755elTp06d9PHxufr+++83KRlqCialWkF+eT6cbJxgpbBqsFLK2NS9xuzbtw+dOnVCREREi+MkIiIiIiJqrzZsgMvDD6P3zJnwNiSgdDpg5kx4P/wwem/YAJfmjLtz504nKysr+cwzz1w27BsyZEjZqFGjSupW50ydOtUnNjbWHdBX5zz99NM9IiIi+qxZs8a17vbWrVs79+vXT6VWq4NHjx7dq7CwUGG47sknn+ypVquDg4KC1EeOHLFLTk62Wb9+fZdVq1Z1U6lU6t27d9ebnPL09Kzy8fGpSE1NtYmOjvabOXOm1+DBg4PmzJnjtX//fvvw8HBVUFCQ+s477+x9+fJlpeG6devWuffv318VGBgY8ssvv5hcoQQAFy5csL711lsDfX19Q2fPnl2T9HBwcOg/f/78nmFhYaqffvrJMS4uzq1v377BKpVKPWnSJN+qqipUVVUhOjraLzAwMCQoKEj92muvdTVcv3HjRte+ffsG+/n5hRqeubS0VDzwwAN+QUFB6uDgYPWOHTucjMSjvOWWWwKDg4PVkyZN8pVSNuVxjPr2229dJk+enKtQKDBy5MgrRUVFVhkZGS2u/CgsLFRERkYGGX7eGzZscDEcW7hwYQ9/f/+QIUOGBEZFRfkvWrSoGwCcPHnS9tZbbw0MCQkJjoiI6HPkyBG7+saPiooqdnJy0gHA0KFDS7Kzs20A4PDhw3ZarRbjxo0rAgBnZ2ed4bza7OzspL29vQSAsrIyoav+w3Xx4kUrGxsbXVhYWAUAjBo1qmjbtm0uda9vKSalWkF+eb5+6h5gNClVXg6kpTW9yXlmZiZOnz6NIUOGsEqKiIiIiIg6tClTUDB9Oi6tXYuuhsTUzJnwXrsWXadPx6UpU1DQnHGPHz9uHx4eXtqca+3s7HSHDx9OjomJya+9HRUVVfzGG2/02LdvX4pGo0kcMGBA6euvv97NcJ2Hh0eVRqNJnDFjxuWlS5d269Onz9WpU6denj179sWkpCTNqFGjSuq7p0ajscnMzLRVq9UVAJCWlmb3+++/p3z00Ufnpk2b5v/GG2+cS0lJ0YSEhJQ9++yzPQ3XlZaWKo4cOZIUGxubERMT49+U59RoNA7btm07nZiYeHL79u2uqamp1gBQVlamCA0NLTt+/HhSly5dqjZv3uxmqLpRKBRy1apV7n/88YdDdna29alTp06mpKRo/vWvf+Uaxq2qqhInTpxIXLZsWebixYt7AsCyZcu6AkBKSormiy++OB0TE+NXWloqasfz3HPP9YyMjCxJTEzUjB07tsCQiKlrzJgxvQzT7Gp/vf/+++51z83Ozrb28/O7atju0aPH1fqSUq+99ppnUFCQ+pFHHvEuKysTxs4xcHBw0O3atStVo9Ek7t27N+WFF17w0ul02Ldvn8OOHTtcT5w4odm1a1fa8ePHa6Zuzpw50zcuLu7syZMnE99+++1zjz32mEnTJ1evXt3ljjvuKAQAjUZj17lzZ+1dd93VOzg4WD1r1iyv+qrZUlNTrYOCgtT+/v5hTzzxxAU/P7/K7t27V1VVVQnDFMtNmza51vc5twS7YreCvLI8fZNzAMjPvy4plZKiz/DXVynl5eVldP++ffvg4OCAgQMHmjFaIiIiIiKi9kehAD7+GJkAsHYtuq5di64AMH06Ln38MTIVbVByMXXq1Hxj2/Hx8Z3S0tLsBg0apAKAyspKERERUZNomjRpUj4ADBo0qHT79u3Xr4RlxI4dO1xVKpWjjY2NbuXKlRndunXTAsD999+fb2VlhdzcXGVxcbFyzJgxJQDw6KOP5o4fP75XrXvmAcDo0aNLSkpKFDk5OUoPDw+tKfceOnRokbu7uxYAAgICytPS0mwDAgIqlUolpk2blg8Au3fvdkpISHAIDw8PBoDy8nJF165dqyZMmFCQmZlp+/DDD3tHRUUVGip3AGD8+PH5ADBkyJArCxcutAGA/fv3Oz7++OOXAKB///7lPXv2vHrixIlrKoUOHDjgtHXr1lQAmDhxYuGsWbOMPseuXbtOm/J8AGCs2kqI6/NNK1asyPL29q6sqKgQkydP9n355Ze7v/POO9n1javT6cT8+fO9Dhw44KhQKHDp0iWbc+fOWcXHxzuOHj26wNHRUQKQd955ZwGgr6w6cuSI4/jx42s6Tl+9erXBxBcAxMXFuR07dsxh9erVyYA+4Xfo0CHHgwcPagIDA6/ec889vd977z2PJ598MqfutQEBAZUpKSma9PR066ioqIApU6bke3t7V61fv/70k08+6X316lXF7bffXqhUKq+/cQsxKdUK8suqK6WqqoCSkuuSUomJ+v/WVym1YcOG6/ZlZWUhNTUVI0eOhI2N2ZOVRERERERE7Y4hMWVISAH67ZYkpPr27Vu2bds2o4kha2trqavVrKqiouKa5EDd6VCGbSklhg4dWrRjx44zxsa1s7OTAGBlZSWrqqoaTTgA+p5S69evP1t3v6Ojo0ndtOomWIwlXOpjY2NTk7FRKpWysrJSVO/XGVaAl1KK8ePH537wwQdZda9PSEjQfPPNN53j4uK6btq0ye3rr79OB675HKDVakX1OCbFpDDhhz5mzJheaWlp1019mzt37sW5c+fm1t7Xs2fPyvT09JpfrrOzs218fHyua9Tl6+tbCQD29vZyxowZucuXL+9W95zaVq9e7Zabm2t14sSJRFtbW+np6dm3rKxMUd9zarVaODk5VSUlJWkafcBq27Ztc3rnnXd6/Prrr8mGqXg+Pj5Xg4ODy9Rq9VUAGDt2bP6BAwccf/75505z5szxBYCXX345a/LkyYWGcfz8/Cr79OlT9uOPPzpNnz49/4477rhy+PDhZADYunVr59TU1HqnETYXp++1gvzyfLjauQKF1T/rOkkpjUb/l2tQkOlj7t27F/b29rjpppvMFygREREREVE7ZpiyV3tf7R5TzREVFVV89epVUXtFu7179zrs2rXLsXfv3hWpqan2ZWVlIjc3V/nbb791NmXM4cOHXzl06JBjQkKCLQAUFxcrGlvNz8nJSVtcXNzsUhR3d3dt586dtYbeTJ988ol7ZGRkTXXWxo0bXQFgz549jk5OTlpD5ZO5jBo1qmjnzp2uWVlZVgBw8eJFZUpKik12draVVqvFtGnTCpYsWZJ14sSJBvtZDR06tGTDhg1uAHD8+HHb7Oxsm7CwsPLa59x8883Fa9ascQeAr776qnNRUZHRz23Xrl2nDQ3Ja3/VTUgBwNixYws+//xzd51Oh59++qmTk5OT1pCAqs0wpU+n02Hr1q0uwcHBZQDwyy+/OIwbN86v7vmFhYVKDw+PSltbW7ljxw6n8+fP2wDA8OHDS/bs2eNcWloqCgsLFT/++KMLALi5uem8vLyurlmzxtVwnz/++KPeFf5+//13+8cff9z322+/TfX09KyZnzds2LArhYWFyvPnz1tVx9dZrVaXjRgx4orhc5g8eXJhWlqadUlJiQCAy5cvKw8dOuQYEhJSDgCGn2VZWZl4++23u8+ePfuysRhagpVSrSCvLE+flCoo0O8wUinVqxdgX89rNn/+fADAypUrAQDnz5/HqVOnMGLECNjatuoqpURERERERG2ibg+pjz9GpmEbaH7FlEKhwPbt29PmzJnjvXLlyu62trbSy8ur4r333ssMCAiojIqKyg8ODg7x9/cvDwkJMan3VM+ePatWr16dPnHixF6GqVevvPJKlqFptDHR0dEFDzzwQO/vv//eZeXKlWcb6itVn7Vr15557LHHfJ944gmFj49PxcaNG9MNx1xdXbX9+/dXlZSUKD/88EOjFVwtERERUf7SSy9ljRw5Mkin08Ha2lrGxsaedXBw0D3yyCN+Op1OAMDixYvPNTTOM888c+mf//ynb1BQkFqpVGL16tXphuofg6VLl56Pjo7upVargyMjI0t69Ohxtb7xTPXggw8W7tq1y9nX1zfU3t5e9/HHH6cbjg0bNizg008/zfDz86ucMGGCf15enpWUUqjV6tL169dnAEB6erpt3TgBYObMmXmjR48OCA0NDQ4JCSn19/cvrx6zdNSoUYVqtTrE09OzIiws7Iqzs7MWADZu3Hj60Ucf9V22bFmPqqoqMW7cuLzIyEijq/wtXLjQu7S0VGmY7tezZ8+rP//8c6qVlRWWLl16bvjw4UEA0Ldv31JjU/eOHz9u/+yzz3oJISClxNy5cy8MGjSoDAAWL17c/YcffnDW6XRixowZl8aOHVvc0s+5LmGOLvVtbeDAgfLQoUNtHYZRUkrY/5895g2eh2VuDwIDBwLffguMHVtzTmioPim1fbvxMYYPHw4AiI+PBwB8+eWXyMjIwPz585mUIiIiIiIiCCEOSylvyGazx44dSw8PD7/ul+W61q/Xr75Xu4dU7UTVp58iberU5jU7J2qpWbNmec2YMSN38ODBRpNHxhQWFiqcnZ11xcXFisjIyD6rVq3KGDp0aLOa7rdnx44d8wgPD/czdoyVUhZWVlWGCm2FvtG5kUqpqip9o/N77jFtvAsXLiA5ORnDhw9nQoqIiIiIiP42qlfXS5syBQWGiihDj6nhw1Hc3NX3iMxh9erVDVaAGTNlyhTfU6dO2VdUVIiJEyfmdsSEVGOYlLKw/DL9Ygxu9m7AxQL9zlpJqbQ0oLKy/pX36tq3bx9sbW0xePBg8wZKRERERETUjikUgLFKqPr2E7V39TXCN+bZZ5/t/u2337rV3nfvvffmLVu27IL5I2s9TEpZWH65PilVX08pTXU//fpW3qvt4sWLSExMxG233QY7O7M3vSciIiIiIiKidmjZsmUXbvQElDFMSllYXlkeAFRP36tevbNWUioxUf9flar+MYKql+X79ddfYWNjg5tvvtkSoRIRERERERERtRompSzsmul7BQX62lInp5rjGg3g7X3Nrut8+OGHuHz5MuLi4jB06FDY17dMHxERERERERHRDaIZC2ZSU9RUShmm77m4AELUHNdoTOsntW/fPlhbWyMyMtIygRIRERERERERtSImpSyspqeUfa2kVDWdDkhKuj4pJaVEYmIipJQAgKlTp+KNN97ATTfdhIyMjJr9REREREREREQ3qiYlpYSetxBiiBCik6WC6kjyy/KhEAp0tu18XVIqIwMoK7u+yXlSUhK++uor7NmzB1JK/PXXX8jPz0d5eTm++uorJCUlteozEBERERERdWRpaWnWI0eO7O3r6xvq7e0dOn36dO/y8nLR0DU5OTnKpUuXdjFsp6enW48aNaqXOeJZsGBBz0WLFnUztr9r165hKpVKHRgYGPL55587N2VcT0/PvtnZ2fW28Xn33XfdVSqVWqVSqa2trQcEBQWpVSqVes6cOZ71xdRSjcVUV2xsrPvUqVN9jB1zcHDo39J4ysrKxJgxY3r5+PiEhoWFqZKTk23qnlNcXKwYPnx4gL+/f0hAQEDInDlzPGvH5+rqGm74HFesWOHR0pjM4dSpUzYODg79a/8Mf/31V4egoCC1j49P6LRp07x1Op3Ra8vLy8VDDz3k6+fnF+rv7x+ybt06l9rH165d6yqEiNi3b59DU+MyOSklhJgDIAtABoBfAfSp3r9VCDG/qTf+u8gry4OLnQsUQgHk5xtdea9upZRKpcLgwYNx8OBBfPvtt7hy5Qqsra3x119/YfDgwVA11BWdiIiIiIiITKbT6XDfffcFjB07tiAjIyPhzJkzCVeuXFHMmzfPs6HrcnNzlZ988klXw7afn1/l7t27T1s63tmzZ19MSkrSbNq0KW3u3Ll+Wq32muOVlZXNHnvevHm5SUlJmqSkJE3Xrl0r9+7dm5KUlKSJi4vLMuV6nU6HuvHcaN59910PZ2fnqrNnzybMnTv34oIFC7yMnffUU09dPHPmzMmEhATNwYMHHb/66qvOhmNRUVH5hs9xwYIFOa0Xff3mzp3rPWzYsMLa++bMmeMbFxeXkZ6ennD69Gm7zZs3dzZ27fPPP9+jS5culenp6Qmpqakn//GPf5QYjuXn5ys++OCDrmFhYVeaE5dJSSkhxEIAKwB8BGAEgNoZ43gAE5pz87+D/PJ8fZNz4LpKKcPKe3UrpYQQ+Mc//oHBgwfj2LFjkFKioqICgwcPxj/+8Q8I0WDCnoiIiIiIqEPLyMhwOHz4sGtGRkaTKzPq2rFjh5Otra1u3rx5uQBgZWWFVatWZW7atMmjuLhYERsb6z5y5Mjet956a6Cfn1/oU0891QMAnnrqKa/MzExblUqlnjVrlldycrJNYGBgCKCvlrnjjjt6jxgxIsDT07PvG2+80eXVV1/tFhwcrA4PD1ddvHhRCQDLly/3CA0NDe7Tp4/6H//4R+/i4mKTC0cGDBhQrlQqceHCBatBgwb1mTt3rudNN93UZ8mSJd2+/fZbp+DgYHVQUJB6/PjxfmVlZTW/RC5evLhb3759g/v27RuckJBg25TPKjEx0X7QoEF9vLy8+i5ZsqQrACQnJ9v06tUrZMqUKT4hISHqtLQ0m5dffrlbaGhocFBQkPrJJ5/sCQBFRUWK4cOHB/Tp00cdGBgY8tFHH7kaxn3rrbe6qtXq4KCgIPWRI0fsAODixYvKO+64o3dQUJA6PDxcdfDgwetW/EpKSrLp16+fKjQ0NHjevHk9m/Is9dm5c6fLjBkzcgFg+vTp+fv373eqW0Hk5OSki4qKKgYAOzs7GRYWVpqZmXldRZWpJk+e7BMaGhocEBAQYvi8AGDTpk3O/v7+IREREX2mTZvmffvttwcA+s9y/PjxfqGhocHBwcHqDRs2uDQ0/meffebi5+dXERwcXG7Yl5GRYV1SUqK44447rigUCkyePDl327Ztrsau37hxo8eSJUsuAIBSqUSPHj2qDMeeeuopz6eeeuqCra1ts/oMmfrC/wvAIinlK9BXSdWWDCCoOTf/O8gry9M3OQeuS0ppNEC3boCb2/XXGRJTtTEhRUREREREf3e7du3y3LBhQ589e/b4bdiwoc+uXbsarGhqzIkTJ+zDw8NLa+9zc3PT9ejR46pGo7EFgOPHj3f6+uuvTyckJJzcvn272759+xyWL19+ztvbuyIpKUmzevXqc3XHTUlJsd+yZcvpP//8M/HNN9/0dHBw0CUmJmoGDhx4ZfXq1e4AMHny5PyEhITE5ORkTZ8+fcpiY2NNnur1888/d1IoFNKQICgoKFD++eefyc8+++ylWbNm+W/atCktJSVFU1VVhbfffrtmmmHnzp21J06cSJw1a9alxx9/3Lspn1Vqaqrd3r17U/7888/Ed955p2dFRYUAgPT0dLvp06fnJiYmahISEuxSU1Ptjh8/npiYmKg5evSow/fff++4devWzt27d69MTk7WnDp16uT9999fZBjXw8OjSqPRJM6YMePy0qVLuwHAM8880zM8PLw0JSVF8/rrr2c9/PDD/nXjmTNnjs/MmTMvJyQkJHbv3r3eErGIiIg+hul0tb+2bdvmVPfcixcv2vj7+18FAGtrazg6OmovXrxY7/TCnJwc5Q8//OAyevTomuf5/vvvXYKCgtSjRo3qlZqaat3Y57pixYqshISExKSkpJO///6708GDB+1LS0vFvHnzfL///vtThw8fTs7Nza2J4YUXXuhx++23FyUkJCT++uuvyS+99JJXUVGR0fxOUVGRYvny5d3feuut87X3Z2RkWPfo0aPmM/P19b2anZ19Xaw5OTlKQD91VK1WB48ePbpXZmamFQD8/vvv9llZWTYPPfRQYd3rTGVqUqo7gMP1HNMBsGtuAB1dfnm+vsk5YLRSqr6V96SU2LNnDwCge/fu6N69e02PKSIiIiIior+jjIwMh6NHj3atqqpSVFZWKqqqqhRHjx7t2pKKKSklhBDX/aJVvR8AMHTo0KLu3btrHR0d5ZgxY/Lj4+MdGxt3yJAhxa6urrqePXtWOTo6asePH18AAH379i1NT0+3BYDDhw/bR0RE9AkKClJv2bLF/eTJk43+br1q1apuKpVKvXDhQq/169efVij0v9Y/9NBDeQBw7NgxOy8vr4qwsLAKAJg2bVrub7/9VpN8efjhh/MA4NFHH807cuRIo89R21133VVgb28ve/ToUeXm5lZ57tw5KwDo0aPH1ZEjR14BgN27d3fet29fZ7Vara6unLJLSkqyGzBgQNmvv/7a+bHHHvPcvXu3o7u7e808v0mTJuUDwKBBg0ozMzNtAeC///2v0yOPPJILAGPHji0uKCiwys3NVdaO56+//nJ89NFH8wBg1qxZufXFffjw4WTDdLraX/fdd19x3XON/c5t7P0A9FMl77///l4xMTEX1Wr1VQB48MEHC86ePXsiJSVFM2LEiOIpU6Zcl0yr69NPP3VTq9XBarVaferUKbtjx47ZHT161M7b27tCpVJdBYCJEyfmGc6Pj4/v/O9//7uHSqVSDx06tE9FRYVITU01Wqn19NNP95w7d+5FZ2fna8q96nlOY88oLl68aD106NASjUaTOHjw4CuPP/64t1arxZNPPukTGxub2djzNcTUZmKpAIYB+MnIsdsAaFoSREeWX5aPXq69gMpK4MqVmqSUlPpKqSlTrr/GkJA6ePAghBD4v//7P1RWVuLgwYMAWDFFRERERER/Tzk5ObZ1fxcSQiAnJ8fW19e3tJ7LGtS3b9+yb7/99pppS3l5eYoLFy7YBAcHVxw4cMDB2D0bY2NjU/Nbv0KhgJ2dnTR8X1VVJQAgJibGf/PmzamRkZFlsbGx7nv37r2ucqeu2bNnX1y8ePHFuvudnJx0gPFkQ22GJFb1czSp6qH2FC2lUlnzHA4ODjUJDykl5s+fn71w4cLrein99ddfmi1btji/+OKLnj/++GPRO++8kw2g5rOxsrKShjFNTQ4pFIpGnyEiIqLPlStXlHX3L126NLNuYqp79+5Xz5w5Y9O7d+/KyspKlJSUKLt27Wq0UdakSZP8evXqVb5o0aJLta6vOXfBggWXX3/99QYr+ZKSkmzef//9bocPH07s0qWLNjo62q+8vFzR0M9RSonNmzenhoeHVzQ0NgAcPny4065du1xfeeUVr6KiImX1u6ibPHlyQe3KqIyMDJvu3btXVlVVITQ0VA0Ao0aNKlixYsV5Ozs73T//+c8CAJgyZUrehg0bPAoKCpSnTp2yGzFiRB8AyMnJsX7ggQcCNm/enHrbbbeZ/GfR1EqplQCeE0K8BCCwel9XIcQjABYA+LepN/y7qZm+V1hdzVadlDp/HigqMl4plZSUhIMHDyI8PBxSSri5udX0mDp48CBX3yMiIiIior8lDw+Pirq/rEsp4eHh0egv5/UZO3ZscXl5ueL99993B4CqqirMmTPHe/z48TmGRM9vv/3W+eLFi8qSkhLx3XffuQwbNqzE2dlZe+XKlSataF9XaWmpwsfHp7KiokJ8+eWXRhq7NF2/fv3Ks7KybAz9otavX+9+66231iRe1q9f7wYAn3zyiWv//v2b1Zy6IaNHjy767LPPPAoLCxUAcObMGeusrCyr9PR0aycnJ92cOXPy5s+ff/Ho0aMNVrfdfPPNxWvXrnUHgJ07dzq5urpWubm5XVPtM2DAgJKPPvrIDQA++ugj9/rGakql1JgxYwrWrFnjDuhXlYuMjCyuncgzeOKJJ3oWFRUpP/nkk2sqhTIyMmoSPV988YVLr169avo4+fv7h9QdJz8/X2lvb69zc3PTZmZmWsXHxzsDQHh4eHlmZqatYfW/TZs21bwft99+e9Hy5cu7GXpd/f7779f126r97FlZWSeysrJOPProo5fmzZuX/cILL1z29fWt7NSpk+6nn37qpNPp8Pnnn7vfe++9BVZWVjB8PitXrjyvUCgwcuTIwl27djkBwHfffdc5MDCwzN3dXZufn3/MMHZ4ePiVpiakABMrpaSUHwshXAEsAvBa9e7vAJQCeFVK+UVTbvp3IaVEQXmBvtF5QYF+Z3VSqr4m54B+9b0HH3wQNjY2OHbsGF577TU4Ojris88+g6+vL1ffIyIiIiKivyVfX9/Sfv36XTp69GhXIQSklOjXr9+l5lZJAfrKoW3btqXGxMT4vv322z10Oh1GjBhRGBsbW7Pi3MCBA0smTJjgn56ebhcdHZ1r+MU7IiKiJDAwMGTEiBGFCxYsuFT/XYx77rnnzg8aNCjY09PzanBwcGlJScl11TxN5eDgIFetWpU+fvz43lqtFuHh4aVPP/30ZcPxiooKERYWptLpdOLLL780+2qB999/f9HJkyftbrrpJlV1PLrPP//8TFJSku3zzz/vpVAoYGVlJePi4jIaGmfZsmXnJ02a5BcUFKS2t7fXrVu37kzdc+Li4s5OnDixV1xcXLexY8fmmyP+efPm5URHR/v7+PiEOjs7azdt2pRmOKZSqdRJSUmatLQ06/fee6+Hv79/eUhIiBoAYmJiLi1YsCDnrbfe6rpnzx4XpVIpXVxcqtatW5cOANnZ2VZSyutK7CIjI8tCQ0NLAwMDQ3x8fCoiIiJKAMDR0VGuWLEiY9SoUYFubm5VtROIS5cuPR8TE+OjUqnUUkrh5eVV8csvv6Q29Vnj4uIyHnnkEf/y8nJx++23F40fP95ob6gVK1acmzRpkv/TTz+tdHd3r1q/fn16U+9VH9GUHkVCCCcAkQA8AOQB+ENK2eyGVuYycOBAeejQobYO4zpFFUVwXuqMd+58B0/ZDANuugnYvh2IikJsLDBvHpCdDXTvbvz6w4cPY+fOnfjhhx9gZWWF+Pj4Vo2fiIiIiIhuDEKIw1LKgW0dR3McO3YsPTw8/LqpXg3JyMhwyMnJsfXw8KhoSULKFLGxse6HDh3qtH79+rOWvA91bBs3bnROS0uzfemll0xOXhYWFiqcnZ11Op0OU6dO9QkMDCx/5ZVXmpz8bGvHjh3zCA8P9zN2zKRKKSHEVAC7pJS5AP5fnWNuAO6RUq5vaaAdTV6Zvg+Zq70rkFug31mrUsrVVb/6Xr3X5+VBqVTCysrU1l9EREREREQdn6+vb6mlk1FE5tScFepWrlzpsXHjRo/KykoREhJSumDBgiYlb28EpmY71kJfIWWsm71/9XEmperIL9NXDxqbvqfR6KfuNdQfr6CgAC61VusjIiIiIiKi1vXEE0/kwvjvwkQW9corr1wytTJqy5YtnV988UWv2vu8vb0rfvjhh7T6rmkPTE1KNbS0gDuAIjPE0uHUVErZuQIFp/Q7ayWl7ruvkevz8uDq6trwSURERERERET0txYdHV0UHR2taes4mqrepJQQ4l4A99ba9bIQ4nKd0+wA3ArgTwvEdsPLLzdSKeXqisuXgZwc4yvvGUgpkZ+fD29vb0RGRlo+WCIiIiIiIiKiVtRQpVRXAH1rbfcGULcl91Xoe0wtMXNcHYJh+p6rvas+KaVUAp06IfEv/XFjK+8ZlJeXo6KiAq6urnjzzTctHywRERERERERUSuqNyklpfwIwEcAIIT4BcBjUsqk1gqsI7h2+l6BfuqeENBUF9Q1VCmVl1d9LafvEREREREREVEHZFJPKSnl7ZYOpCPKL8+HjdIGDtYOQH7+NSvvdeoEeHs3cG1+9dQ/NzdER0cDALZs2WLpkImIiIiIiIiIWoXC1BOFEE5CiClCiMVCiLfqflkyyBtVXlkeXO1cIYT4X6UUTFt5z5CUcnFxQW5uLnJzudgDERERERH9fUkpcezYMRcppUn7m+Ls2bNW99xzTy9vb+/Q3r17hwwbNizg+PHjti2NuSl27tzp9MMPP3Qydiw2Ntbd1dU1XKVSqXv37h2yfPlyj6aMPWjQoD779u1zqO/4li1bOqtUKrVKpVI7ODj09/PzC1WpVOpx48b5xcbGuk+dOtWnqc/T0pjq2rlzp9Ptt98eYOyYp6dn3+zsbFMXcjNKp9Nh2rRp3j4+PqFBQUHq3377zWhs0dHRfp6enn0Nn9f+/fvtW3Jfc1m7dq2rECKi9mf63nvvufv6+ob6+vqGvvfee+71XXvq1CmbW265JbBXr14hvXv3DklOTrapffzhhx/2dnBw6G+JuE36oQkhegP4HYADgE4ALgNwq74+H0AhgGcsEeCNLL88X99PCrgmKZWYCIwc2ci1+flwdHSEjY1NwycSERERERH9DRw/ftxl27ZtvdPT0y+NHTs2UwgBKSW2b9/uffTo0a4A0sLDwwuaOq5Op8PYsWMDJk2alLtz587TALB//3778+fPW4eFhVWYMkZVVRWsrKzq3TbFzz//7OTo6Ki98847rxg7HhUVlb9+/fqzWVlZVqGhoSEPPvhggbe3d5XheGVlJaytrZt0T4PaK7cNGjSozzvvvJN52223lQL6hJgpYzTnmduTr7/+2vn06dN26enpCb/88kunOXPm+Bw/ftxoC6MlS5acmz59en5rx1if/Px8xQcffNA1LCys5t25ePGictmyZT0PHz6sUSgU6N+/v3rixIkFXbp00da9fvLkyf7PP/989rhx44oKCwsVCsX/6pf27dvnUFhYaLEfrKmVUv8GcAhANwACwN0A7AFMAVACYIJForvB5Zfl61feA2qSUoWFQFZWw03OAX1Siv2kiIiIiIiI9MLCwgr69et36ejRo123b9/uXTsh1a9fv0thYWEFzRl3586dTlZWVvKZZ56pWW1+yJAhZaNGjSqpW50zdepUH0OSxtPTs+/TTz/dIyIios+aNWtc625v3bq1c79+/VRqtTp49OjRvQoLCxWG65588smearU6OCgoSH3kyBG75ORkm/Xr13dZtWpVN5VKpd69e7djffF6enpW+fj4VKSmptpER0f7zZw502vw4MFBc+bM8dq/f799eHi4KigoSH3nnXf2vnz5stJw3bp169z79++vCgwMDPnll19MrlACgAsXLljfeuutgb6+vqGzZ8/2Mux3cHDoP3/+/J5hYWGqn376yTEuLs6tb9++wSqVSj1p0iTfqqoqVFVVITo62i8wMDAkKChI/dprr3U1XL9x40bXvn37Bvv5+YUanrm0tFQ88MADfkFBQerg4GD1jh07nIzEo7zlllsCg4OD1ZMmTfJtSZWcwbfffusyefLkXIVCgZEjR14pKiqyysjIaF6Wr5bCwkJFZGRkkOHnvWHDBhfDsYULF/bw9/cPGTJkSGBUVJT/okWLugHAyZMnbW+99dbAkJCQ4IiIiD5Hjhyxa+geTz31lOdTTz11wdbWtuaD2LZtm/Ntt91W1K1bN22XLl20t912W9HWrVud6157+PBhO61Wi3HjxhUBgLOzs87JyUkH6BONCxcu9Hr33XfPtfRzqI+pSalBAFYBMGSJbaSUWinlFwCWA3jXEsHd6AzT9wDUJKUSE/WbDTU5B5iUIiIiIiIiqk0IgbFjx2YaElOLFy+OMCSkDJVTzXH8+HH78PDw0uZca2dnpzt8+HByTExMfu3tqKio4jfeeKPHvn37UjQaTeKAAQNKX3/99W6G6zw8PKo0Gk3ijBkzLi9durRbnz59rk6dOvXy7NmzLyYlJWlGjRpVUt89NRqNTWZmpq1ara4AgLS0NLvff/895aOPPjo3bdo0/zfeeONcSkqKJiQkpOzZZ5/tabiutLRUceTIkaTY2NiMmJgY/6Y8p0ajcdi2bdvpxMTEk9u3b3dNTU21BoCysjJFaGho2fHjx5O6dOlStXnzZrdDhw4lJSUlaRQKhVy1apX7H3/84ZCdnW196tSpkykpKZp//etfNb1pqqqqxIkTJxKXLVuWuXjx4p4AsGzZsq4AkJKSovniiy9Ox8TE+JWWll7zw33uued6RkZGliQmJmrGjh1bkJ2dbXSK0ZgxY3oZptnV/nr//fevq/7Kzs629vPzu2rY7tGjx9X6klKvvfaaZ1BQkPqRRx7xLisra/DFc3Bw0O3atStVo9Ek7t27N+WFF17w0ul02Ldvn8OOHTtcT5w4odm1a1fa8ePHa6Zuzpw50zcuLu7syZMnE99+++1zjz32WL3TJ3///Xf7rKwsm4ceeqiw9v6srCxrLy+vmufx9PS8mpWVdd3zaDQau86dO2vvuuuu3sHBwepZs2Z5VVXpC/DefPPNrnfffXeBr69vZUPP2BKmlmDZASiSUuqEEHkAetY6lgAg3OyRdQD55fkI7Rqq36iTlGqoUqqqqgqFhYU1SamRjc31IyIiIiIi+hswJKaqp+sBAFqSkGqpqVOn5hvbjo+P75SWlmY3aNAgFQBUVlaKiIiImkTTpEmT8gFg0KBBpdu3bzepGmHHjh2uKpXK0cbGRrdy5cqMbt26aQHg/vvvz7eyskJubq6yuLhYOWbMmBIAePTRR3PHjx/fq9Y98wBg9OjRJSUlJYqcnBylh4fHdVO5jBk6dGiRu7u7FgACAgLK09LSbAMCAiqVSiWmTZuWDwC7d+92SkhIcAgPDw8GgPLyckXXrl2rJkyYUJCZmWn78MMPe0dFRRUaKnIAYPz48fkAMGTIkCsLFy60AYD9+/c7Pv7445cAoH///uU9e/a8euLEiWsqhQ4cOOC0devWVACYOHFi4axZs4w+x65du06b8nyAvjdZXcbeqxUrVmR5e3tXVlRUiMmTJ/u+/PLL3d95553s+sbV6XRi/vz5XgcOHHBUKBS4dOmSzblz56zi4+MdR48eXeDo6CgByDvvvLMA0FdWHTlyxHH8+PG9DWNcvXrV6Auu1Wrx5JNP+nz22Wdnmvs8VVVV4tChQ44HDx7UBAYGXr3nnnt6v/feex7jxo0r3LZtm+uBAweS63s2czA1KZUCwLf6+yMAZgshvgOgBfAIgPMWiO2GV1MpdfUqUFoKuLhAowFsbQH/BvLShYX6BKchKfXyyy+3RrhERERERETtmmHKXu1927dv925JYqpv375l27ZtM5oYsra2ljqdrma7oqLimpsYpjnV3ZZSYujQoUU7duy4LlkAAHZ2dhIArKysZFVVlUmBG3pK1d3v6OioM3Z+XXU/n6Z8XjY2NjUZDqVSKSsrK0X1fp2hj5SUUowfPz73gw8+yKp7fUJCguabb77pHBcX13XTpk1uX3/9dTpwzecArVYrqscxKabafY/qM2bMmF5paWnXTX2bO3fuxblz516zmljPnj0r09PTayqusrOzbXx8fK6rEDJUDdnb28sZM2bkLl++vFvdc2pbvXq1W25urtWJEycSbW1tpaenZ9+ysjJFfc+p1Wrh5ORUlZSUpGns+QoKCpSnTp2yGzFiRB8AyMnJsX7ggQcCNm/enOrl5VW5d+/emqmPWVlZNsOGDSv++eefO82ZM8cXAF5++eUsHx+fq8HBwWVqtfoqAIwdOzb/wIEDjj169KjMyMiw8/Pz6wvok4w+Pj6hZ8+eTWgsrqYwdfrelwD6VX//MoDBAIoAFEPfT+o1U28ohBglhEgWQqQKIZ6r55zhQoijQoiTQoi9po7dnmh1WhRVFOkbnVcnmQyVUn36AA31f8vLywMATt8jIiIiIiKqVreH1KJFiw7X7THVHFFRUcVXr14VtVe027t3r8OuXbsce/fuXZGammpfVlYmcnNzlb/99ltnU8YcPnz4lUOHDjkmJCTYAkBxcbGisdX8nJyctMXFxcqGzmmIu7u7tnPnzlpDb6ZPPvnEPTIysqY6a+PGja4AsGfPHkcnJyetofLJXEaNGlW0c+dO16ysLCtA32g7JSXFJjs720qr1WLatGkFS5YsyTpx4kSD/ayGDh1asmHDBjcAOH78uG12drZNWFhYee1zbr755uI1a9a4A8BXX33VuaioyOjntmvXrtNJSUmaul91E1IAMHbs2ILPP//cXafT4aeffurk5OSkNTZtzTClT6fTYevWrS7BwcFlAPDLL784jBs3zq/u+YWFhUoPD49KW1tbuWPHDqfz58/bAMDw4cNL9uzZ41xaWioKCwsVP/74owsAuLm56by8vK6uWbPG1XCfP/74w+gKf+7u7tr8/PxjWVlZJ7Kysk6Eh4df2bx5c+ptt91Wet999xXu3bu38+XLl5WXL19W7t27t/N9991XOGLEiCuGz2Hy5MmFw4YNu1JYWKg8f/68VfVzdFar1WUTJ04szMnJqRnbzs5OZ+6EFGBipZSUckWt7w8IIUIBjIZ+Wt/PUkqTAhNCKAF8AOBOAOcA/CmE2C6l1NQ6xwVAHIBRUsqzQoiuRgdr5wrKCwBA3+i8QP+9oVJq0KCGr83P11eAGpJSo0ePBgB8//33lgiViIiIiIio3Tt+/LhL3R5SY8eOzQSAo0ePdvXz8ytuzup7CoUC27dvT5szZ473ypUru9va2kovL6+K9957LzMgIKAyKioqPzg4OMTf3788JCTEpN5TPXv2rFq9enX6xIkTexmmXr3yyitZDa3mFx0dXfDAAw/0/v77711Wrlx5tqG+UvVZu3btmccee8z3iSeeUPj4+FRs3Lgx3XDM1dVV279/f1VJSYnyww8/NFrB1RIRERHlL730UtbIkSODdDodrK2tZWxs7FkHBwfdI4884qfT6QQALF68uMGm2c8888ylf/7zn75BQUFqpVKJ1atXp9vb21+TcVy6dOn56OjoXmq1OjgyMrKkR48eV+sbz1QPPvhg4a5du5x9fX1D7e3tdR9//HG64diwYcMCPv300ww/P7/KCRMm+Ofl5VlJKYVarS5dv359BgCkp6fb1o0TAGbOnJk3evTogNDQ0OCQkJBSf3//8uoxS0eNGlWoVqtDPD09K8LCwq44OztrAWDjxo2nH330Ud9ly5b1qKqqEuPGjcuLjIwsa8rzdOvWTbtw4cLzERERwQDwzDPPnDdM+azNysoKS5cuPTd8+PAgAOjbt2/pk08+mdOUe7WEaGmXeqGv+XtQSrnJhHMjAbwqpfxH9fbzACClfLPWOXMA9JRSvmRqDAMHDpSHDh1qcuyWdCr3FILeD8L6+9bjn1dVwKBBKP16FxwfvBuvvgosWlT/tXv27MGhQ4fwwgsvQAiB4cOHAwDi4+NbI3QiIiIiIrrBCCEOSykHtnUczXHs2LH08PDwRn8JllLi+PHjLmFhYQW1p57Vt5+oNc2aNctrxowZuYMHDzY5eVRYWKhwdnbWFRcXKyIjI/usWrUqY+jQoc1qut+eHTt2zCM8PNzP2DGTKqWEEF0A5MhaGSwhhD30/aSeBOAHoNGkFABPAJm1ts9BPxWwtiAA1kKIeABOAN6VUq43Jc72JL9cX+3kZu8GXCoAACQX9YCUDTc5B/638h7/QiUiIiIiItITQsBYJVR9+4la0+rVqxusADNmypQpvqdOnbKvqKgQEydOzO2ICanG1JuUEkI4AFgJYAoAWwDFQoglUsp3hBCzACwG0AXADwCmmXg/Y1mWuqVaVgAiAIwEYA/gDyHEASllSp34YgDEAICPT72rI7aZ/LLqKXj2rkCBvs+b5nIXAIBa3ci1+flwc3OzaHxERERERERE1Hbqa4RvzLPPPtv922+/vSZRcO+99+YtW7bsgvkjaz0NVUotAvAwgDUAjkG/+t4LQoibAdwP4GcAz0sp/2zC/c4BqL1SgheuX7nvHPRVWVcAXBFC7AMQDv0KgDWklB8C+BDQT99rQgytIq+sulm5nStQcBIAkHi+M5RKIDCw/uuklMjPz4d/Q8vzEREREREREdHfxrJlyy7c6AkoYxpKSt0PYLGU8v8MO6pXwvsOwBop5cxm3O9PAIFCCH8AWQAmAphU55xvAbwvhLACYAP99L5/N+Nebeqa6XvVjcs1ZxwQEADY2NR/3ZUrV1BZWXlNpdQ999xj0ViJiIiIiIiIiFpbQ0kpXwB76+wzbH/anJtJKauEEHMB7AGghD65dVIIMbv6+CopZaIQYjeA4wB0AD42dXW/9qSmUsreVb/6npUVNClKk6buAf9beQ8Ann76aUuFSURERERERETUJhpKSlkDqLusomH7SnNvKKX8Dvpqq9r7VtXZfhvA2829R3tQqa0EANgobYCCAlx17oLUVIEHHmj4OmNJKSIiIiIiIiKijqax1fceF0Jk19o2NCqfJ4S4WGu/lFI+a97QOpCCApxyCIc2t/GV9/Ly9BVWLi4uNfuGDx8OAIiPj7dMfERERERERERErUzRwLGzAIYCGF/r6wEAGQBuq7N/vGXDvMEVFEBjHQ6g8ZX3CgoK0LlzZ1hZNZYvJCIiIiIiInNIS0uzHjlyZG9fX99Qb2/v0OnTp3uXl5cbWz2+Rk5OjnLp0qVdDNvp6enWo0aN6mWOeBYsWNBz0aJF3Yzt79q1a5hKpVIHBgaGfP75585NGdfT07NvdnZ2vb9svvvuu+4qlUqtUqnU1tbWA4KCgtQqlUo9Z84cz/piaqnGYqorNjbWferUqT7Gjjk4OPRvaTxlZWVizJgxvXx8fELDwsJUycnJ13WFLi4uVgwfPjzA398/JCAgIGTOnDmeteNzdXUNN3yOK1as8GhpTG1t1qxZXv7+/iFBQUHqO++8s3dOTo4SAJKTk23s7OwGGJ510qRJRn8uDak3KSWl9JNS+pv4ZZY/eB1WQQESEQwhgD59Gj41Ly+PU/eIiIiIiIga8GvGrw4fHv7Q9deMXx1aOpZOp8N9990XMHbs2IKMjIyEM2fOJFy5ckUxb948z4auy83NVX7yySddDdt+fn6Vu3fvPt3SeBoze/bsi0lJSZpNmzalzZ0710+r1V5zvLKystljz5s3LzcpKUmTlJSk6dq1a+XevXtTkpKSNHFxcVmmXK/T6VA3nhvNu+++6+Hs7Fx19uzZhLlz515csGCBl7HznnrqqYtnzpw5mZCQoDl48KDjV1991dlwLCoqKt/wOS5YsCCn9aI33eXLl5WmnvuPf/yjKCUl5WRKSoomICCg/OWXX+5uOObt7V1heNYvvvjibFPjaKhSisyloACaqwHw8wMcGvkrMz8/n0kpIiIiIiKiejy26zHPuzbc1WfBngV+d224q8+cXXMaTB41ZseOHU62tra6efPm5QKAlZUVVq1alblp0yaP4uJiRWxsrPvIkSN733rrrYF+fn6hTz31VA8AeOqpp7wyMzNtVSqVetasWV7Jyck2gYGBIYC+WuaOO+7oPWLEiABPT8++b7zxRpdXX321W3BwsDo8PFx18eJFJQAsX77cIzQ0NLhPnz7qf/zjH72Li4tN/h19wIAB5UqlEhcuXLAaNGhQn7lz53redNNNfZYsWdLt22+/dQoODlYHBQWpx48f71dWVlZT9bV48eJuffv2De7bt29wQkKCbVM+q8TERPtBgwb18fLy6rtkyZKugL5aplevXiFTpkzxCQkJUaelpdm8/PLL3UJDQ4ODgoLUTz75ZE8AKCoqUgwfPjygT58+6sDAwJCPPvqo5hfft956q6tarQ4OCgpSHzlyxA4ALl68qLzjjjt6BwUFqcPDw1UHDx60rxtPUlKSTb9+/VShoaHB8+bN69mUZ6nPzp07XWbMmJELANOnT8/fv3+/k06nu+YcJycnXVRUVDEA2NnZybCwsNLMzMzrKqpMNXnyZJ/Q0NDggICAEMPnBQCbNm1y9vf3D4mIiOgzbdo079tvvz0A0H+W48eP9wsNDQ0ODg5Wb9iwwcWU++h0Omzfvt0pKirKf8CAAY00F/qf+++/v8ja2hoAEBkZeSUrK6vZz1oXk1KtoaAAiaU+jU7dq6ysRElJCZNSRERERERERvya8avDuqPrupZXlSuuVF5RlFeVK9YeXdu1JRVTJ06csA8PDy+tvc/NzU3Xo0ePqxqNxhYAjh8/3unrr78+nZCQcHL79u1u+/btc1i+fPk5Q5XI6tWrz9UdNyUlxX7Lli2n//zzz8Q333zT08HBQZeYmKgZOHDgldWrV7sDwOTJk/MTEhISk5OTNX369CmLjY01earXzz//3EmhUMgePXpUAUBBQYHyzz//TH722WcvzZo1y3/Tpk1pKSkpmqqqKrz99ts10ww7d+6sPXHiROKsWbMuPf74495N+axSU1Pt9u7dm/Lnn38mvvPOOz0rKioEAKSnp9tNnz49NzExUZOQkGCXmppqd/z48cTExETN0aNHHb7//nvHrVu3du7evXtlcnKy5tSpUyfvv//+IsO4Hh4eVRqNJnHGjBmXly5d2g0AnnnmmZ7h4eGlKSkpmtdffz3r4Ycf9q8bz5w5c3xmzpx5OSEhIbF79+71lohFRET0MUwxq/21bds2p7rnXrx40cbf3/8qAFhbW8PR0VF78eLFeqcX5uTkKH/44QeX0aNH1zzP999/7xIUFKQeNWpUr9TUVOvGPtcVK1ZkJSQkJCYlJZ38/fffnQ4ePGhfWloq5s2b5/v999+fOnz4cHJubm5NDC+88EKP22+/vSghISHx119/TX7ppZe8ioqK6s3vpKenWz/33HPdAwICQj744IOukydPzjtz5kxCcz6fdevWeYwaNarQsH3u3Dmb4OBg9U033dRn9+7djo09a11sXNQKqvKLkVzZHXc1koesb+W9Bx980FKhERERERER3TAScxJtleLaWUdKoURiTqLtrb63ltZzWYOklBBCyHr2AwCGDh1a1L17dy0AjBkzJj8+Pt5xwoQJBQ2NO2TIkGJXV1edq6urztHRUTt+/PgCAOjbt2/p8ePHHQDg8OHD9osWLfIsLi5WXrlyRTls2LDChsYEgFWrVnX76quv3Dt16qRdv379aYVCn4t46KGH8gDg2LFjdl5eXhVhYWEVADBt2rTcDz74oCuASwDw8MMP5wHAo48+mvfSSy81KSl11113Fdjb20t7e/sqNze3ynPnzlkBQI8ePa6OHDnyCgDs3r278759+zqr1fqyjNLSUkVSUpLdyJEji1988UXvxx57zPPee+8tHDVqVIlh3EmTJuUDwKBBg0q3b9/uCgD//e9/nbZs2ZIKAGPHji2OiYmxys3NveaH/9dffzl+//33aQAwa9as3Ndff93oVLvDhw8nm/qMUl73Khh9PwB9Ycn999/fKyYm5qJarb4KAA8++GDBo48+mmdvby/feuutLlOmTPE/cOBASkP3/PTTT93WrVvnUVVVJS5fvmx97NgxO61WC29v7wqVSnUVACZOnJj38ccfdwGA+Pj4znv27HGJjY3tDgAVFRUiNTXVZsCAAeV1x/7ll18c7rzzzuAHH3zw8u+//55sSGLWZurn8+yzz3ZXKpVy9uzZeQDg4+NTeebMmePdu3fX/vrrrw7jx48P0Gg0CW5ubrrGxjJgUsrSKipwprw7KmDdaKWUISnl5uZ2zf45c+ZYKjoiIiIiIqIbRrBHcIVWXtuzSCu1CPYIrmjumH379i379ttvr6kMyMvLU1y4cMEmODi44sCBAw6G5JRB3W1jbGxsahIZCoUCdnZ20vB9VVWVAICYmBj/zZs3p0ZGRpbFxsa6792797rKlLpmz559cfHixRfr7ndyctIBxpMqtRmSWNXP0fDJddja2tacr1Qqa57DwcGhJgkhpcT8+fOzFy5ceF0vpb/++kuzZcsW5xdffNHzxx9/LHrnnXeyAdR8NlZWVtIwpqnJIYVC0egzRERE9Lly5cp1PZSWLl2aed999xXX3te9e/erZ86csendu3dl9WwmZdeuXY02ypo0aZJfr169yhctWnSp1vU15y5YsODy66+/3uD00qSkJJv333+/2+HDhxO7dOmijY6O9isvL1c09HOUUmLz5s2p4eHhjb73gwcPLvv3v/+d/umnn3qMGTMmYPLkyTnTp0/Pq504MuXzee+999z37Nnj8uuvv6YY3qHqBKUWAG699dZSHx+fioSEBLvbbrvN5AQxp+9Z2pUrSIS+RCq4mZVSpaWlKC1tVtKfiIiIiIiow7jV99bS6f2mX7KzstN1su6ks7Oy003vN/1Sc6ukAH0VTnl5ueL99993B4CqqirMmTPHe/z48TmGRM9vv/3W+eLFi8qSkhLx3XffuQwbNqzE2dlZe+XKlRb9Tl1aWqrw8fGprKioEF9++aVb41c0rl+/fuVZWVk2hn5R69evd7/11ltrEi/r1693A4BPPvnEtX///lfMcc/aRo8eXfTZZ595FBYWKgDgzJkz1llZWVbp6enWTk5Oujlz5uTNnz//4tGjRxuccnnzzTcXr1271h0Adu7c6eTq6lpVtwJnwIABJR999JEbAHz00Ufu9Y11+PDhZEMz7tpfdRNSADBmzJiCNWvWuAPA2rVrXSMjI4trJ/IMnnjiiZ5FRUXKTz75JLP2/oyMjJrpel988YVLr169aqqX/P39Q+qOk5+fr7S3t9e5ublpMzMzreLj450BIDw8vDwzM9PWsPrfpk2bat6P22+/vWj58uXdDL2ufv/99+v6bRk4ODjIxx9/PPfQoUPJn3766Zm0tDTb8PBw9X333VczHbKxz2fz5s2dV65c2f27775LNfyZAIDz589bVVXpC680Go1Nenq6bZ8+fZqUIG5ypZTQp4R7ALgkpbyu7Ivq0Gqhgb5EypSklK2tLeztr32f7r77bgBAfHy8JSIkIiIiIiK6YcSNict6KPSh/MScRNtgj+CKliSkAH3l0LZt21JjYmJ833777R46nQ4jRowojI2NrVlxbuDAgSUTJkzwT09Pt4uOjs41VIJERESUBAYGhowYMaJwwYIFl+q/i3HPPffc+UGDBgV7enpeDQ4OLi0pKTF5RbT6ODg4yFWrVqWPHz++t1arRXh4eOnTTz992XC8oqJChIWFqXQ6nfjyyy/Nvlrg/fffX3Ty5Em7m266SVUdj+7zzz8/k5SUZPv88897KRQKWFlZybi4uIyGxlm2bNn5SZMm+QUFBant7e1169atO1P3nLi4uLMTJ07sFRcX123s2LH55oh/3rx5OdHR0f4+Pj6hzs7O2k2bNqUZjqlUKnVSUpImLS3N+r333uvh7+9fHhISogaAmJiYSwsWLMh56623uu7Zs8dFqVRKFxeXqnXr1qUDQHZ2tpWU8roSu8jIyLLQ0NDSwMDAEB8fn4qIiIgSAHB0dJQrVqzIGDVqVKCbm1tV7QTi0qVLz8fExPioVCq1lFJ4eXlV/PLLL6mNPVvfvn0r4uList59992sTZs2uZj6mSxYsMDn6tWrihEjRgQB+mTgF198cfb//b//57hkyRJPpVIplUqlXLlyZUa3bt2atPyiaKy0r+ZEIe4G8AqAfgCUAAZJKf8SQnwIYJ+UckNTbmxOAwcOlIcOHWqr2xv1yi+vYPG+xZCzL+Dh7rvxk0s0zuU33PPriy++QHFxMWbNmnXN/uHDhwNgUoqIiIiIiIwTQhyWUg5s6zia49ixY+nh4eHXTfVqL2JjY90PHTrUaf369U1e7p7IYOPGjc5paWm2L730ksnJy8LCQoWzs7NOp9Nh6tSpPoGBgeWvvPJKk5Ofbe3YsWMe4eHhfsaOmVQpJYSYCmANgM8BxAFYW+vwKQCPAGizpFS7Vl0pFdy9AEDDSan8/Hx06dKlwXOIiIiIiIiI6Mby0EMPNdrEvq6VK1d6bNy40aOyslKEhISULliwoN0mb5vL1Ol7LwJ4W0r5vBBCiWuTUicBPG32yDoIXaUWiQjGI57pAIwuBABA36gsPz8fQUFBrRYbERERERERNeyJJ57IBZDb1nHQ388rr7xyydTKqC1btnR+8cUXr0k6eHt7V/zwww9p9V3THpialPIF8EM9x8oBdDZPOB3PuXPAFTgiuGdRg+cVFxdDq9Ve1+SciIiIiIiIiKgh0dHRRdHR0Zq2jqOpTE1KZQLoD+BnI8cGAmi0odbflSZZ36dO7dVwUqq+lfcAYNq0aWaPi4iIiIiIiIioLZmalPoEwCtCiIsAtlXvE0KIkQCeAbDYArF1CJpT+tUg1d7XrTR5jby8PABMShERERERERHR34OpSallALwBfArAsLzffuhX4VstpYy1QGwdQmKqNTxwGR4uVQ2el5+fDyEEnJ2drzuWk6PvZebh4WGRGImIiIiIiIiIWptJSSkppQTwLyHEvwGMAOABIA/Az1LKFAvGd8PTpNpAjWOAUtngefn5+XB2dobSyHkPPPAAACA+Pt4SIRIRERERERERtTqFKScJIRwAQEqZKqX8UEr5hpRyFRNSjUs8bQM1NCYlpdzc3FopKiIiIiIiohuLTuqw/th6F53UmbS/Kc6ePWt1zz339PL29g7t3bt3yLBhwwKOHz9u29KYm2Lnzp1OP/zwQydjx2JjY91dXV3DVSqVunfv3iHLly9v0jSaQYMG9dm3b59Dfce3bNnSWaVSqVUqldrBwaG/n59fqEqlUo8bN84vNjbWferUqT5NfZ6WxlTXzp07nW6//fYAY8c8PT37ZmdnmzoTzCidTodp06Z5+/j4hAYFBal/++03o7FFR0f7eXp69jV8Xvv377dvyX3bWnFxsWL48OEB/v7+IQEBASFz5szxNByr/d6pVCr1ihUrzD59y6SkFIAcIcQmIcQ4IUSr/sG80eUXWSEYiSYlpVxcXFonKCIiIiIiohvMhuMbXB7e9nDvmdtnehsSUDqpw8ztM70f3vZw7w3HN7g0Z1ydToexY8cG3HbbbcWZmZkJaWlpJ998882s8+fPW5s6RlVVVYPbpvj555+dfv31V8f6jkdFReUnJSVp9u3bl7xkyRLPzMzMa5IwlZWVTb6nQXR0dFFSUpImKSlJExoaWrp+/frTSUlJmm+++Sbd1DGa88ztyddff+18+vRpu/T09IT//Oc/GXPmzKk3EbdkyZJzhs9ryJAhZa0Zp6kuXrzYcBKilqeeeurimTNnTiYkJGgOHjzo+NVXX3U2HDO8d0lJSZoFCxbkmDtOU5NSzwDoDmAzgEtCiM+EEGOEEC3KRP5dqKEBFPV/1BUVFSgtLTXa5JyIiIiIiIiAKWFTCqb3m35p7dG1XQ2JqZnbZ3qvPbq26/R+0y9NCZtS0Jxxd+7c6WRlZSWfeeaZy4Z9Q4YMKRs1alRJ3eqcqVOn+sTGxroD+uqcp59+ukdERESfNWvWuNbd3rp1a+d+/fqp1Gp18OjRo3sVFhYqDNc9+eSTPdVqdXBQUJD6yJEjdsnJyTbr16/vsmrVqm4qlUq9e/fuepNTnp6eVT4+PhWpqak20dHRfjNnzvQaPHhw0Jw5c7z2799vHx4ergoKClLfeeedvS9fvlyTmFi3bp17//79VYGBgSG//PKLyRVKAHDhwgXrW2+9NdDX1zd09uzZXob9Dg4O/efPn98zLCxM9dNPPznGxcW59e3bN1ilUqknTZrkW1VVhaqqKkRHR/sFBgaGBAUFqV977bWuhus3btzo2rdv32A/P79QwzOXlpaKBx54wC8oKEgdHBys3rFjh5OReJS33HJLYHBwsHrSpEm++o5DLfPtt9+6TJ48OVehUGDkyJFXioqKrDIyMkxOTNansLBQERkZGWT4eW/Y8L/k6cKFC3v4+/uHDBkyJDAqKsp/0aJF3QDg5MmTtrfeemtgSEhIcERERJ8jR47YmXKv0tJS8Z///Mdt8ODBQTExMSZVtzk5OemioqKKAcDOzk6GhYWVZmZm2jTjUZvFpKSUlPJ9KeUw6JudvwKgN4Dt0CeoPhFC3GnBGG94jVVK5efnAwCn7xEREREREdVDIRT4eOzHmYbElHKxMsKQkPp47MeZCmFqzcW1jh8/bh8eHl7anGvt7Ox0hw8fTo6JicmvvR0VFVX8xhtv9Ni3b1+KRqNJHDBgQOnrr7/ezXCdh4dHlUajSZwxY8blpUuXduvTp8/VqVOnXp49e/bFpKQkzahRo0rqu6dGo7HJzMy0VavVFQCQlpZm9/vvv6d89NFH56ZNm+b/xhtvnEtJSdGEhISUPfvssz0N15WWliqOHDmSFBsbmxETE+PflOfUaDQO27ZtO52YmHhy+/btrqmpqdYAUFZWpggNDS07fvx4UpcuXao2b97sdujQoaSkpCSNQqGQq1atcv/jjz8csrOzrU+dOnUyJSVF869//SvXMG5VVZU4ceJE4rJlyzIXL17cEwCWLVvWFQBSUlI0X3zxxemYmBi/0tJSUTue5557rmdkZGRJYmKiZuzYsQXZ2dlGkyhjxozpZZh6Vvvr/fffd697bnZ2trWfn99Vw3aPHj2u1peUeu211zyDgoLUjzzyiHdZWZkwdo6Bg4ODbteuXakajSZx7969KS+88IKXTqfDvn37HHbs2OF64sQJza5du9KOHz9eM3Vz5syZvnFxcWdPnjyZ+Pbbb5977LHHGkww/fHHH/YPP/ywt0qlCvnjjz8c33nnnXPffvvtGQA4duyYrbHPQKVSqXNycq5JVOTk5Ch/+OEHl9GjRxcZ9n3//fcuQUFB6lGjRvUy/NzNqUmVTlLK8wBWAlgphPAB8CCAJwE83NSx/i46d6pCzyvnTUpK1Vcp9dhjj1kkNiIiIiIiohuJITG19ujammqbliSkWmrq1Kn5xrbj4+M7paWl2Q0aNEgFAJWVlSIiIqIm0TRp0qR8ABg0aFDp9u3bTZoys2PHDleVSuVoY2OjW7lyZUa3bt20AHD//ffnW1lZITc3V1lcXKwcM2ZMCQA8+uijuePHj+9V6555ADB69OiSkpISRU5OjtLDw0Nryr2HDh1a5O7urgWAgICA8rS0NNuAgIBKpVKJadOm5QPA7t27nRISEhzCw8ODAaC8vFzRtWvXqgkTJhRkZmbaPvzww95RUVGF48aNq0l4jB8/Ph8AhgwZcmXhwoU2ALB//37Hxx9//BIA9O/fv7xnz55XT5w4cU2l0IEDB5y2bt2aCgATJ04snDVrltHn2LVr12lTng8AjFVbCXF9vmnFihVZ3t7elRUVFWLy5Mm+L7/8cvd33nknu75xdTqdmD9/vteBAwccFQoFLl26ZHPu3Dmr+Ph4x9GjRxc4OjpKAPLOO+8sAPSVVUeOHHEcP358b8MYV69erTfx9eqrr3Z78803PRctWnRu1apVJ+3t7a95kPDw8IqkpCRNY89fWVmJ+++/v1dMTMxFtVp9FQAefPDBgkcffTTP3t5evvXWW12mTJnif+DAAbP2Fm9WIkkIEQBgQvVXDwCZ5gyqI1H7lUKcRINJqby8PAD1J6UmTJhgidCIiIiIiIhuKIYpe7X3zdw+07sliam+ffuWbdu2zegvY9bW1lKn+18D9YqKimuSA05OTjpj21JKDB06tGjHjh1njI1rZ2cnAcDKykpWVVU1WGljEBUVlb9+/fqzdfc7Ojqa1OG9boLFWMKlPjY2NjWJDqVSKSsrK0X1fp2VlT6tIKUU48ePz/3ggw+y6l6fkJCg+eabbzrHxcV13bRpk9vXX3+dDlzzOUCr1YrqcUyKSdFAixyDMWPG9EpLS7tu6tvcuXMvzp07N7f2vp49e1amp6fXVFxlZ2fb+Pj4XNeoy9fXtxIA7O3t5YwZM3KXL1/ere45ta1evdotNzfX6sSJE4m2trbS09Ozb1lZmaK+59RqtXBycqoyJZEE6JOPlZWVYt26dV327t3rNG3atJzx48cXWlvri5qOHTtmO2HChN7Grv3tt9+SDYnJSZMm+fXq1at80aJFlwzHu3fvXpPsW7BgweXXX3/d09g4LWHyn1ohhJ8Q4hkhxGEAyQD+BSAewK1SSl9zB9ZRBPtUV4E28AcmPz8f9vb2sLMzPk00MzMTmZnM+xERERER0d9X3R5S2kXaw3V7TDVHVFRU8dWrV0XtFe327t3rsGvXLsfevXtXpKam2peVlYnc3Fzlb7/91rmhsQyGDx9+5dChQ44JCQm2gH6Fs8ZW83NyctIWFxeb3Jy6Lnd3d23nzp21ht5Mn3zyiXtkZGRNddbGjRtdAWDPnj2OTk5OWkPlk7mMGjWqaOfOna5ZWVlWgL7RdkpKik12draVVqvFtGnTCpYsWZJ14sSJBvtZDR06tGTDhg1uAHD8+HHb7Oxsm7CwsPLa59x8883Fa9ascQeAr776qnNRUZHRz23Xrl2nDU26a3/VTUgBwNixYws+//xzd51Oh59++qmTk5OT1pCAqs0wpU+n02Hr1q0uwcHBZQDwyy+/OIwbN86v7vmFhYVKDw+PSltbW7ljxw6n8+fP2wDA8OHDS/bs2eNcWloqCgsLFT/++KMLALi5uem8vLyurlmzxtVwnz/++KPeFf48PT2r/u///u/CqVOnTj755JMXN2/e7Orv79/31Vdf7Qb8r1LK2JchIfXEE0/0LCoqUn7yySfXJB5qT1/84osvXHr16lUOMzOpUkoIcRDAQAB5ALYCeBpAvDRHN7EOqqy6/77ap/rvgAYqpQoKChpscv7Pf/4TABAfH2+u8IiIiIiIiG4oG45vcKnbQ+rjsR9nAsDao2u7DvcbXjw1fGpBU8dVKBTYvn172pw5c7xXrlzZ3dbWVnp5eVW89957mQEBAZVRUVH5wcHBIf7+/uUhISEm9Z7q2bNn1erVq9MnTpzYyzD16pVXXskKCwurqO+a6OjoggceeKD3999/77Jy5cqzDfWVqs/atWvPPPbYY75PPPGEwsfHp2Ljxo3phmOurq7a/v37q0pKSpQffvih0QquloiIiCh/6aWXskaOHBmk0+lgbW0tY2Njzzo4OOgeeeQRP51OJwBg8eLF5xoa55lnnrn0z3/+0zcoKEitVCqxevXq9LpT0pYuXXo+Ojq6l1qtDo6MjCzp0aPH1frGM9WDDz5YuGvXLmdfX99Qe3t73ccff5xuODZs2LCATz/9NMPPz69ywoQJ/nl5eVZSSqFWq0vXr1+fAQDp6em2deMEgJkzZ+aNHj06IDQ0NDgkJKTU39+/vHrM0lGjRhWq1eoQT0/PirCwsCvOzs5aANi4cePpRx991HfZsmU9qqqqxLhx4/IiIyMbXeVv9OjRJaNHjy7Jy8tT7Nu3r1Nj5wNAWlqa9Xvvvdej+v1WA0BMTMylBQsW5Lz11ltd9+zZ46JUKqWLi0vVunXr0hsZrsmEKXklIcQ6AF8C+EFKadZsqjkMHDhQHjp0qK3DuMaM9a9g7ZnF2Gn1F8a8NADYtw+49Vaj58bGxqJnz5544IEHjB4fPnw4ACaliIiIiIjIOCHEYSnlwLaOozmOHTuWHh4e3uhS8zqpw4bjG1ymhE0pqD1Vr779RK1p1qxZXjNmzMgdPHhwo8kjg8LCQoWzs7OuuLhYERkZ2WfVqlUZQ4cObVbT/fbs2LFjHuHh4X7GjplUKSWlnGbOgP4OLlcvJqr2KtZ/U0+llE6nQ2FhIUJCQlopMiIiIiIiohuPQihgrBKqvv1ErWn16tUNVoAZM2XKFN9Tp07ZV1RUiIkTJ+Z2xIRUY+pNSgkh7gbwm5SyqPr7BkkpvzNrZDe4omIAAvD1uKLfUU9SqrCwEDqdrsHpe0RERERERETUsdTXCN+YZ599tvu3337rVnvfvffem7ds2bIL5o+s9TRUKbUTwM0A/lv9fUMkgGY3ZOvIFIbZjvU0Os/P168g6ubmZvQ4EREREREREf29LVu27MKNnoAypqGklD+A7FrfU3Noq5NS9VRKGZJSDVVKPfXUU2YPi4iIiIiIqJ3Q6XQ6oVAouJAWUQdT3eC+3qUx601KSSkzam8CyJZSXrccohDCCkDPlgTZoZmQlFIoFHBycqp3iKioKEtERkRERERE1B4kXL58Wd2lS5dCJqaIOg6dTicuX77sDCChvnNManQO4AyASOin8tUVXr2f0/eMMSEp5erqCkU90/sAIDk5GQDQp08fs4dHRERERETUlqqqqmZeuHDh4wsXLoQC4PJ5RB2HDkBCVVXVzPpOMDUpJRo4ZgegoilR/a3oqqvUGugp1ViT81mzZgEA4uPjzRkZERERERFRm4uIiLgEYGxbx0FEra+h1ffCAPSrtetuIYSqzml2AB4EkGL+0DqIBiqlpJTIy8uDl5dXKwdFRERERERERNS2GqqUGgfglervJYBF9Zx3BsAscwbVoTSQlCovL0dFRUWjlVJERERERERERB1NQ/N13wDgBKAz9NP3RlRv1/6ylVL2llL+aOlAb1gNJKVMWXmPiIiIiIiIiKgjamj1vUoAhtX22GyuuQw9pYwkpfLy8gAwKUVEREREREREfz8N9ZRSA0iTUlZUf98gKaXGrJF1FIZKKSONzk2tlHrppZfMHhYRERERERERUVtqqKdUAoCbAfy3+ntZz3mi+tj1pUDU6PS9Tp06wcbGpsEh7rjjDktERkRERERERETUZhpKSt0OQFPre2qORpJSpkzdO3r0KACgX79+ZgyMiIiIiIiIiKjtNNRTaq+x76mJGklK+fr6NjrE/PnzAQDx8fFmDIyIiIiIiIiIqO2Y1MBcCNFVCOFfa1sIIWKEECuFEFGWC68DMDQ6r9NTSqvVorCwEC4uLq0fExERERERERFRGzN1Vb11AJ6stf0agDgAowB8I4SYZt6wOpB6KqUKCgoAAG5ubq0cEBERERERERFR2zM1KTUAwM8AIIRQAHgMwAtSShWA/wMw3yLRdQT1JKVMXXmPiIiIiIiIiKgjMjUp5Qwgt/r7CABuAD6v3v4ZQICZ4+o46klK5eXlAWBSioiIiIiIiIj+nhpafa+2cwDUAH4FMAZAkpQyq/qYM4ByC8TWMRh6ShmplLKysoKjo2OjQ7zxxhuWiIyIiIiIiIiIqM2YmpRaA+AtIcQd0Celnq917GYAieYOrMMwVErVaXReUFAAV1dXCCEaHWLIkCGWiIyIiIiIiIiIqM2YlJSSUr4phMgCcBOAx6FPUhm4AfjYArF1DPUkpfLy8kyeurd//34ATE4RERERERERUcdhaqUUpJTrAaw3sn+2WSPqaLRafUKqVkWUlBL5+fnw9/c3aYgXXngBABAfH2+JCImIiIiIiIiIWp3JSSkhhBWAaABDoa+OyoO+x9RWKWWVZcLrALTa6/pJXblyBZWVlWxyTkRERERERER/WyYlpYQQXQH8PwBhANIBXAQQCeBfAI4JIe6SUl62VJA3NJ3uuql7+fn5ALjyHhERERERERH9fSkaPwUAsAKAO4DBUspeUspIKWUvAIOr96+wVIA3PCOVUoaklJubW1tERERERERERETU5kxNSt0N4Fkp5Z+1d1ZvPw/9inxkTANJKRcXlzYIiIiIiIiIiIio7ZnaU8oWQHE9x4oB2JgnnA6onqRU586dYWVl2se/cuVKCwRGRERERERERNR2TE1KHQDwrBDiZynlFcNOIUQnAM9WHydjdDqjSamm9JPq16+fmYMiIiIiIiIiImpbpialngLwC4BMIcT/g77ReVcA/wAgAAy3SHQdgVZrtNF57969TR7ixx9/BADccccdZg2NiIiIiIiIiKitmJSUklIeFUIEAngawE3Qr8KXDWAVgBVSyhzLhXiDqzN9r7KyEsXFxU2qlFqyZAkAJqWIiIiIiIiIqONoNCklhHAH4AfggpTyOYtH1NHUSUoVFBQAQJOSUkREREREREREHU29q+8JIZyEEF8BuATgvwDOCiEOCCFMn3dG1yWl8vLyADApRURERERERER/b/UmpQC8BmA0gEUAxgCYC8ATwJpWiKvj0Omu6SmVn58PgEkpIiIiIiIiIvp7a2j63lgAL0kp3zXsEEIkAIgXQjhLKQstHl1HUKdSKj8/HzY2NnBwcGjDoIiIiIiIiIiI2lZDSSlfAH/W2XcQ+tX2fAEct1RQHYqRpJSrqyuEECYPsXr1aktERkRERERERETUZhpKSikBVNbZp611jExhJCnVpUuXJg3Rp08fc0dFRERERERERNSmGlt9700hRF6tbUN5z1tCiPxa+6WUcoJ5Q+sgaiWlpJTIz89HYGBgk4bYsWMHACAqKsrs4RERERERERERtYWGklL7oK+IqlvWs7f6uqaV+/xd1Wp0XlxcDK1WCzc3tyYNsXz5cgBMShERERERERFRx1FvUkpKObwV4+i4alVKceU9IiIiIiIiIiI9RVsH0OExKUVEREREREREdB0mpSytVlIqLy8PQgg4Ozu3cVBERERERERERG2LSSlLq9VTqqCgAM7OzlAquXghEREREREREf29Nbb6HrVUnUqp5kzd++yzz8wdFRERERERERFRm2r1SikhxCghRLIQIlUI8VwD590khNAKIR5ozfjMrk5PqeYkpby9veHt7W3uyIiIiIiIiIiI2kyTklJCz1sIMUQI0ampNxNCKAF8AGA0ADWAh4QQ6nrOWwZgT1Pv0e5UJ6UqKipQWlrarKTUpk2bsGnTJgsER0RERERERETUNkxOSgkh5gDIApAB4FcAfar3bxVCzDdxmEEAUqWUp6WUVwF8CeBeI+c9DmALgEumxtduVSelWrLy3n/+8x/85z//MXdkRERERERERERtxqSklBBiIYAVAD4CMAKAqHU4HsAEE+/nCSCz1va56n217+UJYByAVSaO2b5VNzo3JKXc3NzaOCAiIiIiIiIiorZnaqPzfwFYJKV8q3pqXW3JAIJMHEcY2SfrbK8E8KyUUiuEsdOrBxIiBkAMAPj4+Jh4+zZghkopIiIiIiIiIqKOxtSkVHcAh+s5pgNgZ+I45wDU7tjtBeB8nXMGAviyOiHlAeBuIUSVlHJb7ZOklB8C+BAABg4cWDex1X5UJ6Xy8vJgb28POztTPyoiIiIiIiIioo7L1J5SqQCG1XPsNgAaE8f5E0CgEMJfCGEDYCKA7bVPkFL6Syn9pJR+ADYDmFM3IXVDqU5KFRQUsEqKiIiIiIiIiKiaqZVSKwHECSGuQp8oAoCuQohHACwA8Kgpg0gpq4QQc6FfVU8JYI2U8qQQYnb18Y7RR6o2na5m+l6PHj2aNcTmzZsbP4mIiIiIiIiI6AZiUlJKSvmxEMIVwCIAr1Xv/g5AKYBXpZRfmHpDKeV31dfW3mc0GSWlnGbquO2WVgudQoGCggKo1epmDeHh4WHmoIiIiIiIiIiI2paplVKQUr4thFgFYAgAdwB5AP6QUhZaKrgOQatFkZ0ddDpds6fvrVu3DgAwbdo088VFRERERERERNSGTE5KAYCUshj6qXdkKq0Weba2AJq/8h6TUkRERERERETU0ZiUlBJCzGnsHCllXMvD6YC0WuS3MClFRERERERERNTRmFop9X4Dx2T1f5mUMkanQ76NDRQKBTp37tzW0RARERERERERtQsKU06SUirqfgFwA/AQgGMAmtfB++9Aq0W+tTVcXFygUJj0cRMRERERERERdXhN6ilVm5SyAMAmIYQzgNUAhpsppo5Fq0W+lRXc3NzaOhIiIiIiIiIionaj2UmpWs4AGGiGcTomrRYFVlbwdHFp9hDfffed+eIhIiIiIiIiImoHWpSUEkL0APAU9IkpMkanQ6UQsLGxafYQDg4OZgyIiIiIiIiIiKjtmbr63mX8r6G5gQ0AJwDlAO43c1wdh1YLHdCiflJxcfoe8nPmNLoIIhERERERERHRDaElq++VAzgHYLeUMtd8IXUsUquFTggolcpmj/HVV18BYFKKiIiIiIiIiDqORpNSQghrAD8COCOlPG/5kDoWqdMBaFmlFBERERERERFRR2NKpkQL4GcAwRaOpUPSSf2sRyaliIiIiIiIiIj+p9FMiZRSB+AUgG6WD6fj0QoBgEkpIiIiIiIiIqLaTM2UvAhgkRCiryWD6YgMlVIt6SlFRERERERERNTR1NtTSghxG4C/pJQlAF4C4A7gqBAiC8BF1FmNT0o5yJKB3qh01RVSLamUio+PN1M0RERERERERETtQ0ONzn8BEAngvwASqr+oicyRlCIiIiIiIiIi6mgaSkoJwzdSyumtEEuHpDVDUuqdd94BADz99NNmiYmIiIiIiIiIqK2xfMfCzFEptXPnTuzcudNcIRERERERERERtbmGKqUA4G4hhMqUgaSU680QT4ejq25wzkbnRERERERERET/01hSapGJ40gATEoZwZ5SRERERERERETXaywpdTuAQ60RSEdljp5SREREREREREQdTWNJqTIp5ZVWiaSDMkellL29vbnCISIiIiIiIiJqFxpLSlELmaOn1Pfff2+ucIiIiIiIiIiI2gXOKbMw9pQiIiIiIiIiIrpevZVSUkpmUczAHD2lXn/9dQDAyy+/bJaYiIiIiIiIiIjaGhNPFmaOSqmffvoJP/30k7lCIiIiIiIiIiJqc0xKWZghKdWSnlJERERERERERB0Nk1IWZmh0zp5SRERERERERET/w0yJhbHRORERERERERHR9eptdE7mYY5G5+7u7uYKh4iIiIiIiIioXWBSysLM0VNqy5Yt5gqHiIiIiIiIiKhd4JwyC2NPKSIiIiIiIiKi6zFTYmHm6Cn1/PPP4/nnnzdXSEREREREREREbY7T9yzMHD2l/vjjD3OFQ0RERERERETULrBSysK4+h4RERERERER0fWYKbEwQ0+pljQ6JyIiIiIiIiLqaJiUsjBWShERERERERERXY89pSzMHD2lvLy8zBUOEREREREREVG7wKSUhRkqpYQQzR5jw4YN5gqHiIiIiIiIiKhd4JwyC9MplVAI0aKkFBERERERERFRR8OklIXpFAooWpiQmj9/PubPn2+egIiIiIiIiIiI2gFO37MwrUIBZQubnB89etQ8wRARERERERERtROslLIwc1RKERERERERERF1NExKWZhOqWzRyntERERERERERB0RsyUWxkopIiIiIiIiIqLrsaeUhenM0FMqKCjITNEQEREREREREbUPTEpZmE6haPH0vQ8//NBM0RARERERERERtQ+cvmdh5khKERERERERERF1NMyWWJjWDI3OY2JiEBMTY6aIiIiIiIiIiIjaHqfvWZhOoYBSqWzRGCkpKWaKhoiIiIiIiIiofWCllIVx+h4RERERERER0fWYLbEwJqWIiIiIiIiIiK7HbImFaZVKKFo4fY+IiIiIiIiIqKNhTykL0ykUsG5hpVS/fv3MEwwRERERERERUTvBpJSF6RSKFldKrVy50jzBEBERERERERG1E5y+Z2HsKUVEREREREREdD1mSyxMq1RCYdWygrQpU6ZgypQpZoqIiIiIiIiIiKjtcfqehZmjUurcuXNmioaIiIiIiIiIqH1gpZSF6RQKKLn6HhERERERERHRNZiUsjBzNDonIiIiIiIiIupomJSyMHP0lCIiIiIiIiIi6miYLbEwc/SUioyMNFM0RERERERERETtA5NSFmaOpNSbb75ppmiIiIiIiIiIiNoHTt+zMHMkpYiIiIiIiIiIOhpmSyzMHKvvRUdHIzo62kwRERERERERERG1PU7fszCtUtniSqnc3FwzRUNERERERERE1D6wUsrCOH2PiIiIiIiIiOh6zJZYmhBMShERERERERER1cFsSStoaU8pIiIiIiIiIqKOhj2lWkFLK6VGjhxppkiIiIiIiIiIiNqHVk9KCSFGAXgXgBLAx1LKpXWOTwbwbPVmCYDHpJTHWjdK82ppUurll182UyRERERERERERO1Dq07fE0IoAXwAYDQANYCHhBDqOqedATBMShkG4HUAH7ZmjJbAnlJERERERERERNdq7WzJIACpUsrTUsqrAL4EcG/tE6SU+6WU+dWbBwB4tXKMZtfSnlKjR4/G6NGjzRQNEREREREREVHba+2klCeAzFrb56r31ecRAN9bNKJW0NJKqbKyMpSVlZkpGiIiIiIiIiKittfaPaWEkX3S6IlC3A59UmpoPcdjAMQAgI+Pj7niswhO3yMiIiIiIiIiulZrZ0vOAfCute0F4Hzdk4QQYQA+BnCvlDLX2EBSyg+llAOllAO7dOlikWDNhUkpIiIiIiIiIqJrtXa25E8AgUIIfyGEDYCJALbXPkEI4QNgK4B/SilTWjk+i2BSioiIiIiIiIjoWq06fU9KWSWEmAtgDwAlgDVSypNCiNnVx1cBWATAHUCcEAIAqqSUA1szTnNraaPze+65x0yREBERERERERG1D63dUwpSyu8AfFdn36pa388EMLO147KkllZKPf3002aKhIiIiIiIiIiofeC8slbA6XtERERERERERNditqQVtDQpNXz4cAwfPtw8wRARERERERERtQNMSrWClvaUIiIiIiIiIiLqaJiUagWcvkdEREREREREdC1mS1oBk1JERERERERERNditqQVMClFRERERERERHQtq7YO4O+gpT2lHnzwQTNFQkRERERERETUPjAp1QpaWik1Z84cM0VCRERERERERNQ+cF5ZK2hpUqq0tBSlpaVmioaIiIiIiIiIqO2xUqoVtDQpdffddwMA4uPjzRANEREREREREVHbY6VUK2hpTykiIiIiIiIioo6GSalWwNX3iIiIiIiIiIiuxWxJK2BSioiIiIiIiIjoWsyWtAImpYiIiIiIiIiIrsVG562gpUmpadOmmScQIiIiIiIiIqJ2gkmpVtDSRudMShERERERERFRR8N5Za1ACNGi63NycpCTk2OmaIiIiIiIiIiI2h4rpSxMIWWLk1IPPPAAACA+Pt4MERERERERERERtT1WSlkYP2AiIiIiIiIiousxZ2JhCinbOgQiIiIiIiIionaHSSkL4wdMRERERERERHQ95kwsrGXr7hERERERERERdUxsdG5h5sj6PfbYY2YYhYiIiIiIiIio/WBSysLMkZSaMGGCGUYhIiIiIiIiImo/OH3PwszxAWdmZiIzM9MMIxERERERERERtQ+slLIwc/SU+uc//wkAiI+PN8NoRERERERERERtj5VSFqYQoq1DICIiIiIiIiJqd5iUshQpAfADJiIiIiIiIiIyhjkTC2OlFBERERERERHR9ZiUspTqSilz9JQiIiIiIiIiIupo2OjcUgzT98xQKfXUU0+1eAwiIiIiIiIiovaESSkLM0dSKioqygyREBERERERERG1H5y+ZylmrJRKTk5GcnJyi8chIiIiIiIiImovWCllKWZMSs2aNQsAEB8f3+KxiIiIiIiIiIjaA1ZKWZiSq+8REREREREREV2HSSlLMWOlFBERERERERFRR8OklKUYklIKfsRERERERERERHUxY2JhrJQiIiIiIiIiIroeG51bihkrpV566aUWj0FERERERERE1J4wKWUpZuwpdccdd7R4DCIiIiIiIiKi9oTT9yylOimlNEOl1NGjR3H06NEWj0NERERERERE1F6wUsrCzDF9b/78+QCA+Pj4Fo9FRERERERERNQesFLKUrj6HhERERERERFRvZgxsRQmpYiIiIiIiIiI6sWMiYWZo6cUEREREREREVFHw4yJpUgdAFZKEREREREREREZw0bnFmO+6XtvvPFGi8cgIiIiIiIiImpPmJSyFEOllFLZ4qGGDBnS4jGIiIiIiIiIiNoTzi2zGH2llNIMSan9+/dj//79LR6HiIiIiIiIiKi9YKWUpZixp9QLL7wAAIiPj2/xWERERERERERE7QErpSymuqeUGSqliIiIiIiIiIg6GialLIar7xERERERERER1YcZE0uR5uspRURERERERETU0TApZTGcvkdEREREREREVB82OreY6qSUVcs/4pUrV7Z4DCIiIiIiIiKi9oRJKYsxX0+pfv36tXgMIiIiIiIiIqL2hNP3LMZ8lVI//vgjfvzxxxaPQ0RERERERETUXrBSylLM2Oh8yZIlAIA77rijxWMREREREREREbUHrJSymOrpe2aolCIiIiIiIiIi6miY78gQiwAAEEdJREFUlLIY803fIyIiIiIiIiLqaJiUspjqpJQZpu8REREREREREXU0TEpZTHVPKVZKERERERERERFdhxkTizHf9L3Vq1e3eAwiIiIiIiIiovaESSmLMV+j8z59+rR4DCIiIiIiIiKi9oTT9yzMHEmpHTt2YMeOHWaIhoiIiIiIiIiofWCllMXoK6XM0VNq+fLlAICoqKgWj0VERERERERE1B6wUspizNdTioiIiIiIiIioo2FSymKqk1LW1m0cBxERERERERFR+8OklMWwUoqIiIiIiIiIqD5MSlmMPilljp5SREREREREREQdTatnTIQQowC8C0AJ4GMp5dI6x0X18bsBlAKYJqX8q7XjbDnzTd/77LPPWjwGEREREREREVF70qpJKSGEEsAHAO4EcA7An0KI7VJKTa3TRgMIrP4aDOA/1f+9sQjzJaW8vb1bPAYRERERERERUXvS2tP3BgFIlVKellJeBfAlgHvrnHMvgPVS7wAAFyFEj1aO0wzMl5TatGkTNm3a1OJxiIiIiIiIiIjai9aevucJILPW9jlcXwVl7BxPANmWDc3czNfo/D//+Q8AYMKECS0ei4iIiIiIiIioPWjtSilhZJ9sxjkQQsQIIQ4JIQ5dvnzZLMGZU3dlV3S/6guhYC95IiIiIiIiIqK6WrtS6hyA2g2SvACcb8Y5kFJ+COBDABg4cOB1Sau2tmn5R20dAhERERERERFRu9XaZTx/AggUQvgLIWwATASwvc452wFMFXo3AyiUUt5gU/eIiIiIiIiIiKghrVopJaWsEkLMBbAHgBLAGinlSSHE7OrjqwB8B+BuAKkASgFMb80YiYiIiIiIiIjI8oSU7W7mW5MNHDhQHjp0qK3DsJicnBwAgIeHRxtHQkRERERE7ZEQ4rCUcmBbx0FE1BSt3VOKmoHJKCIiIiIiIiLqaLg03A1g3bp1WLduXVuHQURERERERERkNkxK3QCYlCIiIiIiIiKijoZJKSIiIiIiIiIianVMShERERERERERUatjUoqIiIiIiIiIiFodk1JERERERERERNTqrNo6AGrcd99919YhEBERERERERGZFZNSNwAHB4e2DoGIiIiIiIiIyKw4fe8GEBcXh7i4uLYOg4iIiIiIiIjIbJiUugF89dVX+Oqrr9o6DCIiIiIiIiIis2FSioiIiIiIiIiIWh2TUkRERERERERE1OqYlCIiIiIiIiIiolbHpBQREREREREREbU6IaVs6xhaTAhxGUBGW8dhhAeAnLYOgjosvl9kaXzHyJL4fpEl8f0iS2qv75evlLJLWwdBRNQUHSIp1V4JIQ5JKQe2dRzUMfH9IkvjO0aWxPeLLInvF1kS3y8iIvPh9D0iIiIiIiIiImp1TEoREREREREREVGrY1LKsj5s6wCoQ+P7RZbGd4wsie8XWRLfL7Ikvl9ERGbCnlJERERERERERNTqWClFREREREREREStjkkpMxBCjBJCJAshUoUQzxk5LoQQsdXHjwshBrRFnHRjMuH9mlz9Xh0XQuwXQoS3RZx0Y2rs/ap13k1CCK0Q4oHWjI9ubKa8X0KI4UKIo0KIk0KIva0dI93YTPjfSGchxA4hxLHqd2x6W8RJNx4hxBohxCUhREI9x/nveyIiM2BSqoWEEEoAHwAYDUAN4CEhhLrOaaMBBFZ/xQD4T6sGSTcsE9+vMwCGSSnDALwO9jkgE5n4fhnOWwZgT+tGSDcyU94vIYQLgDgAY6WUIQDGt3acdOMy8e+wfwHQSCnDAQwHsFwIYdOqgdKNah2AUQ0c57/viYjMgEmplhsEIFVKeVpKeRXAlwDurXPOvQDWS70DAFyEED1aO1C6ITX6fkkp90sp86s3DwDwauUY6cZlyt9fAPA4gC0ALrVmcHTDM+X9mgRgq5TyLABIKfmOUVOY8o5JAE5CCAHAEUAegKrWDZNuRFLKfdC/L/Xhv++JiMyASamW8wSQWWv7XPW+pp5DZExT351HAHxv0YioI2n0/RJCeAIYB2BVK8ZFHYMpf38FAXAVQsQLIQ4LIaa2WnTUEZjyjr0PIBjAeQAnAMyTUupaJzzq4PjveyIiM7Bq6wA6AGFkX90lDU05h8gYk98dIcTt0Celhlo0IupITHm/VgJ4Vkqp1RcaEJnMlPfLCkAEgJEA7AH8IYQ4IKVMsXRw1CGY8o79A8BRACMA9AbwgxDiVyllkYVjo46P/74nIjIDJqVa7hwA71rbXtD/v3FNPYfIGJPeHSFEGICPAYyWUua2Umx04zPl/RoI4MvqhJQHgLuFEFVSym2tEiHdyEz938ccKeUVAFeEEPsAhANgUopMYco7Nh3AUimlBJAqhDgDQAXgv60TInVg/Pc9EZEZcPpey/0JIFAI4V/dOHMigO11ztkOYGr1Kh03AyiUUma3dqB0Q2r0/RJC+ADYCuCfrC6gJmr0/ZJS+ksp/aSUfgA2A5jDhBSZyJT/ffwWwK1CCCshhAOAwQASWzlOunGZ8o6dhb4SD0KIbgD6ADjdqlFSR8V/3xMRmQErpVpISlklhJgL/apUSgBrpJQnhRCzq4+vAvAdgLsBpAIohf7/tSNqlInv1yIA7gDiqqtZqqSUA9sqZrpxmPh+ETWLKe+XlDJRCLEbwHEAOgAfSymNLr9OVJeJf4e9DmCdEOIE9NOtnpVS5rRZ0HTDEEJshH7FRg8hxDkArwCwBvjveyIicxL6amYiIiIiIiIiIqLWw+l7RERERERERETU6piUIiIiIiIiIiKiVsekFBERERERERERtTompYiIiIiIiIiIqNUxKUVERERERERERK2OSSkiImoyIcSrQghp5OtHE6/3qz7/nlaINb1WfFeFEElCiJeFEDZmvMe06vEdq7e7Vn9GfnXOG159Xqi57t1IXLV/NmVCiEQhxLNCCKtmjPWMEGK4+aMkIiIior+rJv+jlIiIqFohgFFG9rVHXwB4D4AtgNsBvALAGcDTZhp/F4BIAKXV212r7xEPIL3WeX9Vn5dmpvuaYjmAzQDsAdwDYCkAawBLmjjOMwDeh/6ZiIiIiIhajEkpIiJqriop5YG2DsJE2bVi3SuE8AIwWwixUEopWzq4lPIygMsmnFcEoLU/s/Raz/6LECIEwFQ0PSlFRERERGRWnL5HRERmJYToIYRYI4Q4XT1lLEUIsaSx6XJCiLFCiMNCiCtCiHwhxEEhxLBaxxVCiOeEEKlCiIrqcR9uZpiHAXQC4FE99ojq+5ULIS4KIeIMU/Gqj1sLId4RQpytvvd5IcQ3hmeqPX2vesreiepLfzFMn6s+75rpe0KIvUKIr4x8FoZ7ieptOyHEW0KIzOr7HxNC3N3MZz8GwLvO/ZYKIU4IIUqEEOeEEJ8LIbrXOp4OwB3AK7WmAw6vPmbOnwsRERER/Y2wUoqIiJrNSG8iLfSJnjwACwDkAwgC8CqALgBm1TNOb+inmL0LYCEAOwARANxqnfYegIcBLIZ+GtydANYIIXKllDubGLofgKsA8oQQagC7AfwAIBr6hM1SAL3wv+mJzwOYDOA5AGcAdAdwNwClkbGzq8/9HMC/qmOtz5cAlgshOkkprwBAdSJqPICvalVxbQYwCPopgWkAHgSwXQgxUEp5tInP7lP9DLV1BfAGgPPQ/5yeAvCzEKKvlFILYByAX6rj+Lj6Gk31f835cyEiIiKivxEmpYiIqLncAVTW2XenlPJH1OrVJIT4HcAV6BMVj0sprxoZqz+AYinlwlr7vqs1RgCAxwBMl1J+Wr37RyFED+gTNY0lP0R1As0GwAgAswHskFJqhRCLAGQAGFudgIEQIg/AJiFEpJTyD+gTQl/UujcAXFfhBABSygohxPHqTU0jUxw3Q5/UiYI+QQUAN0OfOPqyOpaRAMYAGC6l3Ft9zv8TQgQBeBH6BFZDFNXPbugpdT/0SaTaMc8wfC+EUAL4A8A5ALcA2CelPCKEqAJwrvbzmOHnQkRERER/Y5y+R0REzVUI4KY6XweF3nwhhEYIUQZ94upz6JuM+9Qz1gkAzkKIT4UQdwkhOtU5PhKADsA3QggrwxeAnwD0q06kNGRBdRxXAOwAsA/6KiZAn3D6xpCQqrYFQBWAodXbRwFMq16BLswwra6lqntR/QxgQq3dEwCkSSkPVW/fAeACgN+NPPtAE27zLvTPXgR9w/cPpJRf1j5BCDFaCLFfCFEI/XOfqz4U1MjYLf25EBEREdHfGCuliIiouapqJU5qCCGeBPAO9FPg9kI/he8mAB9APy3vOlLKZCHEvdBPj/sOQKUQ4hsA86oTNx7QT5Wrb3W/HvhfIsWYDdAnZyqgb/xdXOfai3Xi0QohcvG/6YNLoE++zAGwDECWEOJtKeW7DdzTVF8CiBNCdAZQAn3l07paxz2gny5YtyoN0E+XbMzb0Fd1OQOYD+BJIcSPUsrvAEAIcROA7QC+gf5ndgmAhL4hu9GfV53YWvJzISIiIqK/MSaliIjI3MYD+FpK+aJhR3XfpgZJKXcB2CWEcIZ+utpK6Ke2TYS+R1UV9NPJdEYuv9TI8BeNJdCqZUPfU6lGdYWPe/V9IaUsB7AIwCIhRCD00/9WCiGSpZS7G3u2RnwD4D8A7oV+GmFPAJtqHc8DkAXgvmaOf9bw7EKIfdBXpb0thPi+umfVuP/f3v2E5hzHARx/f5QyBy7cxAUXF1dujhJllMOUi+Ugy8HIykUiDnJQlCgOOAlFm0VItCJabWZOXBxlKbLydfj8HnvMNlvbHrW9X8fn+f5+z/f3fA+/+vT5Q04O3FXrYRURqyZ57+meiyRJkuYxg1KSpJnWRGYk1WuZ7MWllC/A9cjJexuqjx+RGTlLSyndM7LLET3A9ojoqCvhaybfkc/G2N/7iDhElv/VmqSPVuub9a9MI0opnyPiAVm29wF4W0rprVvykGw8/rWUMjDJZxrvt4Yj4hiZObWVzJBqAobrmqrD2Of1g7+fZzbPRZIkSXOcQSlJ0kzrBtoiooecFNcCrJ7ogojYRwagOskJcGvIjKtr8Lu87yJwMyLOAC/JAMk6YG0pZe809nsCeA3cjogLwAqyRK+ranJOVUr4qlr3DdhJvkOfjnPPj9W6PVWfpuEJMrUgM6OukGVw50d91w10Ad0RcRroA5YA64FFpZSjU3ra7Jc1QE45vFvd/2BEnCP7bW0Edo9x3QCwJSI6yTLDd7N8LpIkSZrjDEpJkmbacWA5GewBuAW0kQGP8fQC24CzZB+nT8AlsmSuZj8wCLRWvzEE9AOXp7PZUkpfRGwGTlZ7HQJuAIfrlj0nM5naySEh/cCO8QJNpZTvEdFKTqB7AiwEJmqOfocsg1vGyBS+2r1KRDQDHWRPqJVk2dwbsrxxSkopPyPiFHC1mi54PyKOAAfI//YFOaVvcNSl7WRfsHvAYmAT8JhZOhdJkiTNffFntr4kSZIkSZI0+xb87w1IkiRJkiRp/jEoJUmSJEmSpIYzKCVJkiRJkqSGMyglSZIkSZKkhjMoJUmSJEmSpIYzKCVJkiRJkqSGMyglSZIkSZKkhjMoJUmSJEmSpIYzKCVJkiRJkqSG+wXLPaU5JWyWggAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# ROC/Min Max Threshold Test\n", "\n", "smt_test = MinMaxMetricThreshold(\n", " #test_name=\"\", # Default test name and description will be used accordingly if not specified\n", " #test_desc=\"\",\n", " attr=\"gender\",\n", " metric=\"fpr\",\n", " threshold=0.025,\n", " #proba_threshold = 0.6 # Outcome probability threshold, default at 0.5\n", ")\n", "smt_test.run(df_test_with_output=output)\n", "smt_test.plot()\n", "\n", "smt_test2 = MinMaxMetricThreshold(\n", " attr=\"age\",\n", " metric=\"fpr\",\n", " threshold=0.025,\n", ")\n", "smt_test2.run(df_test_with_output=output)\n", "smt_test2.plot()" ] }, { "cell_type": "code", "execution_count": 5, "id": "9de881d4", "metadata": { "tags": [] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAs8AAAF1CAYAAAAXywc5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAmHklEQVR4nO3df7xdVX3n/9fbBOovNCgRA0SgGh0ztiKDiLU/UGtLom3w8VULUqCMLdJCqzP0YVP7rVJnnEltLVNGhWKlhipSqrZmMC1SKlrHggSLCCIlX36YmAgB5JdUEfh8/9jryuH23NwVuDc3mNfz8TiPe87aa+299j47Oe+zzjr7pKqQJEmSNL3HzXUHJEmSpMcKw7MkSZLUyfAsSZIkdTI8S5IkSZ0Mz5IkSVInw7MkSZLUyfAsaauSXJzkV+e6H1uT5Kgkn9nK8p9Kcu327JN+OCT5cJL/Ptf9kLTjMDxLO5EkNyb5tyT3jNz2moN+XJzku237tyb5ZJJFj3R9VfXRqvq5kfVXkueMLP+nqnreo+33ZElOSfL9th93JPlikpduQ/uH9VOStOMzPEs7n1+oqieP3DbNUT9OqqonA88FFgCnzlE/Hq2/avuxB/BZ4K/nuD8zJsm8ue7DD5Mk8+e6D5IePcOztJNLsnuS85NsSfLtdn+fKeo+J8nnktzZRoz/amTZf0hyYZLbk1yb5A0926+q24FPAC9o6/mJJJe1bVyW5CdGtvErSa5PcneSG5IcNVL+hXb/8636V9qI8C8lOTTJxrZ8ZZKPT9qvP01yWrv/1CQfSrI5yTeT/PeeEFlV9wMfBfZOsrCt6+Ak/9xGpTcneV+SXafqZyt/TZIrRkayf3ykn7/T+nR3O8avHNeXJK9O8i9J7kqyIckpk5b/ZFv3HW35r7TyDyc5PcnaJN8BXp7k+e2TgjuSXJ3kF0fWszzJ11p/vpnkt1v5Hu08uqOdD/+UZOzrTTv2G1pfL0/yUyPLnpBkdTsvr0nytonnsS3fK8kn2rl7Q5Lfmur52Upff3DujNSd/InAHu3cvrud//uO1P259lzcmeQDbfmvjqz7/yY5NcntwCnt/Dq79fmmJP/vxLHJ8EnGR0bWvV/ry/z2+OIk/zPJl9r2PpXkaW3Z45N8JMlt7bhflmTPqY6HpEfO8CzpccBfAPsCzwL+DXjfFHX/G/AZYHdgH+B/AyR5EnAhcA7wDOBI4ANJ/uN0G0+yB/D/AP/SgsCngdOApwN/Anw6ydPbNk4DllXVbsBPAFdMXl9V/XS7+8I2sv5Xk6p8DFie5Clt+/OAN7S+A6wG7geeA7wI+Dlg2jnfLRQfA9wGfLsVPwD8F4ZR6ZcCrwR+Y6p+JjkQOAt4c9v/PwPWJPmRJM8DTgJe3Pb/54Ebp+jOd1pfFgCvBn49yeGtn88C/o7huVsIHMDDj+MbgXcDuwGXAv+H4Tl/BvCbwEdbXwA+BLy59ecFwD+28pOBjW39ewJvB2qKvl7W+vA0hufgr5M8vi17J7Af8KPAq4BfnmjUAuf/Ab4C7M1wbN+a5Oen2M5Ufe1xFMO5vwfDsfpo68MewMeB32V4vq5lOC9HvQS4nuH4vZvhuD+17dPPMDxPx21DX44B/jOwF8N5elorP7atd3HrywkM/5YlzTDDs7Tz+ds2MnVHkr+tqtuq6hNVdW9V3c3wAv8zU7T9PkPI3quqvltVEyN2rwFurKq/qKr7q+rLDKPJr9tKP05LcgdD+NkM/FeGoHddVf1lW8/HgK8Dv9DaPAi8IMkTqmpzVV29rTtfVTcBXwYOb0WvAO6tqkvaSN0y4K1V9Z2quoVhOskRW1nlG9p+/Bvwa8Dr2ig0VXV5VV3S9uVGhjA81bGltf+zqrq0qh6oqtXA94BDGIL4jwBLk+xSVTdW1f83xT5eXFVfraoHq+pKhjcME9s9CviHqvpYVX2/Pf9XjDT/VFX936p6kCHUPhlYVVX3VdU/AuczvDmC4XxYmuQpVfXt9rxPlC8C9m3b+KeqGhueq+ojrQ/3V9V72z5OhPM3AP+jrXsjDwVFgBcDC6vqXa1v1wMfZOrnaqq+9vh0VX2+qr4H/B7w0iSLgeXA1VX1yfacnwZ8a1LbTVX1v9vy+4BfAn63qu5u58R7gaO3oS9/WVVXVdV3gN9nOP/mtf17OvCcdu5cXlV3bcN6JXUyPEs7n8OrakG7HZ7kiUn+rH2EfBfweWBBxk9VeBsQ4EvtI/z/3Mr3BV4yEsrvYAhpz9xKP36r9WHvqjqqqrYwjKbdNKneTcDeLSz8EsOI2uYkn07yHx7hMTiHhwLgG3lo1HlfYJe2/on9+DOGUcOpnFdVCxhGWK8C/tPEgiTPbdMXvtWO7f9gGL2cyr7AyZOO42KGNyvrgbcCpwC3JDk3U3zZM8lLkny2TQ24k+GYTWx3MTA2dDcbRu7vBWxoQXrCTQwjvTB8YrAcuKlNV5j4suQfAeuBz2SYZrNyqo0lOblNybiz7e9TR/q616T+jN7fF9hr0rF6O8PzMM5Ufe3xg+1W1T3A7a1ve01aVgwj7mPbMuzXrjz8HB89ntvUl9Z2l7bevwQuAM5NsinJe5Lssg3rldTJ8CzpZIaRvpdU1VOAiekEmVyxqr5VVb9WVXsxTC34QJsbugH43EgoX9CmIvz6NvZlE0MoGvUs4Jtt+xdU1asYRjW/zjDS+Ej8NXBohrndr+Wh8LyBYaR3j5H9eEpVTTv9pKpuZTgmp+ShK4ec3vq5pB3btzPmuI7YALx70nF8YhuBp6rOqaqfZDhGBfzhFOs5B1gDLK6qpwJnjGx3A/Dsre3KyP1NwOI8fL7y6PNxWVWtYHhz8bfAea387qo6uap+lOFTg/+aMfOzM8xv/h2GEebd25uQO0f6uplhetCExSP3NwA3TDpWu1XV8rE7NUVfGaa4PHGkT+Pe8C0eWf5khikmmyb3L0km9Rcefjxv5aFPbyb84HhO7gvj33yOHoNntfXd2kb4/6CqljJMHXkNwxQPSTPM8CxpN4YpB3e0OcfvnKpiktfnoS8TfpshGDzA8FH+c5McnWSXdntxkudvY1/WtvW8Mcn8DF+iWwqcn2TPJL/Y5j5/D7inbXucmxnmlI7VRrkvZpjrfUNVXdPKNzPM731vkqckeVySZyfZ2lSL0fV+nWH0722taDfgLuCeNko++c3E5H5+EDihjRwnyZMyfPlvtyTPS/KKJD8CfJfhOZtq/3cDbq+q7yY5mGF0fcJHgZ9N8oZ2jJ+e5IAp1nMpQ6B7W3tOD2UIw+cm2TXD9bWfWlXfb/v5APzgS4/PaWFyonxcX3djmLe7BZif5B3AU0aWnwf8boYvte7NMOd7wpeAuzJ8ifIJSeYleUGSF0/eyNb6yjBt6D8mOSDDXOtTxvRzeYYvWe7KMPf50qrawDA//8eSHJ7hS30nspVPW6rqgbZP727P6b4M05UmviR4BfDTSZ6V5KkMc6kn++UkS5M8EXgX8PGqeiDJy5P8WPvE6C6GUD3V+SHpUTA8S/pfwBMYRsUuAf5+K3VfDFya5B6Gkc23VNUNNcyV/jmG+aabGOZ9/iHD/NVuVXUbw4jZyQxfvHsb8Jo2qvu4Vr6J4WPzn6F9+W6MU4DV7eP8qa76cQ7wszw06jzhGIaP1r/G8Abh4wwj3b3+CDg+yTOA32YIrnczBOPJX158WD+rah3DvOf3tW2vB36l1f0RYBXD8/QthhHUt0/Rh98A3pXkbuAdPDTKSlV9g2H6wskMx/EK4IXjVlJV9wG/yDAP/FbgA8Ax7U0CDHN1b2xTUk7goS/0LQH+geENzj8DH6iqi8ds4gKGLy/+K8MUhO/y8GkJ72KYBnFDW9/HGd44TQTRX2CYl31D69+fM0z7GGdsX6vqX9t2/gG4DvjCmLbnMLypvJ1hWs5Rre2twOuB9zCcr0uBdRN9nMJvMrwhub5t6xyGL4lSVRcynCNXApczvCmd7C+BDzOcA48HJq4w8kyG43MXcA3wOR4K5ZJmUKb4DockSTuUJL8OHFFVXZ8EbG9testG4Kiq+uwsrP9i4CNV9eczvW5J/Rx5liTtkJIsSvKyNn3meQyj5X8z1/0aleTnkyxo02km5rRfMsfdkjSL/LUjSdKOaleGq53sD9wBnMswdWRH8lKGqRcTU30Oryqvryz9EHPahiRJktTJaRuSJElSJ8OzJEmS1OkxNed5jz32qP3222+uuyFJkqQfcpdffvmtVbVwcvljKjzvt99+rFu3bq67IUmSpB9ySW4aV+60DUmSJKmT4VmSJEnqZHiWJEmSOhmeJUmSpE6GZ0mSJKmT4VmSJEnqZHiWJEmSOhmeJUmSpE6GZ0mSJKmT4VmSJEnqZHiWJEmSOhmeJUmSpE6GZ0mSJKmT4VmSJEnqZHiWJEmSOhmeJUmSpE6GZ0mSJKmT4VmSJEnqZHiWtEM79NBDOfTQQ+e6G9pJef5JmszwLEmSJHUyPEuSJEmdusJzksOSXJtkfZKVY5YnyWlt+ZVJDmzlj0/ypSRfSXJ1kj8YaXNKkm8muaLdls/cbkmSJEkzb/50FZLMA94PvArYCFyWZE1VfW2k2jJgSbu9BDi9/f0e8IqquifJLsAXkvxdVV3S2p1aVX88c7sjSZIkzZ6ekeeDgfVVdX1V3QecC6yYVGcFcHYNLgEWJFnUHt/T6uzSbjVTnZckSZK2p57wvDewYeTxxlbWVSfJvCRXALcAF1bVpSP1TmrTPM5Ksvu4jSc5Psm6JOu2bNnS0V1JkiRpdvSE54wpmzx6PGWdqnqgqg4A9gEOTvKCtvx04NnAAcBm4L3jNl5VZ1bVQVV10MKFCzu6K0mSJM2OnvC8EVg88ngfYNO21qmqO4CLgcPa45tbsH4Q+CDD9BBJkiRph9UTni8DliTZP8muwBHAmkl11gDHtKtuHALcWVWbkyxMsgAgyROAnwW+3h4vGmn/WuCqR7crkiRJPzz8kZ4d07RX26iq+5OcBFwAzAPOqqqrk5zQlp8BrAWWA+uBe4HjWvNFwOp2xY7HAedV1flt2XuSHMAwveNG4M0ztVOSJEnSbJg2PANU1VqGgDxadsbI/QJOHNPuSuBFU6zz6G3qqSRJkjTH/IVBSZIkqZPhWZIkSepkeJYkSZI6GZ4lSZKkToZnSZIkqZPhWZIkSepkeJYkSZI6GZ4lSZKkToZnSZIkqZPhWZIkSepkeJYkSZI6GZ4lSZKkToZnSZIkqZPhWZIkSepkeJYkSZI6GZ4lSZKkToZnSZIkqZPhWZIkSepkeJYkSZI6GZ4lSZKkToZnSZIkqZPhWZIkSepkeJYkSZI6GZ4lSZKkToZnSZIkqZPhWZIkSepkeJYkSZI6GZ4lSZKkToZnSZIkqZPhWZIkSepkeJYkSZI6GZ4lSZKkToZnSZIkqZPhWZIkSerUFZ6THJbk2iTrk6wcszxJTmvLr0xyYCt/fJIvJflKkquT/MFIm6cluTDJde3v7jO3W5IkSdLMmzY8J5kHvB9YBiwFjkyydFK1ZcCSdjseOL2Vfw94RVW9EDgAOCzJIW3ZSuCiqloCXNQeS5IkSTusnpHng4H1VXV9Vd0HnAusmFRnBXB2DS4BFiRZ1B7f0+rs0m410mZ1u78aOPxR7IckSZI063rC897AhpHHG1tZV50k85JcAdwCXFhVl7Y6e1bVZoD29xnjNp7k+CTrkqzbsmVLR3clSZKk2dETnjOmrHrrVNUDVXUAsA9wcJIXbEsHq+rMqjqoqg5auHDhtjSVJEmSZlRPeN4ILB55vA+waVvrVNUdwMXAYa3o5iSLANrfW3o7LUmSJM2FnvB8GbAkyf5JdgWOANZMqrMGOKZddeMQ4M6q2pxkYZIFAEmeAPws8PWRNse2+8cCn3p0uyJJkiTNrvnTVaiq+5OcBFwAzAPOqqqrk5zQlp8BrAWWA+uBe4HjWvNFwOp2xY7HAedV1flt2SrgvCRvAr4BvH7mdkuSJEmaedOGZ4CqWssQkEfLzhi5X8CJY9pdCbxoinXeBrxyWzorSZIkzSV/YVCSJEnqZHiWJEmSOhmeJUmSpE6GZ0mSJKmT4VmSJEnqZHiWJEmSOhmeJUmSpE6GZ0mSJKmT4VmSJEnqZHiWJEmSOhmeJUmSpE6GZ0mSJKmT4VmSJEnqZHiWJEmSOhmeJUmSpE6GZ0mSJKmT4VmSJEnqZHiWJEmSOhmeJUmSpE6GZ0mSJKmT4VmSJEnqZHiWJEmSOhmeJUmSpE6GZ0mSJKmT4VmSJEnqZHiWJEmSOhmeJUmSpE6GZ0mSJKmT4VmSJEnqZHiWJEmSOhmeJUmSpE6GZ0mSJKmT4VmSJEnq1BWekxyW5Nok65OsHLM8SU5ry69McmArX5zks0muSXJ1kreMtDklyTeTXNFuy2dutyRJkqSZN3+6CknmAe8HXgVsBC5LsqaqvjZSbRmwpN1eApze/t4PnFxVX06yG3B5kgtH2p5aVX88c7sjSZIkzZ6ekeeDgfVVdX1V3QecC6yYVGcFcHYNLgEWJFlUVZur6ssAVXU3cA2w9wz2X5IkSdpuesLz3sCGkccb+fcBeNo6SfYDXgRcOlJ8UpvmcVaS3Xs7LUmSJM2FnvCcMWW1LXWSPBn4BPDWqrqrFZ8OPBs4ANgMvHfsxpPjk6xLsm7Lli0d3ZUkSZJmR0943ggsHnm8D7Cpt06SXRiC80er6pMTFarq5qp6oKoeBD7IMD3k36mqM6vqoKo6aOHChR3dlSRJkmZHT3i+DFiSZP8kuwJHAGsm1VkDHNOuunEIcGdVbU4S4EPANVX1J6MNkiwaefha4KpHvBeSJEnSdjDt1Taq6v4kJwEXAPOAs6rq6iQntOVnAGuB5cB64F7guNb8ZcDRwFeTXNHK3l5Va4H3JDmAYXrHjcCbZ2ifJEmSpFkxbXgGaGF37aSyM0buF3DimHZfYPx8aKrq6G3qqSRJkjTH/IVBSZIkqZPhWZIkSepkeJYkSZI6GZ4lSZKkToZnSZIkqZPhWZIkSepkeJYkSZI6dV3nWZK089pv5afnugtz5lvX3wbs3MfgxlWvnusuSDsUR54lSZKkToZnSZIkqZPhWZIkSepkeJYkSZI6GZ4lSZKkToZnSZIkqZPhWZIkSepkeJYkSZI6GZ4lSZKkToZnSZIkqZPhWZIkSepkeJYkSZI6GZ4lSZKkToZnSZIkqZPhWZIkSepkeJYkSZI6GZ4lSZKkToZnSZIkqZPhWZIkSeo0f647IGl6+6389Fx3Yc586/rbgJ37GNy46tVz3QVJUuPIsyRJktTJ8CxJkiR1MjxLkiRJnQzPkiRJUifDsyRJktTJ8CxJkiR16grPSQ5Lcm2S9UlWjlmeJKe15VcmObCVL07y2STXJLk6yVtG2jwtyYVJrmt/d5+53ZIkSZJm3rThOck84P3AMmApcGSSpZOqLQOWtNvxwOmt/H7g5Kp6PnAIcOJI25XARVW1BLioPZYkSZJ2WD0jzwcD66vq+qq6DzgXWDGpzgrg7BpcAixIsqiqNlfVlwGq6m7gGmDvkTar2/3VwOGPblckSZKk2dUTnvcGNow83shDAbi7TpL9gBcBl7aiPatqM0D7+4zuXkuSJElzoCc8Z0xZbUudJE8GPgG8taru6u8eJDk+ybok67Zs2bItTSVJkqQZ1ROeNwKLRx7vA2zqrZNkF4bg/NGq+uRInZuTLGp1FgG3jNt4VZ1ZVQdV1UELFy7s6K4kSZI0O3rC82XAkiT7J9kVOAJYM6nOGuCYdtWNQ4A7q2pzkgAfAq6pqj8Z0+bYdv9Y4FOPeC8kSZKk7WD+dBWq6v4kJwEXAPOAs6rq6iQntOVnAGuB5cB64F7guNb8ZcDRwFeTXNHK3l5Va4FVwHlJ3gR8A3j9jO2VJEmSNAumDc8ALeyunVR2xsj9Ak4c0+4LjJ8PTVXdBrxyWzqr7e/QQw8F4OKLL57TfkiSJO0I/IVBSZIkqZPhWZIkSepkeJYkSZI6GZ4lSZKkToZnSZIkqZPhWZIkSepkeJYkSZI6GZ4lSZKkToZnSZIkqZPhWZIkSepkeJYkSZI6GZ4lSZKkToZnSZIkqZPhWZIkSepkeJYkSZI6GZ4lSZKkToZnSZIkqZPhWZIkSepkeJYkSZI6GZ4lSZKkToZnSZIkqZPhWZIkSepkeJYkSZI6GZ4lSZKkToZnSZIkqZPhWZIkSepkeJYkSZI6GZ4lSZKkToZnSZIkqZPhWZIkSepkeJYkSZI6GZ4lSZKkToZnSZIkqZPhWZIkSerUFZ6THJbk2iTrk6wcszxJTmvLr0xy4Miys5LckuSqSW1OSfLNJFe02/JHvzuSJEnS7Jk2PCeZB7wfWAYsBY5MsnRStWXAknY7Hjh9ZNmHgcOmWP2pVXVAu63dxr5LkiRJ21XPyPPBwPqqur6q7gPOBVZMqrMCOLsGlwALkiwCqKrPA7fPZKclSZKkudATnvcGNow83tjKtrXOOCe1aR5nJdl9XIUkxydZl2Tdli1bOlYpSZIkzY6e8JwxZfUI6kx2OvBs4ABgM/DecZWq6syqOqiqDlq4cOE0q5QkSZJmT0943ggsHnm8D7DpEdR5mKq6uaoeqKoHgQ8yTA+RJEmSdlg94fkyYEmS/ZPsChwBrJlUZw1wTLvqxiHAnVW1eWsrnZgT3bwWuGqqupIkSdKOYP50Farq/iQnARcA84CzqurqJCe05WcAa4HlwHrgXuC4ifZJPgYcCuyRZCPwzqr6EPCeJAcwTO+4EXjzzO2WJEmSNPOmDc8A7TJyayeVnTFyv4ATp2h75BTlR/d3U5IkSZp7/sKgJEmS1MnwLEmSJHUyPEuSJEmdDM+SJElSJ8OzJEmS1MnwLEmSJHUyPEuSJEmdDM+SJElSJ8OzJEmS1MnwLEmSJHUyPEuSJEmdDM+SJElSJ8OzJEmS1MnwLEmSJHUyPEuSJEmdDM+SJElSJ8OzJEmS1MnwLEmSJHUyPEuSJEmdDM+SJElSJ8OzJEmS1MnwLEmSJHWaP9cdkCRJmsp+Kz89112YM9+6/jZg5z4GN6569Vx34d9x5FmSJEnqZHiWJEmSOhmeJUmSpE7OeZYkaQrPfOOque6CpB2M4bnDzjxR3y8rDHbELyxIkqTtz2kbkiRJUifDsyRJktTJ8CxJkiR1MjxLkiRJnQzPkiRJUifDsyRJktSpKzwnOSzJtUnWJ1k5ZnmSnNaWX5nkwJFlZyW5JclVk9o8LcmFSa5rf3d/9LsjSZIkzZ5pw3OSecD7gWXAUuDIJEsnVVsGLGm344HTR5Z9GDhszKpXAhdV1RLgovZYkiRJ2mH1jDwfDKyvquur6j7gXGDFpDorgLNrcAmwIMkigKr6PHD7mPWuAFa3+6uBwx9B/yVJkqTtpic87w1sGHm8sZVta53J9qyqzQDt7zPGVUpyfJJ1SdZt2bKlo7uSJEnS7OgJzxlTVo+gziNSVWdW1UFVddDChQtnYpWSJEnSI9ITnjcCi0ce7wNsegR1Jrt5YmpH+3tLR18kSZKkOdMTni8DliTZP8muwBHAmkl11gDHtKtuHALcOTElYyvWAMe2+8cCn9qGfkuSJEnb3bThuaruB04CLgCuAc6rqquTnJDkhFZtLXA9sB74IPAbE+2TfAz4Z+B5STYmeVNbtAp4VZLrgFe1x5IkSdIOa35PpapayxCQR8vOGLlfwIlTtD1yivLbgFd291SSJEmaY/7CoCRJktTJ8CxJkiR1MjxLkiRJnQzPkiRJUifDsyRJktTJ8CxJkiR1MjxLkiRJnQzPkiRJUifDsyRJktTJ8CxJkiR1MjxLkiRJnQzPkiRJUifDsyRJktTJ8CxJkiR1MjxLkiRJnQzPkiRJUifDsyRJktTJ8CxJkiR1MjxLkiRJnQzPkiRJUifDsyRJktTJ8CxJkiR1MjxLkiRJnebPdQckaWue+cZVc90FSZJ+wJFnSZIkqZPhWZIkSepkeJYkSZI6GZ4lSZKkToZnSZIkqZPhWZIkSepkeJYkSZI6GZ4lSZKkToZnSZIkqZPhWZIkSerUFZ6THJbk2iTrk6wcszxJTmvLr0xy4HRtk5yS5JtJrmi35TOzS5IkSdLsmDY8J5kHvB9YBiwFjkyydFK1ZcCSdjseOL2z7alVdUC7rX20OyNJkiTNpp6R54OB9VV1fVXdB5wLrJhUZwVwdg0uARYkWdTZVpIkSXpM6AnPewMbRh5vbGU9daZre1Kb5nFWkt3HbTzJ8UnWJVm3ZcuWju5KkiRJs6MnPGdMWXXW2Vrb04FnAwcAm4H3jtt4VZ1ZVQdV1UELFy7s6K4kSZI0O+Z31NkILB55vA+wqbPOrlO1raqbJwqTfBA4v7vXkiRJ0hzoGXm+DFiSZP8kuwJHAGsm1VkDHNOuunEIcGdVbd5a2zYnesJrgase5b5IkiRJs2rakeequj/JScAFwDzgrKq6OskJbfkZwFpgObAeuBc4bmtt26rfk+QAhmkcNwJvnsH9kiRJkmZcz7QN2mXk1k4qO2PkfgEn9rZt5UdvU08lSZKkOeYvDEqSJEmdDM+SJElSJ8OzJEmS1MnwLEmSJHUyPEuSJEmdDM+SJElSJ8OzJEmS1MnwLEmSJHUyPEuSJEmdDM+SJElSJ8OzJEmS1Gn+XHdAO7ZnvnHVXHdBkiRph+HIsyRJktTJ8CxJkiR1MjxLkiRJnQzPkiRJUifDsyRJktTJ8CxJkiR1MjxLkiRJnQzPkiRJUifDsyRJktTJ8CxJkiR1MjxLkiRJnQzPkiRJUifDsyRJktTJ8CxJkiR1MjxLkiRJnQzPkiRJUifDsyRJktTJ8CxJkiR1MjxLkiRJnQzPkiRJUifDsyRJktSpKzwnOSzJtUnWJ1k5ZnmSnNaWX5nkwOnaJnlakguTXNf+7j4zuyRJkiTNjmnDc5J5wPuBZcBS4MgkSydVWwYsabfjgdM72q4ELqqqJcBF7bEkSZK0w+oZeT4YWF9V11fVfcC5wIpJdVYAZ9fgEmBBkkXTtF0BrG73VwOHP7pdkSRJkmZXT3jeG9gw8nhjK+ups7W2e1bVZoD29xn93ZYkSZK2v/kddTKmrDrr9LTd+saT4xmmggDck+TabWmvGbEHcOtcd2Iu5Q/nugc7vZ36HPT8m3Oef5pLe9z0h6/x/Jsb+44r7AnPG4HFI4/3ATZ11tl1K21vTrKoqja3KR63jNt4VZ0JnNnRT82SJOuq6qC57od2Xp6Dmkuef5pLnn87np5pG5cBS5Lsn2RX4AhgzaQ6a4Bj2lU3DgHubFMxttZ2DXBsu38s8KlHuS+SJEnSrJp25Lmq7k9yEnABMA84q6quTnJCW34GsBZYDqwH7gWO21rbtupVwHlJ3gR8A3j9jO6ZJEmSNMNStU1TkLUTSnJ8mz4jzQnPQc0lzz/NJc+/HY/hWZIkSerkz3NLkiRJnQzP2mZJDk1yRZKrk3xupPzGJF9ty9bNZR+1Y0qyOMlnk1zTzp+3jCz7zSTXtvL3TNH+vyW5sp1jn0myVyvfNclftPPvK0kO3T57pMeiJPOS/EuS89vjpyW5MMl17e/uW2k75Xma5FlJ7kny27O9D9r5JDmq/f93ZZIvJnnhyDJff7ejnkvV6YdIkt2r6tuPov0C4APAYVX1jSSTf9zm5VW1016PUtO6Hzi5qr6cZDfg8iQXAnsy/Oroj1fV98acVxP+qKp+HyDJbwHvAE4Afg2gqn6stf27JC+uqgdne4f0mPQW4BrgKe3xSuCiqlqVZGV7/DuTGyV5OVs/T08F/m72uq0fNu1KZLtU1Xc6qt8A/ExVfTvJMobL+L5kZLmvv9uJI887n3VJzknyiiTjfsRmOm8EPllV3wCoqrHX55bGqarNVfXldv9uhgCzN/DrwKqq+l5bNtV13+8aefgkHvrRpaXARSNt7wC8Lqr+nST7AK8G/nykeAWwut1fDRw+RfMpz9MkhwPXA1ePbyo9JMnzk7wXuBZ4bk+bqvriyODXJQy/naE5YHje+TwXOAc4CfhakrdPfPQNkOTU9rHP5NvKkfa7J7k4yeVJjhlZdwGfaeXHI21Fkv2AFwGXMpxXP5Xk0iSfS/LirbR7d5INwFEMI88AXwFWJJmfZH/gP/HwH2iSJvwv4G3A6KcSe7bfJqD9neqTj7HnaZInMYxU/8Gs9VqPeUmelOS4JF9gePN2DcOnGP/Slk/3+jvqTTz8Uw5ff7cjp23sZKrqAeB84PwkC4H/CXwjyU9U1Zeq6r9Ms4r5DMHklcATgH9OcklV/Svwsqra1D7KvDDJ16vq87O4O3qMSvJk4BPAW6vqriTzgd2BQ4AXM1wD/kdrzOWAqur3gN9L8rsMbwLfCZwFPB9YB9wEfJFhioj0A0leA9xSVZc/wnnxY89ThtB8alXd88g+0NNOYjNwJfCrVfX1yQs7Xn+BH0wfehPwkyPFvv5uR4bnnVCSpwK/xPBjNt9n+Ed4ZVt2KvDyMc3OrapVDD/Ffmubn/WdJJ8HXgj8a1VtguGjzCR/AxwM+I9XD5NkF4bg/NGq+mQr3sgwHaiALyV5ENijfSHrRcCmqlo+aVXnAJ8G3llV9wM/eOFJ8kXgulneFT32vAz4xSTLgccDT0nyEeDmJIuqanOSRcAtAEn+goeff2PPU4Z5p69r5+sC4MEk362q923vHdQO7XUMr7d/k+RjwOqqumliYcfrL0l+nGHUellV3TZRwdff7cvrPO9k2gvFS4G/Bj5UVdsUMJI8H3gf8PPArsCXGH52/QbgcVV1d/sI80LgXVX19zPZfz22tXn2q4Hbq+qtI+UnAHtV1TuSPJdh/vKzJo88J1kycc4m+U2GL8+8LskTGf4/+06SVwG/X1U/vZ12S49BbeT5t6vqNUn+CLht5AuDT6uqt41pM+15muQU4J6q+uPtsR967EnydOCXGQawbmUYib6xo92zgH8EjqmqL46UPwlff7crR553PucBv9JG6rZZVV2T5O8ZRqofBP68qq5qH13+TfvIcj5wjv9wNcbLgKOBrya5opW9nWHaxVlJrgLuA44dN2UDWJXkeQzn3k0MV9qAYY7qBW0k8JttG1KvVQxTMN4EfAN4/RT1es9TaUptxPhPgT9NcjDwQGfTdwBPBz7QXmvvr6qDGK5W5OvvduTIsyRJktTJq21IkiRJnQzPkiRJUifDsyRJktTJ8CxJkiR1MjxLkiRJnQzPkiRJUifDsyRJktTJ8CxJkiR1+v8B6Gnr9fZrNDMAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAs8AAAF1CAYAAAAXywc5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAiNElEQVR4nO3df7hdVX3n8ffHAGqrNihRQ4hANbVNnRppRGw704y/StA22FYLUqHWNtDCtE7tdFKnz5S2tkXrz1QkwohCR0GqVjOaDqVUq7aCRItIREqGggmJEEGQHyoC3/ljr8jhcm7uuslNLqHv1/Oc55699lp7r7X3ucnn7rPOPqkqJEmSJE3tEbPdAUmSJGlvYXiWJEmSOhmeJUmSpE6GZ0mSJKmT4VmSJEnqZHiWJEmSOhmepX+nknwyya/Ndj92JMlxSf5uB+v/Y5Kr92Sf9NCS5JAklWSfWe7HqUn+92z2QdKeYXiWHgaSXJfkW0nuGHkcOAv9+GSSb7f9fz3Jh5PM39ntVdX7qupFI9uvJE8bWf/pqnr6rvZ7ohaEvtvGcWuSf07y3Gm0f0A/JUkPH4Zn6eHjZ6vqMSOPLbPUj1Oq6jHADwFzgbfOUj921QfaOA4APgH89Sz3Z8YkmTPbfXgomO2r1ZN5qPZL0sDwLD1MJdk/yceSbEvyjfb8oEnqPi3JPya5rV0x/sDIuh9OclGSW5JcneTlPfuvqluADwHPaNv5iSSXtX1cluQnRvbxK0muTXJ7kn9LctxI+Wfa80+16l9sV4R/KcmyJJvb+lVJPjhhXG9Psro9/4Ek706yNckNSV7fEyKr6h7gfcCCJPPatg5P8tl2VXprknck2W+yfrbylyS5fORK9o+N9PO/tz7d3o7x88f1JcmLk/xLkm8m2ZTk1Anrf6pt+9a2/lda+XuTnJFkXZI7gf+c5EfaOwW3JtmQ5OdGtnNUki+3/tyQ5Hdb+QHtdXRrez18OsnY/0eSvKiN5bYk72yvr18bWf+rSa5qr80Lkxw8sq6SnJTkmrb+9CRp6+YkeVN7nV4LvHjCfic9z+319E9J3prkFuABx2/k3K5vx/jGJG9p5d97rY3UvS7JC0aKHpXkA+24fSHJM0fqHtbO3e1J/rrVe/3ottvr4GvAe5I8Msnbkmxpj7cleeTIOD4zoS/fe7ejne81GX5vb2/H/uC2Lm38N7Vzc0WSZ4w7h5LGMzxLD1+PAN4DHAw8BfgW8I5J6v4J8HfA/sBBwF8CJPl+4CLg/cATgWOBdyb50al2nuQA4BeAf0nyeODjwGrgCcBbgI8neULbx2pgeVU9FvgJ4PKJ26uq/9SePrNdWf/AhCrnAUcleVzb/xzg5a3vAOcA9wBPA54FvAiYcs53hlB8PHAz8I1WfC/wXxmuSj8XeD7wm5P1M8lhwNnAiW387wLWtoD0dOAU4Nlt/D8DXDdJd+5sfZnLEBp/I8nRrZ9PAf6W4dzNA5bwwOP4CuBPgccClwL/h+GcPxH4L8D7Wl8A3g2c2PrzDOAfWvlrgc1t+08CXgfUmGN2APBB4PfbeK9mOK/b1x/d2v5829anGc7fqJcAzwaeyXAef6aV/3pb9yxgKfCLE9pNdZ6fA1zbxv2nE/sOvB14e1U9DngqcMGYOpNZwfAOxeMZXncfSbJvew39DfDetu484KUT2j65rTsYWAn8D+AIhvP4TOBw4A+m0ZfjGH6vD2B4Hbyvlb8I+E/c/87QLzG8tiV1MjxLDx8faVcEb03ykaq6uao+VFV3VdXtDEHhpydp+12G/7QPrKpvV9X2q1ovAa6rqvdU1T1V9QWGq8kTA8uo1UluBb4IbAV+hyHoXVNVf9W2cx7wFeBnW5v7gGckeXRVba2qDdMdfFVdD3wBOLoVPQ+4q6ouSfIkYDnwmqq6s6puYphOcswONvnyNo5vMQS2X2xXoamqz1fVJW0s1zGE4cmOLa39u6rq0qq6t6rOAb7DEI7uBR4JLE6yb1VdV1X/b5IxfrKqvlRV91XVFQwhbPt+jwP+vqrOq6rvtvN/+Ujzj1bVP1XVfQyB7DHAaVV1d1X9A/Axhj+OYHg9LE7yuKr6Rjvv28vnAwe3fXy6qh4UnoGjgA1V9eF2zFYDXxtZfyLw51V1VVv/Z8CS0avPrW+3VtVXGabNLGnlLwfeVlWb2rsbf769Qed53lJVf9nO3bfG9P27wNOSHFBVd1TVJWPqTObzVfXBqvouwx+Ij2I4x0cA+wCr23H7MPC5CW3vA/6wqr7T+nUc8MdVdVNVbQP+CHjlNPry8ar6VFV9hyGIPzfJwja+xwI/DKSdg63T2K70757hWXr4OLqq5rbH0Um+L8m7klyf5JvAp4C5GT9V4feAAJ/L8Bb+r7byg4HnjITyWxn+U3/yDvrxW60PC6rquPYf/4HA9RPqXQ8sqKo7Ga5+nQRsTfLxJD+8k8fg/dwfAF/B/VedDwb2bdvfPo53MVx9nMwFVTWX4QrrlcCPb1+R5IcyTF/4Wju2f8ZwhW8yBwOvnXAcFzL8sbIReA3DFIKbkpyfST7smeQ5ST6RYSrObQzHbPt+FwJjQ3ezaeT5gcCmFqS3ux5Y0J7/AkMAvr695b/9w5J/AWwE/i7DNJtVk+zrwNH9tYA9OuXhYODtI8fiFobX34KROqNh+y6GsP+gbfPA11XPeR5tO86rGa7KfiXD9KKXTFF/1OiY72MY84HtccOEPzQm9mNbVX17ZHni78z1rWxn+nIHwzE+sP2h9A7gdODGJGduf7dGUh/Ds/Tw9Vrg6cBz2lvQ26cTZGLFqvpaVf16VR3IcFXwnW3+5CbgH0dC+dw2FeE3ptmXLQzBZtRTgBva/i+sqhcyXNX8CnDWNLe/3V8DyzLM7X4p94fnTQxXeg8YGcfjqmrK6SdV9XWGY3Jq7r9zyBmtn4vasX0dY47riE3An044jt/XrsBTVe+vqp9iOEYFvGGS7bwfWAssrKofANaM7HcTwzSDSYcy8nwLsDAPnK88ej4uq6oVDKHzI7SpC1V1e1W9tqp+kOFdg9/J+PnZWxmm/wDDPNvR5dbXEyccj0dX1T/voP+j2144od+j253qPI+7Un7/yqprqupYhrG/Afhgm1p0J/B9I2OawzDlZNTCkfWPYBjzltbnBe04PKjuJP2a+DvzlFbGmL6M+2N2tC+PYZgSsqWNcXVV/Tjwowx/KPy3Me0lTcLwLD18PZZhysGtbc7xH05WMcnLcv+HCb/B8B/5vQxv5f9Qkle2uZv7Jnl2kh+ZZl/Wte28Isk+GT5Etxj4WJInJfm5FlC+A9zR9j3OjcAPTraTdpX7kwxzvf+tqq5q5VsZ5ve+OcnjkjwiyVOT7Giqxeh2vwJcyHCFHoZj+03gjnaVfOIfExP7eRZwUrtynCTfn+HDf49N8vQkz8vwYbBvM5yzycb/WOCWqvp2ksMZrq5v9z7gBUle3o7xE5IsmWQ7lzIEsN9r53QZQxg+P8l+Ge6v/QNt+sE3t/cnw4cen9ZC4PbycX39OPAfkhyd4c4RJ/PAdyvWAL+fNnc+w4f8XjZJXye6APitJAcl2R/43tXvXT3PrS+/nGReu3J8ayu+F/hXhg8EvjjJvgzzjx85ofmPJ/n5NubXMLyeLwE+27ZxSjs3KxjmMO/IecAfJJmXYQ75/wS230f6i8CPJlmS5FGM+eAjw/z/n8ow3/pPgEuralP7/X1OG8OdDK+5yV5vksYwPEsPX28DHg18neE/8P+7g7rPBi5NcgfDlc3frqp/q2Gu9IsY5oxuYXgr/Q08ODTsUFXdzDB/+rUMH076PeAl7aruI1r5Foa3ln+a9uG7MU4FzmlvyU9214/3Ay/g/qvO2x0P7Ad8meEPhA8yXOnu9RfAyiRPBH6XIbjezhCMJ3548QH9rKr1DPOe39H2vRH4lVb3kcBpDOfpawxXPF83SR9+E/jjJLczhKnvfZitzQ0+iuFY3sLwIbFnjtkGVXU38HMM84O/DrwTOL79kQDD3Nrr2pSUk4BfbuWLgL9n+APns8A7q+qTY7b/deBlwBsZzvdiYD1DmKSq/obhdXR+28eVrS89zmL4Q+aLDHPcPzxh/a6e5yOBDe134e3AMTV8DuA2huP/vxiu0N/JA6eiAHyUYQrSNxiO4c+3Oc53M3w48tUMgfyXGf4w/c4O+vF6hmN2BfClNtbXA1TVvwJ/zHAurgE+M6b9+xn+YL6FYcrRca38cQzH8BsMU0FuBt40xTGRNCLjP+shSdLMaFMYNgPHVdUnZrs/DwVJLgXWVNV7dsO23wtsrqrp3J1DUievPEuSZlySn0kyt01H2T4nfDp3rnhYSfLTSZ7cpm2cAPwYO343SNJDlN9iJEnaHZ7LMHVg+xSKoye5Ndy/F09nmGbzGIa7ovyit4iT9k5O25AkSZI6OW1DkiRJ6mR4liRJkjrtVXOeDzjggDrkkENmuxuSJEl6mPv85z//9aqa+GVIe1d4PuSQQ1i/fv1sd0OSJEkPc0muH1futA1JkiSpk+FZkiRJ6mR4liRJkjp1heckRya5OsnGJKvGrE+S1W39FUkOa+WPSvK5JF9MsiHJH420OTXJDUkub4+jZm5YkiRJ0syb8gODSeYApwMvBDYDlyVZW1VfHqm2HFjUHs8Bzmg/vwM8r6ruSLIv8Jkkf1tV27+i9a1V9aaZG44kSZK0+/RceT4c2FhV11bV3cD5wIoJdVYA59bgEmBukvlt+Y5WZ9/28CsNJUmStFfqCc8LgE0jy5tbWVedJHOSXA7cBFxUVZeO1DulTfM4O8n+0+28JEmStCf1hOeMKZt49XjSOlV1b1UtAQ4CDk/yjLb+DOCpwBJgK/DmsTtPViZZn2T9tm3bOrorSZIk7R494XkzsHBk+SBgy3TrVNWtwCeBI9vyjS1Y3wecxTA95EGq6syqWlpVS+fNe9CXvEiSJEl7TE94vgxYlOTQJPsBxwBrJ9RZCxzf7rpxBHBbVW1NMi/JXIAkjwZeAHylLc8faf9S4MpdG4okSZK0e015t42quifJKcCFwBzg7KrakOSktn4NsA44CtgI3AW8qjWfD5zT7tjxCOCCqvpYW/fGJEsYpndcB5w4U4OSJEmSdodU7T03v1i6dGmtX79+trshSZKkh7kkn6+qpRPL/YZBSZIkqZPhWZIkzZply5axbNmy2e6G1M3wLEmSJHUyPEuSJEmdDM+SJElSJ8OzJEmS1MnwLEmSJHUyPEuSJEmdDM+SJElSJ8OzJEmS1MnwLEmSJHUyPEuSJEmdDM+SJElSJ8OzJEmS1MnwLEmSJHUyPEuSJEmdDM+SJElSJ8OzJEmS1MnwLEmSJHUyPEuSJEmdDM+SJElSJ8OzJEmS1MnwLEmSJHUyPEuSJEmdDM+SJElSJ8OzJEmS1MnwLEmSJHUyPEuSJEmdDM+SJElSJ8OzJEmS1MnwLEmSJHUyPEuSJEmdDM+SJElSJ8OzJEmS1MnwLEmSJHUyPEuSJEmdusJzkiOTXJ1kY5JVY9Ynyeq2/ookh7XyRyX5XJIvJtmQ5I9G2jw+yUVJrmk/95+5YUmSJEkzb8rwnGQOcDqwHFgMHJtk8YRqy4FF7bESOKOVfwd4XlU9E1gCHJnkiLZuFXBxVS0CLm7LkiRJ0kNWz5Xnw4GNVXVtVd0NnA+smFBnBXBuDS4B5iaZ35bvaHX2bY8aaXNOe34OcPQujEOSJEna7XrC8wJg08jy5lbWVSfJnCSXAzcBF1XVpa3Ok6pqK0D7+cRp916SJEnag3rCc8aUVW+dqrq3qpYABwGHJ3nGdDqYZGWS9UnWb9u2bTpNJUmSpBnVE543AwtHlg8Ctky3TlXdCnwSOLIV3ZhkPkD7edO4nVfVmVW1tKqWzps3r6O7kiRJ0u7RE54vAxYlOTTJfsAxwNoJddYCx7e7bhwB3FZVW5PMSzIXIMmjgRcAXxlpc0J7fgLw0V0biiRJkrR77TNVhaq6J8kpwIXAHODsqtqQ5KS2fg2wDjgK2AjcBbyqNZ8PnNPu2PEI4IKq+lhbdxpwQZJXA18FXjZzw5IkSZJm3pThGaCq1jEE5NGyNSPPCzh5TLsrgGdNss2bgedPp7OSJEnSbPIbBiVJkqROhmdJkiSpk+FZkiRJ6mR4liRJkjoZniVJkqROhmdJkiSpk+FZkiRJ6mR4liRJkjoZniVJkqROhmdJkiSpk+FZkiRJ6mR4liRJkjoZniVJkqROhmdJkiSpk+FZkiRJ6mR4liRJkjoZniVJkqROhmdJkiSpk+FZkiRJ6mR4liRJkjoZniVJkqROhmdJkiSpk+FZkiRJ6mR4liRJkjoZniVJkqROhmdJkiSpk+FZkiRJ6mR4liRJkjoZniVJkqROhmdJkiSpk+FZkiRJ6mR4liRJkjoZniVJkqROhmdJkiSpk+FZkiRJ6mR4liRJkjoZniVJkqROXeE5yZFJrk6yMcmqMeuTZHVbf0WSw1r5wiSfSHJVkg1JfnukzalJbkhyeXscNXPDkiRJkmbePlNVSDIHOB14IbAZuCzJ2qr68ki15cCi9ngOcEb7eQ/w2qr6QpLHAp9PctFI27dW1ZtmbjiSJEnS7tNz5flwYGNVXVtVdwPnAysm1FkBnFuDS4C5SeZX1daq+gJAVd0OXAUsmMH+S5IkSXtMT3heAGwaWd7MgwPwlHWSHAI8C7h0pPiUNs3j7CT7j9t5kpVJ1idZv23bto7uSpIkSbtHT3jOmLKaTp0kjwE+BLymqr7Zis8AngosAbYCbx6386o6s6qWVtXSefPmdXRXkiRJ2j16wvNmYOHI8kHAlt46SfZlCM7vq6oPb69QVTdW1b1VdR9wFsP0EEmSJOkhqyc8XwYsSnJokv2AY4C1E+qsBY5vd904AritqrYmCfBu4KqqestogyTzRxZfCly506OQJEmS9oAp77ZRVfckOQW4EJgDnF1VG5Kc1NavAdYBRwEbgbuAV7XmPwm8EvhSkstb2euqah3wxiRLGKZ3XAecOENjkiRJknaLKcMzQAu76yaUrRl5XsDJY9p9hvHzoamqV06rp5IkSdIs6wrPkiTtqkNWfXy2u6CHoK9dezPg60PjXXfai2e7Cw/i13NLkiRJnQzPkiRJUifDsyRJktTJ8CxJkiR1MjxLkiRJnQzPkiRJUifDsyRJktTJ8CxJkiR1MjxLkiRJnQzPkiRJUifDsyRJktTJ8CxJkiR1MjxLkiRJnQzPkiRJUifDsyRJktTJ8CxJkiR1MjxLkiRJnQzPkiRJUifDsyRJktTJ8CxJkiR1MjxLkiRJnQzPkiRJUifDsyRJktTJ8CxJkiR1MjxLkiRJnQzPkiRJUifDsyRJktTJ8CxJkiR1MjxLkiRJnQzPkiRJUifDsyRJktTJ8CxJkiR1MjxLkiRJnQzPkiRJUifDsyRJktSpKzwnOTLJ1Uk2Jlk1Zn2SrG7rr0hyWCtfmOQTSa5KsiHJb4+0eXySi5Jc037uP3PDkiRJkmbelOE5yRzgdGA5sBg4NsniCdWWA4vaYyVwRiu/B3htVf0IcARw8kjbVcDFVbUIuLgtS5IkSQ9ZPVeeDwc2VtW1VXU3cD6wYkKdFcC5NbgEmJtkflVtraovAFTV7cBVwIKRNue05+cAR+/aUCRJkqTdqyc8LwA2jSxv5v4A3F0nySHAs4BLW9GTqmorQPv5xO5eS5IkSbOgJzxnTFlNp06SxwAfAl5TVd/s7x4kWZlkfZL127Ztm05TSZIkaUb1hOfNwMKR5YOALb11kuzLEJzfV1UfHqlzY5L5rc584KZxO6+qM6tqaVUtnTdvXkd3JUmSpN2jJzxfBixKcmiS/YBjgLUT6qwFjm933TgCuK2qtiYJ8G7gqqp6y5g2J7TnJwAf3elRSJIkSXvAPlNVqKp7kpwCXAjMAc6uqg1JTmrr1wDrgKOAjcBdwKta858EXgl8Kcnlrex1VbUOOA24IMmrga8CL5uxUUmSJEm7wZThGaCF3XUTytaMPC/g5DHtPsP4+dBU1c3A86fTWUmSJGk2+Q2DkiRJUifDsyRJktTJ8CxJkiR1MjxLkiRJnQzPkiRJUifDsyRJktTJ8CxJkiR1MjxLkiRJnQzPkiRJUifDsyRJktTJ8CxJkiR1MjxLkiRJnQzPkiRJUifDsyRJktTJ8CxJkiR1MjxLkiRJnQzPkiRJUifDsyRJktTJ8CxJkiR1MjxLkiRJnQzPkiRJUifDsyRJktTJ8CxJkiR1MjxLkiRJnQzPkiRJUifDsyRJktTJ8CztgmXLlrFs2bLZ7oYkSdpDDM+SJElSJ8OzJEmS1MnwLEmSJHUyPEuSJEmdDM+SJElSJ8OzJEmS1MnwLEmSJHUyPEuSJEmdDM+SJElSp67wnOTIJFcn2Zhk1Zj1SbK6rb8iyWEj685OclOSKye0OTXJDUkub4+jdn04kiRJ0u4zZXhOMgc4HVgOLAaOTbJ4QrXlwKL2WAmcMbLuvcCRk2z+rVW1pD3WTbPvkiRJ0h7Vc+X5cGBjVV1bVXcD5wMrJtRZAZxbg0uAuUnmA1TVp4BbZrLTkiRJ0mzoCc8LgE0jy5tb2XTrjHNKm+ZxdpL9O+pLkiRJs6YnPGdMWe1EnYnOAJ4KLAG2Am8eu/NkZZL1SdZv27Ztik1KkiRJu09PeN4MLBxZPgjYshN1HqCqbqyqe6vqPuAshukh4+qdWVVLq2rpvHnzOrorSZIk7R494fkyYFGSQ5PsBxwDrJ1QZy1wfLvrxhHAbVW1dUcb3T4nunkpcOVkdSVJkqSHgn2mqlBV9yQ5BbgQmAOcXVUbkpzU1q8B1gFHARuBu4BXbW+f5DxgGXBAks3AH1bVu4E3JlnCML3jOuDEmRuWJEmSNPOmDM8A7TZy6yaUrRl5XsDJk7Q9dpLyV/Z3U5IkPRw9+RWnzXYXpGnxGwYlSZKkToZnSZIkqZPhWZIkSepkeJYkSZI6GZ4lSZKkToZnSZIkqZPhWZIkSepkeJYkSZI6GZ4lSZKkToZnSZIkqZPhWZIkSepkeJYkSZI6GZ4lSZKkToZnSZIkqZPhWZIkSepkeJYkSZI6GZ4lSZKkToZnSZIkqZPhWZIkSepkeJYkSZI6GZ4lSZKkToZnSZIkqZPhWZIkSepkeJYkSZI6GZ4lSZKkToZnSZIkqZPhWZIkSepkeJYkSZI6GZ4lSZKkToZnSZIkqZPhWZIkSepkeJYkSZI6GZ4lSZKkToZnSZIkqZPhWZIkSepkeJYkSZI6GZ4lSZKkTl3hOcmRSa5OsjHJqjHrk2R1W39FksNG1p2d5KYkV05o8/gkFyW5pv3cf9eHI0mSJO0+U4bnJHOA04HlwGLg2CSLJ1RbDixqj5XAGSPr3gscOWbTq4CLq2oRcHFbliRJkh6yeq48Hw5srKprq+pu4HxgxYQ6K4Bza3AJMDfJfICq+hRwy5jtrgDOac/PAY7eif5LkiRJe0xPeF4AbBpZ3tzKpltnoidV1VaA9vOJ4yolWZlkfZL127Zt6+iuJEmStHv0hOeMKaudqLNTqurMqlpaVUvnzZs3E5uUJEmSdkpPeN4MLBxZPgjYshN1Jrpx+9SO9vOmjr5IkiRJs6YnPF8GLEpyaJL9gGOAtRPqrAWOb3fdOAK4bfuUjB1YC5zQnp8AfHQa/ZYkSZL2uCnDc1XdA5wCXAhcBVxQVRuSnJTkpFZtHXAtsBE4C/jN7e2TnAd8Fnh6ks1JXt1WnQa8MMk1wAvbsiRJkvSQtU9PpapaxxCQR8vWjDwv4ORJ2h47SfnNwPO7ezqLDln18dnugh6ivnbtzYCvEY133Wkvnu0uSJJmmN8wKEmSJHUyPEuSJEmdDM+SJElSJ8OzJEmS1MnwLEmSJHUyPEuSJEmdDM+SJElSJ8OzJEmS1MnwLEmSJHUyPEuSJEmdDM+SJElSJ8OzJEmS1MnwLEmSJHUyPEuSJEmdDM+SJElSJ8OzJEmS1MnwLEmSJHUyPEuSJEmdDM+SJElSJ8OzJEmS1MnwLEmSJHUyPEuSJEmdDM+SJElSJ8OzJEmS1MnwLEmSJHUyPEuSJEmdDM+SJElSJ8OzJEmS1MnwLEmSJHUyPEuSJEmdDM+SJElSJ8OzJEmS1MnwLEmSJHUyPEuSJEmdDM+SJElSJ8OzJEmS1KkrPCc5MsnVSTYmWTVmfZKsbuuvSHLYVG2TnJrkhiSXt8dRMzMkSZIkafeYMjwnmQOcDiwHFgPHJlk8odpyYFF7rATO6Gz71qpa0h7rdnUwkiRJ0u7Uc+X5cGBjVV1bVXcD5wMrJtRZAZxbg0uAuUnmd7aVJEmS9go94XkBsGlkeXMr66kzVdtT2jSPs5PsP27nSVYmWZ9k/bZt2zq6K0mSJO0ePeE5Y8qqs86O2p4BPBVYAmwF3jxu51V1ZlUtraql8+bN6+iuJEmStHvs01FnM7BwZPkgYEtnnf0ma1tVN24vTHIW8LHuXkuSJEmzoOfK82XAoiSHJtkPOAZYO6HOWuD4dteNI4Dbqmrrjtq2OdHbvRS4chfHIkmSJO1WU155rqp7kpwCXAjMAc6uqg1JTmrr1wDrgKOAjcBdwKt21LZt+o1JljBM47gOOHEGxyVJkiTNuJ5pG7TbyK2bULZm5HkBJ/e2beWvnFZPJUmSpFnmNwxKkiRJnQzPkiRJUifDsyRJktTJ8CxJkiR1MjxLkiRJnQzPkiRJUifDsyRJktTJ8CxJkiR1MjxLkiRJnQzPkiRJUifDsyRJktTJ8CxJkiR1MjxLkiRJnQzPkiRJUifDsyRJktTJ8CxJkiR1MjxLkiRJnfaZ7Q5Ie7Mnv+K02e6CJEnag7zyLEmSJHUyPEuSJEmdDM+SJElSJ8OzJEmS1MnwLEmSJHUyPEuSJEmdDM+SJElSJ8OzJEmS1MnwLEmSJHUyPEuSJEmdDM+SJElSJ8OzJEmS1MnwLEmSJHUyPEuSJEmdDM+SJElSJ8OzJEmS1MnwLEmSJHUyPEuSJEmdusJzkiOTXJ1kY5JVY9Ynyeq2/ookh03VNsnjk1yU5Jr2c/+ZGZIkSZK0e0wZnpPMAU4HlgOLgWOTLJ5QbTmwqD1WAmd0tF0FXFxVi4CL27IkSZL0kNVz5flwYGNVXVtVdwPnAysm1FkBnFuDS4C5SeZP0XYFcE57fg5w9K4NRZIkSdq9esLzAmDTyPLmVtZTZ0dtn1RVWwHazyf2d1uSJEna8/bpqJMxZdVZp6ftjneerGSYCgJwR5Krp9Ne2gMOAL4+253QQ0/eMNs9kPYa/juqsWb539GDxxX2hOfNwMKR5YOALZ119ttB2xuTzK+qrW2Kx03jdl5VZwJndvRTmhVJ1lfV0tnuhyTtrfx3VHuTnmkblwGLkhyaZD/gGGDthDprgePbXTeOAG5rUzF21HYtcEJ7fgLw0V0ciyRJkrRbTXnluaruSXIKcCEwBzi7qjYkOamtXwOsA44CNgJ3Aa/aUdu26dOAC5K8Gvgq8LIZHZkkSZI0w1I1rSnIkiZIsrJNL5Ik7QT/HdXexPAsSZIkdfLruSVJkqROhmdpmpJUkr8aWd4nybYkH5vNfknS3ibJvUkuH3kcMtt9kqbSc6s6SQ90J/CMJI+uqm8BLwRumOU+SdLe6FtVtWS2OyFNh1eepZ3zt8CL2/NjgfNmsS+SJGkPMTxLO+d84JgkjwJ+DLh0lvsjSXujR49M2fib2e6M1MNpG9JOqKor2ty8Yxnucy5Jmj6nbWivY3iWdt5a4E3AMuAJs9sVSZK0JxiepZ13NsNX0X8pybJZ7oskSdoDDM/STqqqzcDbZ7sfkiRpz/EbBiVJkqRO3m1DkiRJ6mR4liRJkjoZniVJkqROhmdJkiSpk+FZkiRJ6mR4liRJkjoZniVJkqROhmdJkiSp0/8HV3f/nBTofSEAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# Subgroup Disparity Test\n", "\n", "sgd_test = SubgroupDisparity(\n", " attr='age',\n", " metric='fpr',\n", " method='ratio',\n", " threshold=1.5,\n", ")\n", "sgd_test.run(output)\n", "sgd_test.plot(alpha=0.05) # default alpha argument shows 95% C.I bands\n", "\n", "sgd_test2 = SubgroupDisparity(\n", " attr='gender',\n", " metric='fpr',\n", " method='ratio',\n", " threshold=1.5,\n", ")\n", "sgd_test2.run(output)\n", "sgd_test2.plot(alpha=0.05) # default alpha argument shows 95% C.I bands" ] }, { "cell_type": "code", "execution_count": 6, "id": "9e26f22c", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAskAAAF2CAYAAACcQQXQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAw3klEQVR4nO3de5xV1X338c9PwIKXiBESL6iYhlgQEQgCRqKDiRbFitZYL1SbtHmQRtO0jUZqH3X0SdSkadPyJEqMMSYNQeM1Jmq8vJKRYEQuEe+a8KAWComAijcogr/nj70Hx+0Z5gzOMICf9+t1Xp6z99prr33OcvieddbeOzITSZIkSW/ZrqsbIEmSJG1pDMmSJElShSFZkiRJqjAkS5IkSRWGZEmSJKnCkCxJkiRVGJIlERFNEfHZrm7HxkTExIi4eyPrPx4RT2/ONmnbEBHXRsSXu7odkrYshmRpGxMRz0bE6oh4tcVjzy5oR1NErCn3vyIibo6IPTa1vsycnplHtag/I+LDLdb/KjP3f7ftroqIxoh4ozyOlyLi1xFxSDu2f1s7JUlbB0OytG36s8zcqcVjaRe14+zM3An4CNAb+EYXtePdur48jj7AL4Eburg9HSYiunV1G7YlEdG9q9sgqWMYkqX3gIjYNSJ+FhHLI+LF8nm/Vsp+OCLui4hV5Qjw9S3W/UlE3BMRL0TE0xHxF/XsPzNfAG4CBpf1fCwi5pb7mBsRH2uxj09HxKKIeCUinomIiS2WzyqfzyyLP1yO8J4cEQ0RsaRcPyUibqwc139ExNTy+S4R8d2IWBYR/x0RX64nLGbmOmA6sFdE9C3rGhkRD5SjzMsi4psRsX1r7SyXHxsRC1qMTA9p0c7zyja9Ur7Hn6jVlogYHxEPRcTLEbE4Ihor68eUdb9Urv90ufzaiLgyIu6IiNeAsRExsBz5fykiHo+I41rUc0xEPFG2578j4pxyeZ+yH71U9odfRUTNf1PK935x2db5EfHxFut6RcT3y375ZER8qflzLNfvGRE3lX33mYj4u9Y+n420dUPfaVG2OsLfp+zbr5T9f98WZY8qP4tVEXFFuf6zLeq+PyK+EREvAI1l//pB2ebnIuJ/N783Ufwy8cMWdfcv29K9fN0UEZdFxJxyfz+JiPeX63pGxA8jYmX5vs+NiA+29n5IencMydJ7w3bA94B9gX2A1cA3Wyn7f4C7gV2BfsD/BYiIHYF7gB8BHwBOBa6IiAPa2nlE9AFOBB4q/8G/HZgK7Ab8G3B7ROxW7mMqcHRm7gx8DFhQrS8zDyufHlSOlF9fKTIDOCYi3lfuvxvwF2XbAb4PrAM+DAwDjgLanJNdht8zgJXAi+Xi9cA/UIwyHwJ8Avhca+2MiOHANcCZ5fF/G7gtIv4oIvYHzgYOLo//T4FnW2nOa2VbegPjgb+NiOPLdu4D3Enx2fUFhvL29/E04CvAzsCDwE8pPvMPAJ8HppdtAfgucGbZnsHAL8rlXwSWlPV/EDgfyFbaOrdsw/spPoMbIqJnue4ioD/wIeBI4C+bNyqD5U+Bh4G9KN7bv4+IP21lP621tR4TKfp+H4r3anrZhj7AjcA/UXxeT1P0y5ZGAYso3r+vULzvu5THdDjF5/SZdrTlDOCvgT0p+unUcvlflfXuXbZlMsX/y5I6gSFZ2jbdWo40vRQRt2bmysy8KTNfz8xXKP4hP7yVbd+gCNN7ZuaazGwegTsWeDYzv5eZ6zLzNxSjw5/aSDumRsRLFCFnGfCPFIHud5n5n2U9M4CngD8rt3kTGBwRvTJzWWY+3t6Dz8zngN8Ax5eLjgBez8zZ5cjb0cDfZ+Zrmfk8xTSQUzZS5V+Ux7Ea+F/Ap8pRZTJzfmbOLo/lWYrQ29p7S7n9tzPzwcxcn5nfB/4HGE0RuP8IGBQRPTLz2cz8f60cY1NmPpqZb2bmIxRfDJr3OxG4NzNnZOYb5ee/oMXmP8nM+zPzTYrwuhNweWauzcxfAD+j+BIERX8YFBHvy8wXy8+9efkewL7lPn6VmTVDcmb+sGzDusz81/IYm0P4XwCXlnUv4a1ACHAw0DczLynbtgj4Dq1/Vq21tR63Z+bMzPwf4J+BQyJib+AY4PHMvLn8zKcCv69suzQz/2+5fi1wMvBPmflK2Sf+FTi9HW35z8x8LDNfAy6g6H/dyuPbDfhw2XfmZ+bL7ahXUjsYkqVt0/GZ2bt8HB8RO0TEt8uffl8GZgK9o/YUgy8BAcwpf3r/63L5vsCoFuH7JYowtvtG2vF3ZRv2ysyJmbmcYnTsuUq554C9ylBwMsUI2bKIuD0i/mQT34Mf8VbQO423RpH3BXqU9Tcfx7cpRgFb8+PM7E0xYvoY8NHmFRHxkXLawe/L9/ZSitHI1uwLfLHyPu5N8aVkIfD3QCPwfERcF62cdBkRoyLil+VP+qso3rPm/e4N1AzXpcUtnu8JLC4Dc7PnKEZuofgF4BjguXKaQfNJi/8CLATujmJ6zJTWdhYRXyynUqwqj3eXFm3ds9Kels/3BfasvFfnU3wOtbTW1nps2G9mvgq8ULZtz8q6pBhBr7ktxXFtz9v7eMv3s11tKbftUdb7n8BdwHURsTQivhYRPdpRr6R2MCRL7w1fpBi5G5WZ7wOapwFEtWBm/j4z/1dm7kkxJeCKcu7mYuC+FuG7dzmF4G/b2ZalFOGnpX2A/y73f1dmHkkxSvkUxcjhprgBaIhi7vUJvBWSF1OM3PZpcRzvy8w2p41k5gqK96Qx3rpSx5VlOweU7+351HhfW1gMfKXyPu5QjqiTmT/KzDEU71ECX22lnh8BtwF7Z+YuwLQW+10M/PHGDqXF86XA3vH2+cQtP4+5mTmB4kvErcCPy+WvZOYXM/NDFL8C/GPUmD8dxfzj8yhGjHctv2ysatHWZRTTeprt3eL5YuCZynu1c2YeU/OgWmkrxdSUHVq0qdYXu71brN+JYmrI0mr7IiIq7YW3v58reOvXmGYb3s9qW6j9JbPle7BPWd+KcsT+4swcRDHl41iKqRmSOoEhWXpv2JliqsBL5Zzgi1orGBEnxVsn9b1IEQDWU/wE/5GIOD0iepSPgyNiYDvbckdZz2kR0T2Kk9kGAT+LiA9GxHHl3OT/AV4t913LHyjmfNZUjlo3UczFfiYznyyXL6OYf/uvEfG+iNguIv44IjY2RaJlvU9RjOZ9qVy0M/Ay8Go56l390lBt53eAyeVIcETEjlGchLdzROwfEUdExB8Bayg+s9aOf2fghcxcExEjKUbLm00HPhkRf1G+x7tFxNBW6nmQIrh9qfxMGyhC73URsX0U16feJTPfKI9zPWw4+fDDZWhsXl6rrTtTzKtdDnSPiAuB97VY/2Pgn6I4uXQvijnZzeYAL0dxMmOviOgWEYMj4uDqTjbWVorpPgdExNAo5kI31mjnMVGc7Lg9xdzkBzNzMcX8+QMj4vgoTq47i438epKZ68tj+kr5me5LMc2o+WS9BcBhEbFPROxCMde56i8jYlBE7ABcAtyYmesjYmxEHFj+AvQyRXhurX9IepcMydJ7w78DvShGuWYDP99I2YOBByPiVYqRyi9k5jNZzGU+imI+6FKKeZlfpZhfWrfMXEkxAvZFihPgvgQcW47SblcuX0rxc/fhlCfB1dAIfL/8Gb61q2z8CPgkb40iNzuD4ifxJyi+CNxIMXJdr38BJkXEB4BzKALqKxQBuHoS4dvamZnzKOYlf7Pc90Lg02XZPwIup/icfk8xInp+K234HHBJRLwCXMhbo6Zk5n9RTDv4IsX7uAA4qFYlmbkWOI5invYK4ArgjPLLABRzaZ8tp5JM5q0T6wYA91J8kXkAuCIzm2rs4i6Kkwh/SzF1YA1vn05wCcX0hWfK+m6k+ILUHDj/jGLe9DNl+66mmK5RS822ZuZvy/3cC/wOmFVj2x9RfHl8gWI6zcRy2xXAScDXKPrrIGBecxtb8XmKLx6Lyn39iOJkTTLzHoo+8ggwn+LLZ9V/AtdS9IGeQPMVPXaneH9eBp4E7uOt8C2pg0Ur51lIkrTZRcTfAqdkZl0j+5tbOS1lCTAxM3/ZCfU3AT/MzKs7um5J7eNIsiSpy0TEHhFxaDntZX+K0e9burpdLUXEn0ZE73IaTPOc89ld3CxJncw7A0mSutL2FFcX2Q94CbiOYsrHluQQiikTzVN0js9Mr08sbeOcbiFJkiRVON1CkiRJqqgrJEfEuCjuW7+w1gXjy8sYTS3XPxLFbVeb1/WOiBsj4qkoLibfnou7S5IkSZtdm3OSy+sxfgs4kuKM3rkRcVtmPtGi2NEUlwMaQHEP+yvL/wL8B/DzzPxUef3JlhdRr6lPnz7Zv3//9hyHJEmS1C7z589fkZl9a62r58S9kcDCzFwEEBHXARMoTl5oNgH4QXm7ztnl6PEeFNeJPIzyGqDl9TjXtrXD/v37M2/evDqaJkmSJG2aiHiutXX1TLfYi7df+H0J77wHfWtlPkRxl6XvRcRDEXF1eSctSZIkaYtVT0iOGsuql8RorUx3YDhwZWYOoxhZfsecZoCImBQR8yJi3vLly+toliRJktQ56gnJS4C9W7zuR3HL2HrKLAGWZOaD5fIbKULzO2TmVZk5IjNH9O1bc2qIJEmStFnUMyd5LjAgIvYD/hs4BTitUuY24OxyvvIoYFVmLgOIiMURsX9mPg18grfPZZYkSWq3N954gyVLlrBmzZquboq2Aj179qRfv3706NGj7m3aDMmZuS4izgbuAroB12Tm4xExuVw/DbgDOAZYCLwOfKZFFZ8HppdXtlhUWSdJktRuS5YsYeedd6Z///5E1Jr1KRUyk5UrV7JkyRL222+/urer67bUmXkHRRBuuWxai+cJnNXKtguAEXW3SJIkqQ1r1qwxIKsuEcFuu+1Ge8958457kiRpq2RAVr02pa8YkiVJkjbB1KlTGThwIBMnTuzwum+44QYGDhzI2LFjN7mOj33sY22W+exnP8sTT2za6WLXXnstZ599dpvl+vfvz4oVKzZa5tJLL92kNnSmuqZbSJIkbcn6T7m9Q+t79vLxbZa54ooruPPOO+ue57p+/Xq6detWV9nvfve7XHHFFZsUkpv38+tf/7rNsldffXW76+8Ml156Keeff35XN+NtHEmWJElqp8mTJ7No0SKOO+44vvGNb9DY2Mjpp5/OEUccwYABA/jOd74DQFNTE2PHjuW0007jwAMPfEc9M2bM4MADD2Tw4MGcd955AFxyySXMmjWLyZMnc+65576tfGZy7rnnMnjwYA488ECuv/76Vvez0047AfDmm2/yuc99jgMOOIBjjz2WY445hhtvvBGAhoaGDXc53mmnnfjnf/5nDjroIEaPHs0f/vAHAH76058yatQohg0bxic/+ckNy1uzcuVKjjrqKIYNG8aZZ55Jcepa4fjjj+ejH/0oBxxwAFdddRUAU6ZMYfXq1QwdOnTDqHytcpubIVmSJKmdpk2bxp577skvf/lL/uEf/gGARx55hNtvv50HHniASy65hKVLi9tKzJkzh6985SvvmNawdOlSzjvvPH7xi1+wYMEC5s6dy6233sqFF17IiBEjmD59Ov/yL//ytm1uvvlmFixYwMMPP8y9997Lueeey7Jlyza6n5tvvplnn32WRx99lKuvvpoHHnig5jG99tprjB49mocffpjDDjtsQ9AfM2YMs2fP5qGHHuKUU07ha1/72kbfm4svvpgxY8bw0EMPcdxxx/Ff//VfG9Zdc801zJ8/n3nz5jF16lRWrlzJ5ZdfTq9evViwYAHTp09vtdzm5nQLSZKkDjBhwgR69epFr169GDt2LHPmzKF3796MHDmy5pSMuXPn0tDQQPNN1CZOnMjMmTM5/vjjW93HrFmzOPXUU+nWrRsf/OAHOfzww5k7dy7ve9/7Wt3PrFmzOOmkk9huu+3YfffdW53Csf3223PssccC8NGPfpR77rkHKC63d/LJJ7Ns2TLWrl3b5vSSmTNncvPNNwMwfvx4dt111w3rpk6dyi233ALA4sWL+d3vfsduu+32jjrqLdeZHEmWJEnqANUrKDS/3nHHHWuWbzkNoV4b2+bd7qdHjx4b2tytWzfWrVsHwOc//3nOPvtsHn30Ub797W/XdQOXWleTaGpq4t577+WBBx7g4YcfZtiwYTXrqrdcZzMkS5IkdYCf/OQnrFmzhpUrV9LU1MTBBx+80fKjRo3ivvvuY8WKFaxfv54ZM2Zw+OGHb3Sbww47jOuvv57169ezfPlyZs6cyciRIze6zZgxY7jpppt48803+cMf/kBTU1O7jmvVqlXstddeAHz/+99vs/xhhx22YdrEnXfeyYsvvrihnl133ZUddtiBp556itmzZ2/YpkePHrzxxhttltucDMmSJEkdYOTIkYwfP57Ro0dzwQUXsOeee260/B577MFll13G2LFjOeiggxg+fDgTJkzY6DYnnHACQ4YM4aCDDuKII47ga1/7GrvvvvtGtznxxBPp168fgwcP5swzz2TUqFHssssudR9XY2MjJ510Eh//+Mfp06dPm+UvuugiZs6cyfDhw7n77rvZZ599ABg3bhzr1q1jyJAhXHDBBYwePXrDNpMmTWLIkCFMnDhxo+U2p9iUof7ONmLEiGw+01KSJKnqySefZODAgV3djA0aGxvZaaedOOecc7q6KTW9+uqr7LTTTqxcuZKRI0dy//33txmutzW1+kxEzM/MmneG9sQ9SZI6WUNDA0C7f+aWOsqxxx7LSy+9xNq1a7ngggvecwF5UxiSJUmS3qXGxsaubsJG+QWt/ZyTLEmSJFUYkiVJkqQKQ7IkSZJUYUiWJEmSKgzJkiRJm2Dq1KkMHDiQiRMndnjdN9xwAwMHDmz1FtLvxrXXXsvSpUs3abuzzz77Xe23nu379+/PihUrNlrm0ksv3eR21MurW0iSpK1fY/03x6ivvlVtFrniiiu488472W+//eqqcv369XTr1q2ust/97ne54oorOjwkr1+/nmuvvZbBgwe3ebOTlppvUb2luPTSSzn//PM7dR+OJEuSJLXT5MmTWbRoEccddxzf+MY3aGxs5PTTT+eII45gwIABfOc73wGKS6+NHTuW0047jQMPPPAd9cyYMYMDDzyQwYMHc9555wFwySWXMGvWLCZPnsy55577tvJNTU0cdthhnHDCCQwaNIjJkyfz5ptvAnD33XdzyCGHMHz4cE466SReffVVoBiZveSSSxgzZgwzZsxg3rx5TJw4kaFDh7J69eq3jdzOmzdvw3W9GxsbmTRpEkcddRRnnHEGAIsXL2bcuHHsv//+XHzxxRva9cMf/pCRI0cydOhQzjzzTNavXw/A9773PT7ykY9w+OGHc//999d8L1euXMlRRx3FsGHDOPPMM2l5o7vjjz+ej370oxxwwAFcddVVAEyZMoXVq1czdOjQDaP4tcq9W44kS5IktdO0adP4+c9/zi9/+Uv69OlDY2MjjzzyCLNnz+a1115j2LBhjB8/HoA5c+bw2GOPvWPEeenSpZx33nnMnz+fXXfdlaOOOopbb72VCy+8kF/84hd8/etfZ8SId94Mbs6cOTzxxBPsu+++jBs3jptvvpmGhga+/OUvc++997Ljjjvy1a9+lX/7t3/jwgsvBKBnz57MmjULgKuvvrrVuqvmz5/PrFmz6NWrF9dee+2GY9lhhx04+OCDGT9+PDvuuCPXX389999/Pz169OBzn/sc06dP58gjj+Siiy5i/vz57LLLLowdO5Zhw4a9Yx8XX3wxY8aM4cILL+T2229/W8i95ppreP/738/q1as5+OCDOfHEE7n88sv55je/yYIFCzZabrfddmv7g9wIQ7IkSVIHmDBhAr169aJXr16MHTuWOXPm0Lt3b0aOHFlzSsbcuXNpaGigb9++AEycOJGZM2dy/PHHb3Q/I0eO5EMf+hAAp556KrNmzaJnz5488cQTHHrooQCsXbuWQw45ZMM2J5988iYd03HHHUevXr02vD7yyCM3hM8///M/Z9asWXTv3p358+dz8MEHA7B69Wo+8IEP8OCDD77t+E4++WR++9vfvmMfM2fO5OabbwZg/Pjx7LrrrhvWTZ06lVtuuQUoRrF/97vf1Qy/9ZZrD0OyJElSB4iImq933HHHmuVbTit4t/vJTI488khmzJhRc5vW2gDQvXv3DVM21qxZs9HtWtv3X/3VX3HZZZe9bd2tt976jvKtqVWuqamJe++9lwceeIAddtiBhoaGd7SvPeXayznJkiRJHeAnP/kJa9asYeXKlTQ1NW0YWW3NqFGjuO+++1ixYgXr169nxowZHH744W3uZ86cOTzzzDO8+eabXH/99YwZM4bRo0dz//33s3DhQgBef/31mqO2ADvvvDOvvPLKhtf9+/dn/vz5ANx0000b3fc999zDCy+8wOrVq7n11ls59NBD+cQnPsGNN97I888/D8ALL7zAc889x6hRo2hqamLlypW88cYb3HDDDTXrPOyww5g+fToAd955Jy+++CIAq1atYtddd2WHHXbgqaeeYvbs2Ru26dGjB2+88Uab5d4NQ7IkSVIHGDlyJOPHj2f06NFccMEFbV49Yo899uCyyy5j7NixHHTQQQwfPpwJEya0uZ9DDjmEKVOmMHjwYPbbbz9OOOEE+vbty7XXXsupp57KkCFDGD16NE899VTN7T/96U8zefLkDSfuXXTRRXzhC1/g4x//eJtX3xgzZgynn346Q4cO5cQTT2TEiBEMGjSIL3/5yxx11FEMGTKEI488kmXLlrHHHnvQ2NjIIYccwic/+UmGDx9es86LLrqImTNnMnz4cO6++2722WcfAMaNG8e6desYMmQIF1xwAaNHj96wzaRJkxgyZAgTJ07caLl3IzZ1qL8zjRgxIufNm9fVzZAkqUM0Xy2gqampS9uxLXnyyScZOHBgVzdjg8bGRnbaaSfOOeecTt1PU1MTX//61/nZz37WqfvZFtXqMxExPzNrnsHoSLIkSZJU4Yl7kiRJ71JjY+Nm2U9DQ8OGXybUuRxJliRJkioMyZIkaau0JZ5XpS3TpvQVQ7IkSdrq9OzZk5UrVxqU1abMZOXKlfTs2bNd2zknWZIkbXX69evHkiVLWL58eVc3RVuBnj170q9fv3ZtY0iWJElbnR49etS81bPUUZxuIUmSJFUYkiVJkqQKQ7IkSZJUYUiWJEmSKgzJkiRJUoUhWZIkSaowJEuSJEkVhmRJkiSpwpAsSZIkVRiSJUmSpApDsiRJklRhSJYkSZIqDMmSJElSRV0hOSLGRcTTEbEwIqbUWB8RMbVc/0hEDG+x7tmIeDQiFkTEvI5svCRJktQZurdVICK6Ad8CjgSWAHMj4rbMfKJFsaOBAeVjFHBl+d9mYzNzRYe1WpIkSepE9YwkjwQWZuaizFwLXAdMqJSZAPwgC7OB3hGxRwe3VZIkSdos6gnJewGLW7xeUi6rt0wCd0fE/IiYtKkNlSRJkjaXNqdbAFFjWbajzKGZuTQiPgDcExFPZebMd+ykCNCTAPbZZ586miVJkiR1jnpGkpcAe7d43Q9YWm+ZzGz+7/PALRTTN94hM6/KzBGZOaJv3771tV6SJEnqBPWE5LnAgIjYLyK2B04BbquUuQ04o7zKxWhgVWYui4gdI2JngIjYETgKeKwD2y9JkiR1uDanW2Tmuog4G7gL6AZck5mPR8Tkcv004A7gGGAh8DrwmXLzDwK3RETzvn6UmT/v8KOQJEmSOlA9c5LJzDsognDLZdNaPE/grBrbLQIOepdtlCRJkjYr77gnSZIkVRiSJUmSpApDsiRJklRhSJYkSZIqDMmSJElShSFZkiRJqjAkS5IkSRWGZEmSJKnCkCxJkiRVGJIlSZKkCkOyJEmSVGFIliRJkioMyZIkSVKFIVmSJEmqMCRLkiRJFYZkSZIkqcKQLEmSJFUYkiVJkqQKQ7IkSZJUYUiWJEmSKgzJkiRJUoUhWZIkSaowJEuSJEkVhmRJkiSpwpAsSZIkVRiSJUmSpApDsiRJklRhSJYkSZIqDMmSJElShSFZkiRJqjAkS5IkSRWGZEmSJKnCkCxJkiRVGJIlSZKkCkOyJEmSVGFIliRJkioMyZIkSVKFIVmSJEmqMCRLkiRJFYZkSZIkqcKQLEmSJFUYkiVJkqQKQ7IkSZJUYUiWJEmSKgzJkiRJUkVdITkixkXE0xGxMCKm1FgfETG1XP9IRAyvrO8WEQ9FxM86quGSJElSZ2kzJEdEN+BbwNHAIODUiBhUKXY0MKB8TAKurKz/AvDku26tJEmStBnUM5I8EliYmYsycy1wHTChUmYC8IMszAZ6R8QeABHRDxgPXN2B7ZYkSZI6TT0heS9gcYvXS8pl9Zb5d+BLwJsb20lETIqIeRExb/ny5XU0S5IkSeoc9YTkqLEs6ykTEccCz2fm/LZ2kplXZeaIzBzRt2/fOpolSZIkdY56QvISYO8Wr/sBS+sscyhwXEQ8SzFN44iI+OEmt1aSJEnaDOoJyXOBARGxX0RsD5wC3FYpcxtwRnmVi9HAqsxclpn/lJn9MrN/ud0vMvMvO/IAJEmSpI7Wva0CmbkuIs4G7gK6Addk5uMRMblcPw24AzgGWAi8Dnym85osSZIkda42QzJAZt5BEYRbLpvW4nkCZ7VRRxPQ1O4WSpIkSZuZd9yTJEmSKgzJkiRJUoUhWZIkSaowJEuSJEkVhmRJkiSpwpAsSZIkVRiSJUmSpApDsiRJklRhSJYkSZIqDMmSJElShSFZkiRJqjAkS5IkSRWGZEmSJKnCkCxJkiRVGJIltamhoYGGhoauboYkSZuNIVmSJEmqMCRLkiRJFYZkSZIkqcKQLEmSJFUYkrcQnhglSZK05TAkS5IkSRWGZEnSVstf4SR1FkOyJEmSVGFIliRJkioMyZIkSVKFIVmSJEmqMCRLkiRJFYZkSZIkqcKQLEmSJFUYkiVJkqQKQ7IkSZJUYUiWJEmSKgzJkiRJUoUhWe3S0NBAQ0NDVzdDkiSpUxmSJUmSpApDsiRJklRhSJYkSZIqDMmSJElShSFZkiRJqjAkS5IkSRWGZEmSJKnCkCxJkiRVGJIlSZKkCkOyJEmSVGFIliRJkirqCskRMS4ino6IhRExpcb6iIip5fpHImJ4ubxnRMyJiIcj4vGIuLijD0CSmjU0NNDQ0NDVzZAkbQPaDMkR0Q34FnA0MAg4NSIGVYodDQwoH5OAK8vl/wMckZkHAUOBcRExumOaLkmSJHWOekaSRwILM3NRZq4FrgMmVMpMAH6QhdlA74jYo3z9almmR/nIjmq8JEmS1BnqCcl7AYtbvF5SLqurTER0i4gFwPPAPZn5YK2dRMSkiJgXEfOWL19eZ/MlSZKkjldPSI4ay6qjwa2Wycz1mTkU6AeMjIjBtXaSmVdl5ojMHNG3b986miVJkiR1jnpC8hJg7xav+wFL21smM18CmoBx7W2kJEmStDnVE5LnAgMiYr+I2B44BbitUuY24IzyKhejgVWZuSwi+kZEb4CI6AV8Eniq45ovSZIkdbzubRXIzHURcTZwF9ANuCYzH4+IyeX6acAdwDHAQuB14DPl5nsA3y+vkLEd8OPM/FnHH4YkSZLUcdoMyQCZeQdFEG65bFqL5wmcVWO7R4Bh77KNkiRJ0mblHfckSZKkCkOyJEmSVGFIliRJkioMyZIkSVKFIVmSJEmqMCRLkiRJFYZkSZIkqcKQLEmSJFUYkiVJkqQKQ7IkSZJUYUiWJEmSKgzJkiRJUoUhWZIkSaowJEuSJEkVhmRJkiSpwpAsSZIkVRiSJUmSpApDsiRJklRhSJYkSZIqDMmSJElShSFZkiRJqjAkS5IkSRWGZEmSJKnCkCxJkiRVGJIlSZKkCkOyJEmSVGFIliRJkiq6d3UDJHW8/lNu79D6fr9oZafU++zl4zu0PqnDNO7SsfU9+1rn1Nu4qmPrk7SBI8mSJElShSFZkiRJqjAkS5IkSRWGZEmSJKnCkCxJkiRVGJIlSZKkCkOyJEmSVGFIliRJkioMyZIkSVKFIVmSJEmqMCRLkiRJFYZkSZIkqcKQLEmSJFUYkiVJkqQKQ7IkSZJU0b2rG7C16j/l9g6t7/eLVnZKvc9ePr5D65MkSXovcCRZkiRJqqgrJEfEuIh4OiIWRsSUGusjIqaW6x+JiOHl8r0j4pcR8WREPB4RX+joA5AkSZI6WpshOSK6Ad8CjgYGAadGxKBKsaOBAeVjEnBluXwd8MXMHAiMBs6qsa0kSZK0RalnJHkksDAzF2XmWuA6YEKlzATgB1mYDfSOiD0yc1lm/gYgM18BngT26sD2S5IkaRM1NDTQ0NDQ1c3YItUTkvcCFrd4vYR3Bt02y0REf2AY8GCtnUTEpIiYFxHzli9fXkezJEmSpM5RT0iOGsuyPWUiYifgJuDvM/PlWjvJzKsyc0Rmjujbt28dzZIkSZI6Rz0heQmwd4vX/YCl9ZaJiB4UAXl6Zt686U2VJEmSNo96QvJcYEBE7BcR2wOnALdVytwGnFFe5WI0sCozl0VEAN8FnszMf+vQlkuSJEmdpM2biWTmuog4G7gL6AZck5mPR8Tkcv004A7gGGAh8DrwmXLzQ4HTgUcjYkG57PzMvKNDj0KSJEnqQHXdca8MtXdUlk1r8TyBs2psN4va85UlSZK2ac1XjWhqaurSdmjTeFvqbV3jLh1b37OvdU69jas6tj5tHeyfkqQtlLelliRJkioMyZIkSVKFIVmSJEmqMCRLkiRJFYZkSZIkqcKQLEmSJFUYkiVJkqQKQ7IkSZJUYUiWJEmSKgzJkiRJUoUhWZIkSaowJEuSJEkVhmRJkiSpwpAsSZIkVRiSJUmSpApDsiRJklRhSJYkSZIqDMmSJElShSFZkiRJqjAkS5IkSRWGZEmSJKnCkCxJkiRVGJIlSZKkCkOyJEmSVGFIliRJkioMyZIkSVKFIVmSJEmqMCRLkiRJFYZkSZIkqcKQLEmSJFUYkiVJkqQKQ7IkSZJUYUiWJEmSKgzJkiRJUoUhWZIkSaowJEuSJEkV3bu6AZKk947+U27v0Pp+v2hlp9T7bM8OrU7qOI27dGx9z77WOfU2rurY+rqAI8mSJElShSPJktq0+2mXd3UTJEnarBxJliRJkioMyZIkSVKFIVmSJEmqcE6yJEkSW8fVV7zyyuZT10hyRIyLiKcjYmFETKmxPiJiarn+kYgY3mLdNRHxfEQ81pENlyRJkjpLmyE5IroB3wKOBgYBp0bEoEqxo4EB5WMScGWLddcC4zqisZIkSdLmUM9I8khgYWYuysy1wHXAhEqZCcAPsjAb6B0RewBk5kzghY5stCRJktSZ6gnJewGLW7xeUi5rbxlJkiRpq1BPSI4ay3ITymx8JxGTImJeRMxbvnx5ezaVJEmSOlQ9IXkJsHeL1/2ApZtQZqMy86rMHJGZI/r27dueTSVJkqQOVU9IngsMiIj9ImJ74BTgtkqZ24AzyqtcjAZWZeayDm6rJEmStFm0GZIzcx1wNnAX8CTw48x8PCImR8TkstgdwCJgIfAd4HPN20fEDOABYP+IWBIRf9PBxyBJkiR1qLpuJpKZd1AE4ZbLprV4nsBZrWx76rtpoCRJkrS5eVtqSZIkqcKQLEmSJFUYkiVJkqQKQ7IkSZJUYUiWJEmSKgzJkiRJUoUhWZIkSaowJEuSJEkVhmRJkiSpoq477knS1qDp0zt2dRMkSdsIR5IlSZKkCkOyJEmSVGFIliRJkioMyZIkSVKFJ+5tIXY/7fKuboIkSZJKjiRLkiRJFYZkSZIkqcKQLEmSJFUYkiVJkqQKQ7IkSZJUYUiWJEmSKrwEnNql6dM7dnUTJEmSOp0jyZIkSVKFIVmSJEmqMCRLkiRJFYZkSZIkqcKQLEmSJFUYkiVJkqQKLwEnSZL0HuWlXVvnSLIkSZJUYUiWJEmSKgzJkiRJUoUhWZIkSaowJEuSJEkVXt1CkiSpE+x+2uVd3QS9C44kS5IkSRWGZEmSJKnCkCxJkiRVGJIlSZKkCkOyJEmSVGFIliRJkioMyZIkSVKFIVmSJEmqMCRLkiRJFYZkSZIkqaKukBwR4yLi6YhYGBFTaqyPiJharn8kIobXu60kSZK0pWkzJEdEN+BbwNHAIODUiBhUKXY0MKB8TAKubMe2kiRJ0halnpHkkcDCzFyUmWuB64AJlTITgB9kYTbQOyL2qHNbSZIkaYtST0jeC1jc4vWSclk9ZerZVpIkSdqidK+jTNRYlnWWqWfbooKISRRTNQBejYin62ib2hDQB1jR1e1o08W1uoq2dfZPdZTnvnpsh9bXWX0zLn65Yyu0b77n+Hezw+3b2op6QvISYO8Wr/sBS+sss30d2wKQmVcBV9XRHrVDRMzLzBFd3Q6pFvuntlT2TW2p7JubTz3TLeYCAyJiv4jYHjgFuK1S5jbgjPIqF6OBVZm5rM5tJUmSpC1KmyPJmbkuIs4G7gK6Addk5uMRMblcPw24AzgGWAi8DnxmY9t2ypFIkiRJHSQya04R1jYiIiaVU1mkLY79U1sq+6a2VPbNzceQLEmSJFV4W2pJkiSpwpAsSZIkVRiSt1ERMTEiHikfv46Ig1qs6x0RN0bEUxHxZEQcUmP7nhExJyIejojHI+LiFusOiogHIuLRiPhpRLxvcx2Xth0RcXBErI+IT7VYNi4ino6IhRExZSPbbrQPR8Q5EZER0aczj0GqiojpZR9+LCKuiYge5fKGiFgVEQvKx4Vd3Va995RXIftKRPy2/Nv5d+Vy+2cN9VwnWVunZ4DDM/PFiDia4hrUo8p1/wH8PDM/VV6ab4ca2/8PcERmvlr+kZ8VEXeWtx2/GjgnM++LiL8GzgUu6PQj0jYjIroBX6W48k3LZd8CjqS49vrciLgtM5+oUUWrfTgi9i7r+K9OPAS9h0TE+zPzhTqLTwf+snz+I+CzwJXl619lZsfe9UTvGRGxC/BKZr75Lqr5NMX9K/4kM9+MiA+0WGf/rHAkuYtFxK0RMb8crZ1ULvub8lteU0R8JyK+WS7vGxE3RcTc8nFoa/Vm5q8z88Xy5WyKG7lQjvoeBny3LLc2M1+qsX1m5qvlyx7lo/ksz/2BmeXze4ATN/0d0Jaqs/pm6fPATcDzLZaNBBZm5qLMXAtcB0yo0a62+vA3gC/Ryt09tfXr5L7ZvI/uEXFcRNwG3FJv2zLzjvLvZwJzKP/26r2jE/vnGODpiGiMiH02sXl/C1zSHLQz8/k2yr+3ZaaPLnwA7y//2wt4DNgLeBZ4P0Uw/RXwzbLMj4Ax5fN9gCfr3Mc5wNXl86EUf7ivBR6iGBXesZXtugELgFeBr7ZY/mtgQvn8Hym+2Xb5e+mjYx+d1TfLeu4r+9e1wKfK5Z9q7qfl69Ob669s32ofBo4D/qN8/izQp6vfRx9bT98sy3wYuAz4HfB9il/kmtftXP5NrPUYVKmnB/Ab4OPl6wZgJfAwcCdwQFe/jz62yv7ZB/j78m/fXcBJwPblujb7Z9kH/xmYV/bDAeVy+2eNh9Mtut7fRcQJ5fO9KYLBfVn+tBcRNwAfKdd/EhgUseF+6O+LiJ0z85XWKo+IscDfUHwDhWKKzXDg85n5YET8BzCFGtMlMnM9MDQiegO3RMTgzHwM+Gtgajln6TZg7aYdurZwndU3/x04LzPXtygPEDXK1hoNrtmHI+Iyij/+R9V7gNpqdUrfjIgTgeuBrwDDq2XK10PrbOMVwMzM/FX5+jfAvllMYTsGuBUYUGdd2rp02r/rmbmC4m/ov0dxLsY1FP9+D6mzf/4RsCYzR0TEn5fbfxz7Z02G5C4UEQ0U/4MckpmvR0QT8DQwsJVNtivLrq6z/iEUo2xHZ+bKcvESYElmPli+vpEiYOwN/LRcNi2LOykCkJkvlW0bBzyWmU9RBpGI+Agwvp72aOvRyX1zBHBd+Y9CH+CYiFhH0Tf3blGuH7C02jcp/ni/ow8DfwzsBzxc1t0P+E1EjMzM39fRLm0FOrlv3gN8geKusYdExPeAWzJzTbnvnSlGAWs5Lcv58xFxEdAXOLN5ZWa+3OL5HRFxRUT0KUOPthGd/e96uY9BFH30BIpf5a4ql9fTP5dQTHWDYhrR98D+2RrnJHetXYAXy/+R/gQYTXEC0uERsWtEdOft833vBs5ufhERQ1uruJyvdDNwemb+tnl5GRYWR8T+5aJPAE9k5uLMHFo+ppXzpHqXdfWi+J/+qfL1B8r/bgf8b4rgom1Lp/XNzNwvM/tnZn+KgPu5zLwVmAsMiIj9ojgZ7xTgtmrf3EgffjQzP9Ci7iUUo4EG5G1LZ/bNlzPzW5k5AjiP4he4JyPia+X6V1r0xeqjOSB/FvhT4NRscYJVROwe5be3iBhJ8e/vSrSt6cx/14dHRPPJ808BQzPzb5oHDOrpnxSDDEeUzw8HflvWbf+swZHkrvVzYHJEPELxTXM28N/ApcCDwFLgCWBVWf7vgG+V5btTnDw3uZW6LwR2A64o+/268g8/FCdNTS+DyCKKb6RVewDfj+KKA9sBP87Mn5XrTo2Is8rnN1N+E9U2pTP7Zk2ZuS4izqaYZ9cNuCYzH2+leD19WNumzdI3M/Mh4KyI6MlboaIe04DngAfKv703Z+YlFHPu/7b81WQ1cEpmenLptqcz++dq4DOZ+eS7aN/lFH87/4HifKPPlsvtnzV4W+otUETsVM4L6k7xc8g1mVn32dVSZ7Fvaktl39SWzP65dXK6xZapMSIWUJwV+wzFzyPSlsC+qS2VfVNbMvvnVsiR5K1cRHyG4kSTlu7PzLNqlZc2F/umtlT2TW3J7J9bDkOyJEmSVOF0C0mSJKnCkCxJkiRVGJIlSZKkCkOyJEmSVGFIliRJkir+P9GNMV1LGJo7AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# Subgroup Perturbation Test\n", "\n", "np.random.seed(123)\n", "pmt = Perturbation(\n", " attr='age',\n", " metric='fpr',\n", " method='ratio',\n", " threshold=1.5,\n", " #proba_threshold=0.6, # Outcome probability threshold, default at 0.5\n", ")\n", "\n", "pmt.run(\n", " x_test=x_test,\n", " y_test=y_test,\n", " encoder=estimator[0],\n", " model=estimator[-1]\n", ")\n", "\n", "pmt.plot(alpha=0.05) # default alpha argument shows 95% C.I bands" ] }, { "cell_type": "code", "execution_count": 7, "id": "388c1128", "metadata": { "tags": [] }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "model_output = \"margin\" has been renamed to model_output = \"raw\"\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmsAAAI4CAYAAAA1Vq69AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd5wcZf3A8c/MbL29vZa7Sy69h5CEAHnovSolUhQVkSJFRREVESyAiCiCKCLiT1ARBCw0EaRX6eUJkEB6Qnpyvd9tnZnfHzN3t3dpl3K53PF981oyO/WZ2bnZ73yf55k1XNdFCCGEEELsnsz+LoAQQgghhNg8CdaEEEIIIXZjEqwJIYQQQuzGJFgTQgghhNiNSbAmhBBCCLEbk2BNCCGEEGI3JsGaEEIIIT5RDMNYaRjG9B7jtGEYRxqGcZ1hGF/oxTquNQzj5r4rZZfArtiIEEIIIcRA4LruNf1dhp4ksyaEEEII4TMM427DMC7xhwsNw3jYMIxFhmG8YBjG33pk00YYhvGkP/0JwzDy+qJMklkTnxTyUx1il3v88ccBmD17dj+XRIjdktE3az29+/XefWRz23nIMIxkzvvJm5jnGqDBdd09DMMoAeYAD+dMV8B+QBPwDHAW8KftLPlmSbAmhBBCiE+iz7mu+1HHG8Mw9CbmOQr4FoDruvWGYTzaY/ozrus2+su/DUzoi4JKNagQQgghxKYZbLlmJjczZ9NHSTAJ1oQQQggxiBg9XjvkJeBcAMMwioFTdnSF20OCNSGEEEKITbsOKDcMYz5wH/A6Xvu0XUrarAkhhBBiENl6Ns113bGbGKf8wZdzRrcBZ7qumzQMowB4DbjHn//aHst3e78zSbAmhBBCCLFpxcBThmFYQAT4u+u6z+/qQkiwJoQQQohBZOc9EcR13Wpg1k5b4XaSNmtCCCGEELsxyawJIYQQYhDpm2ft9ifJrAkhhBBC7MYkWBNCCCGE2I1JsCaEEEIIsRuTNmtCCCGEGEQGX5s1CdaEENults3hxeU28+oNFtS4ZF2Xz+5hce5eVn8XTQghBhUJ1oQQm7Wm0eGfH2UZX2TwQY3LK6vgzOkmp0w22fd37VTapvfTxQaAy+MfphlZkMcxY01WNzm0pGBaubS2EELsSpJZE0IMYu+sc6hLuKxudrl3rsPrla43IevQcQF8ZY3NL1+zqUybkLbBBcN1IWzhRoMcd1+GIA5p25s/YMGs4SapjE1JxOB7BwU4foJFwBp8F1QhhOgLEqwJMcjVtbvcrm3qEy4jCg0+M8liyhCD2naXhqTLpBKTZ5dk+eIDSRraXAgHvBcGmAa4btfKTMBxWdXoetP9Sa5hkJfM0h4M4AJptysQy9rw9joHsi6ks7y4JEskZvK9w0Jcf5hcgoQQO9vguxGUK6UQA1hLyuXtdQ57lhkMj3dVN/79I5vb3rGxDXi3Bi8DFvDakl3xUgYjY3txlmFgBIDmjBeTmQYETLBdLzCzAcePyCwDQv42HBfast0LY+ZcIA0DcL1xHct3DGcdkhmbn78AN7xuc9RIg3TK5phxJj8+IiQZNyGE6EGCNSF2Q68uz9Cedpk6PIBlQsY2iAZc/vKBQywE+1QYfFwP33wiTXtrFkyT/KjJiZMtGlIuz63wV2R0vMzOLBgYuJYfkDngpvEyaZYBlullwPCmeXWcfvAUyAmiOoK6kIWVscnL2sRMaO+cwfUDOz9os11My8DN2rgdd73JLG4kwAsrHcg4vLrK4bElDtcfHyZguHznRRcHuO4Qg6klMPtfGdYmTEbmw1Oft9ijdPs6Mrxf6fDN5xzygy7HjzdJOQbnTzeoyJcgUYjBYfD9LRtubhWHEIPXgDnRf/JEO794PkG2NOYFUa4LKbsr2+Ua/hMS/SpKw//X8asmOxiuF3gZQNDyAiwjZ7rjV012MPGmOzmF6Zjddb1gLWR1vU947dWw3a55LT/zZtEZp3Vsd0xNC6siIW96IkOe6xJ0XBwD2stj2KEApLJdZQyanfsWbkuTioW6pjkOtGaZUG7xxxMsQkG48V14vwqGROC6vR2s9izTJwa5Z7nBv5dCzHRZV2+zJumv16AzGzihCO45wWB4zGRc0cYX+kTG5Ya3beZUwl5lcN4MiyklG8+XdVxMA0y/nI8//jgAs2fP3mhesWkbViV5//UmaqvSxEuCHHFSCSWloW7zuK6LY4MVMHjzxQZqqzNM3jPG0JEhikqCO79Qc5ZBYQwmVkA6AyF/G7nDtg1AdnEt7kPvYiTbSTeZYAUJnjYNq7KS7IJaXNsi+NEiTDUGfng6BAM4c9dihAM4Q+LYqxoJTB4CqTTuPW9gRIOYXz+q628r5xhwx4u489eSDUYxywuxvnUkRiy88/e/7/RNVGV8qfv13v37gI/eJFgTnxS75Yl+p87yxlqbU/Ywue1tm/nVUN3metWWkYAXQAXN7lWOltEVbOQGX66XwfKmud0DMQM/0DK85V1//kxOZNZRjdm5WM7yLl4wGDK95cFvg5Yb2eEFdKYBQb+Mjl+mgEm4PUPKr4q12tPkt6c7F0tHgyRK88B2vCCwo8xhCwwD07ZxQj0qAlrTXmDp4JUrbIEBAdthRGOCEc1JsgZ8UBIjHQ36wZnZdcw6gtMOjhfY/vAAg7nVsKjW5WszDY4ea/KpB7w2f1imHyDDp8YaFIYNzphi8LkpJr95N8vlL3nHbHIJFAShobGRKXlN/OOc8QRMg6YUDMs3SNsute1Qm3BZWOdyyAi4bz6sbnb51iyDdH2We15JsD5rUeLaLFyXJRAw+OZREfaflcfQPKhLQF4Q3qtyqW6Hz042MIzu30lNKRfbgZLolr+rVje7vF/lMLHYYFrpru29a9suLU021ZVpFr7fzCuP1JB1DVzTK4frugwZHiZtQ8KBBBY0Z8B2Cdo2lutlYFtDIbKWScAyOPWUIvaeGsJuTjNiRiGhvK4sbGurjWlCXs442pK4c1ZCIgtHTMGI+AFY1sYt/wo0tHplCYchlcUN5kMmgUUaOy+GGTGhvsVbP8OI0EiQJC4GSYoI0UKGKO0MB8AgQyErcQJhkm4pITuFi4uNRStFOJgUUYPl3zmlI3lkYybZFofo/iMI//4s+I+m9SfPsog9yRKkgvVUWLWYb1xJeP9RuDUtEA1i5Ef69gPcMX0UrJ3VI1i7X4I1IbaHUmossAIYpbVeuws2uUMnuuu6nV+EbSmH5Q0wvtggP2ywuNYmGjQZXWiwtM4haMHYIu+L5vnlNvd9mGVhjUtVC1hBgwNGmtx0tMkNr9r84R174405jlfajsyS4/Zo5G90vToya+DN57heMGUaXjaug4E3PmB2ZbtstysIM/Feabf7unOPWsf7jvW7eL1EO8YFza5Lb267s4zjBXHprpWZWZv8xkTn7Kn8EMniKGRsSOUEgIa/rXBONszF+5/rT7ed7kGXH8TGE2mmVLbwXkkMJxLwgt+O49SRhOwIeDuCV8OAVAY6AsPc8Z3bzvkc/ONSGIKmNN35yw5JZnBwaYiGu381uXhBtQvBjEMm6AUPpuNy7MfVBP2a6OfHlZIJWl6PW8fFNU0sE2zHZUxzgom1zSwZEqc6FiETMIkGDe78lMH6VrjiZRfXdjFsh8PGGHx5ZoD1C9oYa2cITYzx6gZY8VwVdgqq8vNYXB4nGDYpiBgcNdyhvS5Dfp7F704JUhCzeGuty/vrsswcZlGe53LHMwlSpsmFx0bZq8xg7foM8XyT4qIAC5Yl+dXjCT6qdRlT3UJRicnhM6NM2yPKuKl5nPlAmuplbYyuaqGisb3z0ISyWVzT6vpM/XPfALJ4bXdcvOaUJpD0O7WYjkMiFPRORxeGNTRR2NZGuDjEsGFBaj6oZ21JMVUFBYysrmVsXpYDThvCnj+5DWttPXPK92ZBySTysgmOWPcmxdlmavafQcXr72D6H7yLgUMEk6T/zvu/kXNiuICDiYmDQxiTFAbQwHhcurJ+cdYQoJ0shTgESRInSxhwyeAyhLrOeZNECNJKhAQuUMVoCqimgRLWMt5fDmbxCrWMpClWwZC21ZRRCbi0GUWkiofjxiOsiw7FHlfO0KXLCHxcjRXIkF8CwR8cg/XNI3AX1WCU5+O2pUk9sQhGDyF68mTctQ20PbqY9n8vJbLfMApuPG6jm4PtIMFaL0mwJvrFQArWvv5Ehj+/5zB5iEG+5fDuem9VQ2PQlnRpTQOWQSxi0OZ/Yf/6+AAvfGzz5HK3e5DTcXEz6B6UdCtpTsDU8d7JLb6frQqaXqaogwlYJoXJNHntGeryQl29MoNmV4CVK3cbiaz3PuR/UZpsnDlzXHAdr1q1oxo2N7DsKJ+Vs96OoCpld2v/FkxmCLWlcYIWieKoN76jurcjsHS8rFy3zgsdbMfLdOUemx7ZRiubxXaMrv3v2IeeUja0ZaAg5O1/z0C1Q8e4TWU1NzNvaXuKmVWNLCvOZ1VRbNNfT64XPeals4xsSlDRkgTD4MOhcepj4e6Bi7/eoO2QsUy6Is9NsB1oTnuzRCyIecHCUQvXsHBYMYesq6cuEu1svNwQDjBnZHHn4iXtKY5aXUdryOLtUcU0tvmPcDEhPwAnrqyhIRLk9VFDKMRh79UNNJomLflBhtS3YgVMXp4wHNeAE5asY3pNE2nL5K2RpYxrbCcv64DrYjkOrmF0Vnu7hhe0hhzXC1I3sYcu0BYKYudkhNOWSSyRYnhVPVgGzfkxRm6oIWg41BTE+WjMSG9djssB8xczuqGS2aufpt2K8vCkUzvXvUf9Eo5a9xoZI4jp2jQxFAOHQqroOOIbl8mghVIaGImLQRHryKONIF5WrpbJmP4SLlDIxwTIkCEKhGlmWOeaLJLk0dJ1M0OYfGo7p7dSRJISTNLEWUsjZdiECJBmDVMAGMVSSqnqXKaWMWSI4gBrjSGMdmsxcMkQxMWkhA2ESZAmimU6mE6WDBHSRGgJFFKQrSVNlHyavcsXEYwLDqXgT6fsSNDWR8Hal3sEa/cN+GBNOhiIXlNKfRu4GBgBNAD3A1dprW2llAt8CzgPmArMBT4PnAFcBuQBf9Ra/9hf3Vz/38X+sjdqrX+2q/alt15d5XDHHC9gWVjrdmvPVdVG13uDzkAN4Lr/Zb1MS0fVJHhBR4eO7NamAgfT2PwlzHEg6VeJpoB42AtE/GApvzXN8Pp2lg/JJx2wuoKIgLnpbXWWJyfL1rHtjqxW7nIBA+yc6qOI1ZXy6OQHhbbjZco6Mle51aOWQSYQIhPPaV/juv76emQM3Zwy5X5LBvwqScfxgtbc2jt/v23L8trPbYnreoGa32Gic987snebXMb/X0dZN6UjE+fCC+OGbnn7hoHpuMzc0ETI9oKvyliY+rxw96Awx7DWJFWxsPc5b269Gcc77gWhbm2e/jdlBGe/vZj2/LxuXwJ5GZuTl1SysiiPj8oLqM8Lk7JM4mmbvNYMjUZHdhLyW9PEMlke3WM4acukHWgbVkxz1j8uFXlY8SCOH0w9N6GCaTVNhGyHqdXNmB03GobRFaj577Om1wkm5bpEMllcw8A1IJK1/ecvuwRsG8syyRoBLw43IJzNcuRb8wllvBOyLRrCCRi0FsVojnZVB7qmQXMsj0RLlPpYEaFU957NtuGVLehmeC9wBGG/SUELQxjJMrIUAGDRhkUCgLVMJkURAbyMdiMjiTEPGxMLh0JWkaCUNAUYpLHIdJQGkywGNq5/sgZIEaQFh7D3p4NDR1CeJUSSIf7HECZBKWVsAII4uLiYrGdct2xfx3bA+zMZ7VZ3Bo5BMiSJUs8wKlhJmHYM/7pm0opNACNrkyBGgR+oAYRI0vKXOUS/tBeho8cj+pY8Wlxsi7XACUABcApwPnBhzvQvA6cCZUASeBEoBiYARwOXK6UO9ued6f87RWud39eBWktLy3YNW9v5F1KWt4mRPb/Uw6YX/FhGV4N8k66OAG5OVq4jk2P3yHRlnW5ZrYhtUxcNdX2Bd3wB2psIKGyvFyZJ28ugBUy/qjAnSAoYfjs0utp4dXTyDBpdZTVhozZuGcer+kw5Xjk7MmS5bd7sHst0BmO9vBE2/AxcZzu+jiBrE/vbUU2cw3Sc7tO3paahI7jdQtlimSwhZzMZ1Jz5wMuUhXKORyzjV2O7PY6RP254a5LSnHZ/XedLbnDtf6Y9jqdjmrQHAuTZDmv8Th8u0GKZxLI202pbKG1PkZfOEvLPuVSPP4Zw1sExDNI541O5QRfdzojO06ZjOLecPfLGXT2GDYNkMIBtmdimSdKycIFoKk1+Ko1tWp1VlB3zV5cWdL6NJNOEkxmCyQxDWlo7s3SBbJYhzS0UtzdQn1fIsEQNe9YtAtcllmlDVX8AwNLQlM5ADaCFErLk01GHbhPznitImDqGbxQeGbidAViQFHHWEaWBOM1kKcAhiEEQA4c4NYRoI0IDMSr9gC5FgDQZTLw7Itt/5W6j4/82Jg5lbGAky6lhOFmCfvmiZMjzj31208ldTNwee2D4+5AmSICcnty5n5H/97y919i+4GJ0ew0GEqyJXtNaP6y1XqG1drXW7wP3AsfkzPJrrfVarXU78BAwDLhWa53WWs/Fy6btt+tLDvF4fLuGDx5l8v2DLIoicMAIgxMmGIQtLxj72iyTCcUGQRP2GGKwR5lBwIRJJQZPnBXijD16VDtmnI0zVyGrsxH9Rr01wQ+YTK8NVdD0eod2NJYHb5mM67cdc2kMB6mOhbt/YXdmqDre+6+OdmsdIzvGd267x0HsVu3XY17L6L4O1y9T7rIdPU07OiZk/cyP7XY+RmTjZEDH+M1VS7obHTPLcZmxoWnjef2ylbSnqWhOUJBIM7mmlWjW8aoHXdfrtGA73dq1BXMD5J7X/a18DwRth/K25JZn8j+rlGXQEO7Kc1V2ZB07gsKcwLCiNcmI1hTxdBZwCWdt9qpqpqw93dW+DrxzJ2h02w6uy+HzV1JRW0djIMCotjY+KoiwMB5hXE5ZQ1mHEa1J6vJCzCuNUxfsaC0GWAbhIARcl70rGwEwcZnR2kbYD05Dts1hy9d1BpAzKutJmgZtQ2MEXO9zMh2XQCaLYxj+k2Jc7B7noZFzLqeDAVrCIUJ+z8uMZWLlHJeA47Bh6JDO96lwAAMobGwjmMwSy2SIZjPkpVLEA03sXf8RqwMjeGivT5PNcxltr+ScRf+iKN2MjUW7WUB7sKudmRPIYnTrLt2RrbIBhwRhP2SCPOqxuqecvT4ztPlBXBCbOF5GLESABPmsJ0ZVTlbMpY6hNDCMjpZ6FglMmjH84SAt9Ewfx2kkQpYGxlDDBNYxhjh1xGiimHUYfsDnAhmCGLiESWDEw2THjMANe/ucJEojRRTSSIQ2EuSRIUiWIIloCXnfPZjQEeO8bW7nNVb0jlSDil5TSp2JV6U5Hu/cCQFv5cyyIWe4HajWWjs9xg24v9Cbjgtw03Hb/qfywOfDVLa41LQ53PJWlrAFv/mUxY+fs3llrcucWqcrg9bR7sb22wR1tFPLbbtmGF6qryMbZ7s5z0UDLNf7auioduy44PdsfN8xEDK8aspcnVk8/33G70Dgul23do7rNYy3DTBzojYTvzcqOY8R8ctgu11tzHLb4HWsO/fb2Q/AYskMCcvEMTs6RfQoZ8b2n/fWtWwknWVKTSsVrSmqW5JU5fesRjQI2g4bCrw2cs2RIKXtaRKxsBc05xy2jkzfSUs2MG9oIR+X5Pc4hl2GxaCyrfs4E5fGSIgPhnU9diJo+R1kbberirhjpGvw4bA4xcks6YBJa27vV9fFNAwKI7BXNMveboI1I8MsyYsRtB3CIZg3tAADl7P3gBuOsijNg5vfsnl8scuSFq+DzIkT4Iz2Wkbn24y9bh8+Isqf38/y6jKD/IxNJNGG02YTHRPlR6dEeWqFwZiCOH/cx6C+3XsI87ETLaraIBbKY8XSGM0tNuP3tIiFDYojZVS2OLyz1mFS1KHAqODhZxqpWt3O1KIUB589mrH7FvL7X61n4XuthKIGmaRDvD1NezSC6TjEMg6pgEXWsjCASDpNJhDAMU0s28a2LDKmSdBxKEgkSQcChGyvSjFgOzTForTkhXENl+XjRzBqdIiUaeEWRqhY0UDEznD+uUWMPe0L2DeEGH7bU6xdG2VN4QiCZJkzZjqjx4QpGF3GmP8uYb4TpiVcSMhJMjOhsUj5QZaBSavXd4csI1nBksgeNJtR6oYGOHrtIlKZGK2UUcxqTBxcrG6dDLpOpY68Y9ffY5I8ljOTJDECZMgSxSRDO0W0kk+IDA4RWphMmFaKWE/Y74BQyyjcWIh21ySvvYkgBrVDRjJ6TCNGQ4ziz+1N2zKb7NursdpSWCOiFPz9KwRmVhAE3LYU1LeRN7KYPNsh/cpK2l9dT3RUnGBZhMBew4iPKdr4D0H0GelgIHpFKTUKWAmcDjyltU4rpW4GlNb6SL/d2WFa69f8+c/Da882MWcdLwPPa62vV0qNBlYxADoY9JXFtQ4taZeCEHz2YZuqNhgfd3h7Te7jNPB+eSD3+WIdAZ7t+o+i8OfNDdByBwM5wZQDnQsEDC/7lXK6V2vmRiMdj94ALzy36R5AWh3ZND/wM3OCMcf1Gu5bRud8gbRNNh72AsyOnqsdy/ubHtqYYGhTgvZIkGXlcf87zO3K3nWWzfGyin47uJL2FOPq24mlsxRkvLZNS6MhFpXGvWdc+Luel8rSnhMIhTI2ab8nZkHQ5Zw9vIzN0JjBpfsYLF/Yzm9ur2V5PMoHw4rIWiZ5QYPnz4BgwKIgBJNLDB5danP+kw6WCdcfanDaZItXnn+SxkyQpaXHMKXE5fy9ArSnXeZWOowpguKoySNLHOZUuXxvP5PSqEEi47Kw3nv223dfcJhf53L1wQafnbLxDUMy6xKyvOe6taddL+m6gz30UimHcLjvK13SKYdQznYaatKsWtTKg7etpdU2cf1sW9Bx2O+EUuJhMEMmL73aSltdiuIWLzBJleeTdg0yCYd0IIDlOhREDM44r5wp0/IoGdKL5659XAm1LbDnSMiPdo23bdwv/obsI+8SMByyZeW4Y0ZhFZi0rqrl3eRYKporGZuoJpTOUFkY45/qJBwXzpjzLPmNEWyCWKQxyJJPHVZnmwLvxszEJW0GMa00VpEFNS1YpEiTx0r2wjCgrLydgtQGjFgI6/rT4byjSL+5muQhv/YfpWiQZzQT+s3pcOIsGFuO4be/dB0XN5XFjPbB8+d2XJ/UUbrG2d2u94Z774CvC5VgTfSKUmoqsAA4BHgTOAD4D7BwO4O1KNAKHKu1fmkX7MKAONFtx+WIu9O8vqqjvRLe5cwyiQa9DpvejC6ksxAJds8cpbM5nQkM/7louR0b3G6dIjp/PqrjeWudAV9HcNgRFPrzppzuHSXAq57N5mTgOtbtuNCc6mq4n8oSydiUWwari/xGfR3BXMTqth+m4xJKZkkGrK5qPIfOIDFiwdCwQ1vS4ZsqwLVHBGhMujyuU/zr9QR22mHWxBAH7h1h8lCLxhQ8vszlqRUuyxtdmhIurmFgOC7BoMFjp1t8atzmA5Ss4/L3BS7/Xe4wvczgxweaWJvqodqDPBR3+7iuy+tP17Pwg1am7Bvn8E+VdJvuOC4NlSlihUEiMS8oqa7OEI2axOPb98sWO826OnhjMew9FkaX4S7dAK4BE4diJNNQ3wrjh+K+sgRnbT3GPmMwplZ0BtlOW5rEk8sAg+iJEzBjoc1uyl5eR1avJTA8gjVzFBRsqrHsbq2PgrVzegRrf5NgTXxyKKWuwevxGQJewsu07b09wZr//kfApUAE+JXW+ud9WPwBdaI3JFwKwrCywWVNk8uBo0yCFry62iFswUGjLBbVufz81Qz3fdi1a2qoS8AyeGsDXdWoucGV43hfHEBeIk0iL+i9denetq2jmtJ2vSAtN7OXO6+BF2x1VJd2CPmdCTrae3VUf6Zs4okMLYEeWaKoRShk8sMDDI4YZTA8BvU1WZ6Zn6GiIshv38mSbsoybXyI2XuFOGeaQTiw/dff96oc7prnss9QOGeaSbCPfo9UgjUhtkiCtV6SYE18UgzaE31ts0tr2mXKEO8J9o7rcv2rWV5c6ZLIuLxTZXQ9gqM9DZZJIGCQtb3awdP3MHlsmUOz7QdlWacr+2YaXuYsl+O3q+vsTED3Xp3WJpbpkHW8bFpOTe/IONxxWpATJwy+JrQSrAmxRX0SRDnGud2u96Z7z4AP1gbf1VGIT5iRBd3bcpmGwTWHB7nmcK866Za3suj1Lj8+zGJauddI3nFcKluhPAYBy6A943LEXSner3Swt9QlNOs/Oy3teFWbQbPrkRsd8VnPG8Buz0yDkOFw06eDNCYNhscNLpxl7YwnoQshxKAlwZoQg5hhGFx20MYNi03TYHjX46jICxq8+zXvoaENCZvpt6dZ3+Y9aiPPcGi3u3qohsMmd342wLn/drplyDoUmd7PSzVnDcqjsO9QWNIIU4pdfn24yZSyWB/trRBCQB8l7PqVBGtCiG6KoxZrLouwusmlPGaQFzJYVOvwYbXDpBKT6eUGAdPghjfTLKp0MICRzQlcXNbGwvzrixGOn9jPjbyFEGIQkWBNCLER0zQYW9x1d7pHqckepd3bob12TpDr37BpbrY5YliUZsNCjbA4cJQ8a1sI0Z8ksyaEEAAMiRrcckwAuYwIIUTfkqusEEIIIQaNwfJ7oLkkWBNCiB3Umnb423yH8iicMN4iFhp8XxZCiP4jwZoQQuyAORuyqPtzx9h8cLbBzKHSyUKI/jH4bpakJbAQQuyA/e/feJy618V2NvFcEyGE2A4SrAkhxA7YVEiWBQK/cZB4TYhdz+3xGgwkWBNCiO305MfZLU7/U+WkXVQSIcRgJsGaEEJsh0W1WU56ZMvzPNEygeasNA0WYtcyerwGPrmKCCHENphbZXPIP1zatpxU8xl8efnRHNOaZVi+XG6FENtHMmtCCNFLGdtl73t7G6h1sKj4P5dP/yuL0/NH7oUQO52L0e01GOxWwZpS6mWl1FX9XQ4hhOjJdlzO+I+9fQsbBs+sAevXNic/kqUtLUGbEKL3JC/fg1IqqLXODOLtGYCltd6m3IAQg5Hjujy42OGej1xWLW9kyPoqPr9yLi/sux/vpfM5fvEH1ObFeXTGAd4Cxg7epbsu78xtZOw8i9pYPrgworGW65/5FwsqRvGl9R+x9wFDYfIIeGcZNLRBSztc9Tn4cDXc9wqsrYXhJRCPwMK1kM7CxOFwxFRYVQfvLYcN9V431YAJhXnQloJ0BvKjcPQMeH0ROA4UxqCqEcoKYJ9x8OJH0Jb0ylqcD9PHQH0zbGiEVAYqimHJesCFycPhyOmw9zhv2to6b13LNnjbG14Ci9ZBUQziUW+eseWwvt47juWFMH4YPPQGjC2Dgigs2QCNbZDMeGUPBCBowYRh8NvzvX27+T/QlICABbGQt954HhyzF3zwMbzwITguBE2wLLAdyPhBdtB/HwpAURQSWW9/S+IwaRi8/zFEw3DcTKhtgfaUt82MAxEL0g5YJuRHvOm5LAPCARhS4O1bfav37y/P9o6T2IUGRzYtl+H2QVpeKZUPXAucDpQBq4GvASOBHwLjgDbgMeAyrXWbUur3wMV4vd4zwDqt9RR/fRcB3wZGAR8DV2qtn/WnGf46vwHkAfcAewGvaq2v9ec5ArgJ2APYANyitb7Dn3Yk8DzwFeCnfnmvAL6utZ6Zs08TgMXABK31qi3se9Df1ll4l8vfAF8Frtda362UOg+4CrjD36cmrfW0LZXRX+9e/vRZgAXM0Vof508b7W/nEH/2x4Hvaa1b/Oku8B3gbGAacDTwP2Ck1ro65ziuAK7WWt+7hf3rKP+f/HVawL3ADzqCTr+svwX2ARqAu4AbtNa2UioE/B44FYgAlcCPtNYPbW6bO4mkMsRGvv6czR1zu58aB65awgGrlnDr4ScDEE0lSYQjfVqOovYWPr7hW6wrKGZ69bo+3ZboB2/+Eg6c3N+l2B31SVSVMb7a7Y866N454KO3vqoG/QtwAHAMUID3xVwJNAFfAoqAw/zXVQBa60uAV4Gfaa3zcwK1rwJX4gU/xcCPgUeUUhP9bZ2NF/TMBobiBTqHdxREKTUOeBr4IzAEOA+4QSl1Rk55LeAEvOBiKHA/MEEptV/OPBcAz28pUPP90F/XgXhB6UhgTI95xgLDgUnAflsro1KqAi+4+p+/7DDgRn9aBHgRWACMB/b0t3lrj21eAHwByAfeA94Czs2ZfhxQCPQmaBoDjPa3dxDesb/cL08h8Bzwkl/Ok4Dzgcv8Zc8D9gOmaq0L8M6RBb3YphA73WPLNo7h3xozmTsPPK7zfV8HagCNeXHmjJpALJPu822JfvCv1/q7BJ8o0matF5RS5cDn8TJTK7TWrtZ6qdZ6mdb6Ka31fK21o7VeBvwB78t6Sy4FrtNaz/WXexIvEPiiP/0c4A6t9ft+ZudXwPqc5c8E3tNa/1VrndVav4WX1bqwx3Z+oLVu0lq3a62bgX/iBTgopSy8wOZPvTgE5wA3aa0/1lon8ALNno/GzPjbS2it23tRxrOBZVrrG7TWbVrrtNb6eX/ayYChtb7GX18DcDVwll/uDjdrrZdrrW2tdQq4s2P/fBcA9/ll3hoH+L6/veV4Gb+v+NNOAtJ4mcSU1nohXmDZsS9pvIBxT6VUQGu9Rmvd58FaS0uLDMvwRsMHD9/4Qj6ysZbx9VVdI3ZBp4BgJsMe1euISLA2KLUdNbVzuL/P+d1xWGxdX7RZG+v/u6TnBKXUccA1eFV9YbyMVvVW1jcOuF0p9buccQFgrT88AujMdmmtXaXUmpx5O6pOcy0HTsl57wBresxzB/C8UuoyvIAygFdtuzU9y5NQStX0mGeDHzD1toxj2cTx9I0DRiulGnuMd/EyWx11Kit7TH8IuFUpdSiw0N/W/pvZRk/VfpDZYSVeNg+8fVmptc79hlvujwe4Dy97eQswSSn1AnCFH7z3mXg8LsMyvNHwvSea7Peew78WuayuSjG8upJz5r3OS3vOZEU6yaiGWqLpJB+MnOAtuKNt1jq4rtdmzDQpb2ng+qf/xStjpzA8007ZkAyBaaNg/hrY0ACpNHzvM7CmDu77n9dWKhaGvBBUN/t/6YVw4BRYVQOL13ltxjpYhteGy8VrBzZxGKyu9caZBiTSEAnBsCKv3VlH+65QwBuXynjtyLK21/6srtWbXhqH/SfB9NHe9MpGaGiFVdWQyEBRHtS3eesJBby2XkMLoaYZMLzh/Ai8schrV5cX9taRtSHr398GDK/dWmkB3PIVrx3fH5+B9qQ3PmB65Y2F4dA9oDkJz83t2nfD2HywbRneMXFciAZheDF8XO0dkz1GesslUrCypqsRRcfHHw1C+yaaGht4+xEKeG0JSwvgF2cR+8xBnbP09zm/Ow7vfIMjm5arL4K1lf6/k8ip3vLbKj2K1x7sLj+IuQS/+sy3qR9nWQX8RGv94Ga2t46caka/7dWonOlrgBN7LDOe7sGZ2yO4QGv9rlJqOXAGcBpwdy87AvQsTxSvHVyunvu5tTKuBD63me2tApZoradtpVzdtqm1Tiql7sHLqM0F5mqt521lHR3KlVJ5OQHbWLqC5zXAGKWUkXNMO/fF79hwI3CjUqoIr/3aXeRUXQuxq0SDBlceYHHlAeBdDicAE3IuSvmdQ61pl6/+q5F/VO3Al4zrUuKmuPHTES6YEcIwDKAcrvtW75a/+bzt3/Zg8Jn94fov9XcphNjldnqwprWuVko9BPzBb4y+Cu8KGPFfDX6gtidwSY/FK4GJPcbdAlyrlFqKF1RE8BrZ12qtF+E1br9RKfUwXnB4KV57sA7/AK5WSp0D/B3YF6+zw8W92J07ge/hZQK/34v58cvzfaXUS3jt525g69XNWyvjfcCPlVJXArfhVaMerrV+AfgvcL1S6kf+tFa8/d9fa/3vXuyfBg7Gqz7uLRP4pV+eCryA+x5/2hN4nQt+pJT6FV7m70q8TCVKqaPx2i7OAxJ4HU2kZ6rY7eWHDP5+djH/uHn7T9fVXzMZVZC/9RmFENttsLRTy9VXHQzOBz7AaxDfAvwHr1PBxcBNSqlW4Ha8wCTXLYBSSjUqpeYDaK3/hNcm6q94PQtX47XJCvrL/M1f11NAFV513FtAyl9+BV7W6hKgDi+YukZr/UAv9uN+vGDjda310l7u+w14DezfwcuIbcBrQ5fa3AJbK6PWej1wJF4ngLX+fl7pT2vHq6bdE1iEFwi9AOy9tYL6we4cvODun73cP/AC8HV4vUffxusccZO/zibgeOBYv5zP4H1Gv/GXHervXwPesRmDF5gKMSBkvmtu44XTZfkF4F4eYFSBtfXZhRCihz55dEd/UkqZeAHdFVrrnsHgtq7LwGtL9uPtXZf/GJMG4Ait9Rs7Up6+oJS6G0hrrb/ay/nPA67SWvfMgO7uBteJLvrdHz/IcvHzW5vL5Vtlc/nduWpXFEmIgaZPUmAp4+Ju1/uw+38DPtU2KB6Kq5T6Al72zsR7dEYML9O2o84CQvTucRYdZSnGe2zJC3jPfbsFLxP17k4oz06llJqM1ybvgP4uixADzdf3DhCxsnzlmc3Pc1xsBceVbNh1hRJCDEqDIlgDvoXX/grgI+BE/xEW283vwZkFLtBap3PGn4Xf/moTvoZX7Xc98CBe2zINzN6Vv1LQG367wk/hPaz2o5zxo9n8c8/uw6tiFkIA580I8JVnNt+G7fyKPu3kLITYhMHYZm3QVYMKsRlyoos+UXhrluZN3Iqt/ZrBey8/CcDs2bN3camEGBD6JKpKGt/odr2PuH8Y8NHbbvVD7kIIMdA8MHvj74FnTocRcelMIET/MHq8Br7BUg0qhBD94lPjLeaf53D5yw648PtjDcYXS6AmhNh5JFgTQogdtGepyZOfk4oKIXYHg7HNmlxdhBBCCCF2YxKsCSHETnDH3CyxW7JYN2e59Hn5UQ4h+o+0WRNCCNHDhU9n+ctHXe9v+wBKo1n26bcSCSEGE8msCSHEDljZ2D1Q6/BzeSKhEP3Cxej2GgwkWBNCiB1wwL2bHp92oTkb3PREIYTYBlINKoQQ2+h/q7Mc+cDW5/vm8oM4rng94RU2x4+Tx3kIIbaP/IKB+KSQE13sNMbNvexA4LpgeNUws8pBnyP3x0Lk6JM6ynbj0m7X+zz3dwO+LlSuHEIIsQ1+8FK2WxC2RTnzzKmS+wUhdoXB0k4tl7RZ24mUUiuVUl/u5zK0KqUO6s8yCDFYnfd4lht1LwO1ngyD2nZ75xdKCDHo7dLMmlLqZeB5rfX1u3K7nyRa6/z+LkNvKaVWAldpre/r77IIsSntGYdj/tzKe00BxtdWUR+NQWHJtq3EdfncvDf5zII5HFzzWRpGDOfKPdsZVxbkoPFhhsf78J45kYJoeMvzZP0AMrCVNnVZG95aAqtr4HMHQSgILW3w/krYcxSUFmz7toXoE4Mvs/aJqwZVSgW11pn+LocQYveVTmVYMvFKKupqOPToU3nryFNYNGyUV/25rQyDh2YezKvj9+Rvf/89n/raVXz//ag/0QZswtkM+akEI5rq+d1/7ubgVUsIFudBfcvu2dryrN/27/ZDlhcI5oUgLwKW6Q1fdBx844Tu8/7uCfjrizBtFPzxa5Af3fQ6hdiNbVcHA6VUPnAtcDpQBqwGvgaMBH4IjAPagMeAy7TWbUqp3wMXA1kgA6zTWk/x13cR8G1gFPAxcKXW+ll/muGv8xtAHnAPsBfwqtb6Wn+eI4CbgD2ADcAtWus7/GlHAs8DXwF+6pf3CuDrWuuZOfs0AVgMTNBar9rCvh8L/AqYAKSBD7TWx/rTVgJ3AscABwArga9qrd/wpweAHwHnAUXA+8C3tdYf+dPvBoKAA5wC1AA/01rf7U8/D7gK+BPwHcAC7gV+0BGAKqVc4DCt9Ws58//O3+cY8ADwDa217c9/APAHYDIwF3gWOF9rPXZzx6BHWba07tHAb4BD/MUeB76ntW5RSj0OnOQfwyzwhtb6+C1tcwftjl95Yjf12sn/x6FPPNf5/lMX/ohnp+y9w+u95dG7+O6p5296ouvyu//8lW+9/vQOb+cT7f1fw97jvGG9DPa7omvaFafCjef0S7HEJvVJCqzV+G63632+e8uAT7Vtb/79L3jByDFAAXAqUAk0AV/CC0QO819XAWitLwFexQs+8nMCta8CVwJnAcXAj4FHlFIT/W2djRfIzQaG4gVjh3cURCk1Dnga+CMwBC8QukEpdUZOeS3gBGAffx33AxOUUvvlzHMBXhXtZgM139/wApRCYATw8x7Tzwcu9ac/hxdcdvg+cA5wIlDhH4/nlFK59QefB54BSoCvA/+nlDo4Z/oYYDQwHjgI77hcvoXyjsHb5wnAfsAZwBcBlFKFwJPAP/3tfQsv6O6tLa07ArwILPDLuideMH8rgNZ6Nl6Qf6F/PvRloEZLS4sMy3Cvh4P1TeQa2VTPjipvbuCxPdUW5ylta97h7Xzi1bV0faZ1Ld0mpTd0fY79fY7JcPfPRmzZNleDKqXK8QKK6VrrFf7opf6/y3JmXaaU+gNecLIllwLXaa3n+u+fVEq9hPelf72//B1a6/f97f8K+GbO8mcC72mt/+q/f0spdQdwIfBgznw/0Fp3XoGVUv/EC9DeVUpZwLl+WbYmjRecDNVaVwIv9Zh+h9Z6vr+NPwPfUUoV+tv+CnCj1nqRP/06v5wnAf/oKH9OG67nlFIP4wWgb/jjHOD7WusEsFwpdRNeZuuGzZQ3AVzjZ7uWKaVeABRewDobaAVu1lq7wPtKqbvwAuTe2NK6TwYMrfU1HfMqpa4G3lBKXdSRfdtV4vG4DMtwr4dH3HoWiYPfJ5rNMH/oSB6Zvj87qj4vzkuT99p4QkfthuvyqyM+w6cWz6Uk0bbD2/tEsUywHfj0PnDENOId7e+OngHHzYTn5sLQIkJXnt65SH+fYzLcNSy2bnvarI31/13Sc4JS6jjgGrzqyDBeRqt6K+sbB9yulPpdj3Kt9YdHAJ3ZLq21q5RakzNvR9VpruV41YgdHGBNj3nuAJ5XSl2GlyEM4FXbbs0peFWZHyqlaoA7tda/zZm+IWe444obx8s6diur1trxq05H5Syzssf2VgL75ryv1lq395g+cgvlre4RGLX55QHv2K72A7UOW8ss9nbd44DRSqnGHsu4wDBg3TZsR4hdauR+o0hV/5WbHljPNfXDSQVDXUHV9vQEBbKBrsttPgnyUxmObN/ArJFBStUIjgo2U+iEiX/rZliyDvabAFVN8PoicFxoaoPyQmhohWQGyuIQi0IyDWtqYUkl5AWgNQXF+bBwDZgm7D8Rpo6ChWthSAGUxOC1hRAOQUk+rKiCWBjGDYXiGDS0QcaGKcMhkYGWdvi4CgwXHpvjbf/kfWHaWPjnK9CShGGFMLIMwha4JqyqgrYk5OeBGg+nHwhD4tDYCtUtkEhD0ILWBAwtgtYkjBgCq6rhzSWwz1gwTG9/F66BQ6ZCXhjaErCyFmaOhYDptT9LZaAg6pVj5JDun08wAE9fDevqoTQuHR4+IQbjozu2J1hb6f87Ca+KCwClVAh4FC/Lc5fWOqGUuoTuVXTOJta3CviJ1vrBTUwD70t9TM52DLoHN2vwqhVzjad7cOb2CEjQWr+rlFqOV3V3GnB3bzoe+BnAL/jlOBR4Vik1T2v94taW9cs0LmdfTLzgN7esY3ssM5auwBWgXCmVlxOw9Zy+LdbhBVRGzvEZvZ3r6mkVsERrPW0L82zqfBBitxAuzuOKr02ko8XTnEqbg+9zSe/AOn95CFx5UICue5rcnqWxrsEJQ71/Swth2s76k8xx/rHbt9wtF3Z/f+VpO16WXAdMhs8f2n3cp/bp/n7/KZtetmgzHeFNE0aV7njZhOhH2xysaa2rlVIPAX/wG5mvwqsWjPivBj9Q2xO4pMfilcDEHuNuAa5VSi3Fa+AeAWYBtX514b3AjX514AK8qsrhOcv/A7haKXUO8He8LNTX8DozbM2dwPfwMoHf39rMfkB6JvCE1rpWKdWAF3D08nHm3A1coZR6BS/ovRLvM3giZ54DlVJn4jXWPwL4LHBcznQT+KVS6kq8dm+X071d3Lb4L177u8v8zOaeeFW1O6OK8r/A9UqpHwG34VW3Dgf211r/25+nEi/oF2K3N2uYRepyqPh9lsrk9q3jUjX47viFEH1vezsYnA98APwPaAH+g9ep4GLgJqVUK3A7XvCU6xZAKaUalVLzAbTWf8LryflXoAGv0fnVeL0iwWvQfzvwFFCFV+X3FpDyl1+Bl1m7BKjDC+6u0Vr34pf7uB8v0/W61nrp1mb2fQFY5O/jY3hZwVd6ueyv8ILLZ/19ORo4Xmud26r4Abz9acDryPFNrfVrOdNX4WXEVgBv43WuuKmX2+9Ga92I117uLH97t+MFlKntWV+PdbfjVS/vCSzCqwZ+Adg7Z7brgS8rpRqUUk/t6DaF2BU+/tr2XTaDBkSD1k4ujRDik2DA/TaoX3W4GrhCa90zGNzWdRl4bch+vKPr2hn8R3dktdYXbmb6eXgPke2ZndyZZbgBmNXXvTP7wcA60cVu7aIns/x5wdbns0gTwGD/EUH+90ULYzvbuwkxSPXJH0Sz8b1u1/sC99cD/g9vQDwUVyn1BbzsnYn3zLUYXqZtR50FhICHdsK6BiS/U8hHeJm+Q4CvsuVHgQjxifenEwPccYJLZavLiDs23/TyzvGvURZMMXv27F1YOiHEYDMggjW853/d6Q9/BJyotW7YkRX6PTmzwAVa63TO+LPweopuyte01vfvyHZ3QzPwqo4LgPV4VbX3+A+03Vzu4D6t9dd3UfmE2C2ZhsHwuMEhFQ6vb9h4eggoC+5wiwIhxDYb8Im0jQy4alAhtpOc6KLPhH+dJd3jDPvxfnBAs1cBIJk1ITapj6pBL+9RDXrzgI/e+vAXhIUQ4pMh9b0Ah+T0UZ9aAtcfMVAqLoQYXFyMbq/BQK4mQgixE7z2JbmcCiH6hlxdhBBCCDFoDJZsWi6pBhVCCCGE2I1JZk0IIfqAnbQpOmcNsZYU75o3Ex8fYeL9nyEwqw9+PkoIkWPwZdYkWBNCiJ0o25pm8cg/k23KUE6COO3U2MXULQmSUg8ybcGXCEyt6O9iCiEGEKkGFUKInSTRkuG1EfdgN2UxMEgSpYpiWomSdANUWyXU3/ZOfxdTiEHN7fEaDCRYE0KInWDF917lpal/oai5nQQh0gQwMaiOF7GqooT1o0pojUdYe89SMu3Z/i6uEGIAkWpQIYTYTq7rMmfyHSxLxtm3cS6HtDYxD4Wbcx8ccbKkIhaJWIg1E8txFxj89pwP+OM9M8mLBfux9EIMToOxN6gEa0IIsR1SLRmu++xrjLGGcmzj/xjfuo4ahnUL1LKYbCgtwgVM2/sN0eUTi/jTw3+h9ol8ak7fn9i+ZWTPmMWw0fF+2hMhxO5Ofm5KfFLIiS52iOu6LH5kNX+8ewULQ+WsGFJAMh4mksry0R++TciFNCHmcDAZwrjAykllfDyhgoq1lRyzYh5D2lqYXzGCmnghR338LnlZ72eJbz/gGN6YNo4Hb52BkR/p3x0VYtfpkxRYvfHDbtf7EveGAZ9qk8yaEOITaV11hl9+exE1RpBRBWlu/MkojHeWQnGcDcT53wttTN0rn490I/dVhQjYJuFkktcrJoFhUBQ0OPfN9xlfU8/64DhGp1cTIs0+vMlbeYegZ06lpTCPEevrmLlgLa1OnBhppm9Yy4fJEAG765vq4rdf5KqTf82z039P2acUydfXUL5wDbZrUXRqOUOvO4bslJFk0i7RmNWvx00IsetJZk10Ukq9DDyvtb5+O5ZdCVyltb5vZ5drJ5ETfTfltGdIzKsjNL6AYHke6bTD6jVp6g2LNhvqqtPM/HAutY0ZUsfuxcgIBJZWcWvTUMrmrmFW3ccUhtsJnHEYc5aYPL7OIl0QYlKZxTNrHWa9u4Kp66p5Za/JRO0006uWcdriNwnZLg/tcyJV+SVMr1zGyA1rmLimibpACTEjzarRRXxcPoz5ZSPZd8lcHpk6g7lDh9IWCLFPW4Lz3nmfk+fM8/fCpYz1rC7Ko8EtoTE5gnkHjiUbtDj+hbmY/nXWwCGfJA4uo1hNhCQAiUCYB6YcT1McQhmXhrxiTp/zDsXtbVRF82gO5JM2Q3w4aSTHrXiVvFaoc4uYmF1DTTROQ3YIYcchMjlGeZlBYQXwwWqcUBimD8cZWowzYTiB+hbWTRtNzZgyil5bQ1uVzaTzxhO30rj1bTBlKMzfQGZcGR84+YyOQ0W+Qd26BOnWLEOb6zDK8jHGlvbPySIGmz7JeNUZP+p2vR/i/kIya0JsK6XUkXhBoZx/n3B2c5rFBz9Ccn49VmGIMU/P5ldPZXmyPsCighiz6pq59b//x6R1S7n12DOZ89Fqnn7gdu7b92jMsik4yRRvGhXcO3UcM+5rIGKEySdDXU2W+SstwnlB1owsp2p4OSNTGbDC3HPwEdz06U+Tn0xw82P/YHXoYLItJq1xg4Ou+Q6pYIgrXniSG5/+J/YCg18f+WU+mH4AgUiQtkiEWCpLoe1QF43m7InBH/Y6lB8ccxwAX//fh5z05gpaCyIYPW6IswTIYrCaMYxgLQEjzcvj96W5MMa+H36MjUFdURsbogVUxeNMqN7AOLcGgBHv1TDNWYELDKUECxjV1gTEaKAYZ36aOB8SIEmSPNoogbkfE6QdMHlyjz04+9xDyS41+f1tK5iytp53f/EBU40llLq1EItAW5qm/BjnXnwZa4YP45aKRqr+spTPfvACpTWrIWBi3XcB5hf22xWniBACeXTHJ4ZSylBKSXAkdivNz6wmOb8eALspzce3zGfFyjSL4zGGJjMMb21i1rqlpKwAt+97NBfNfR3HtHh2ygEUJ1MABFyX/SvriBjhzvXGszYZoKw9g+m4lKe9R2W0hAJUFXhBVmskyjUnnEmiuICTV77Kr4/6NKlgCICbjjmRxkge74yexttj9qQ9GKAs6zA9mWDPZJqEZfHMjKk8Mmsvr+yWzU8PP5J4Ms3PH3+Dw1esI2DaVA8voqYwz0/rugSxAXAMkyRR1jGCdyr2pMHKJ5hMY2Qd1g8pIGUF2BAvoqqgkEK3vXO/ipxWf00WHZWhBlBMEwAZQmT99nJJ4nQkLjLkAQZ/Pvgg0oEAYysbmbK2vnP51YzwVtbmtaEram3jy/pt2rPwpw+huK2ZSTWrvXmyDs7vXtz+D12IPuZidHsNBhKs7UaUUiuVUlcppV5SSrUqpT5USu2llDpTKbVMKdWklPpzR9CllBqtlHpIKbXBf92plIrnrM9VSn1bKaWBdm+UyldK3ayU+lgp1aKUmq+UOjSnGMVKqYf9acuVUqdsx37kKaUeUUpVKqWalVLvKaWO86cNB54CLH8fW5VS5+7QgeuFlpYWGd4Nh7NlVreKkPxJBRgGxLI2CcukORKjJlZIyM4yoqWBFYWlhOwMuA5O12I0hkO0m10rajcNDMABhrcnabG8S13QdrplugL+YGt+iCFtrV3lSCaIZDO8NWY6GN56XcNgSl1bt4vmMzOmcsf+e3PEheeSsSyueEkze/USDmhYRUWykVQsyCuHz+TRE/bDKmghTBIXh5jbxjiW0T7EZXHpGNqDUQLZLK15YXLZWKSMrnusrL+PBg5uTs1+Aq9TQiGNWP6Rsch9lps3bkyDF6A1xKMkg11t3/JyAsIOK0uGAFARyNIeipCycu71xpXuFuePDA+OYbF10mZtN+K3+8oAnwGWAX8FDgJeAL4LDAE08B3gEeAj4O/ADUAEuB+o1Fqf76/PBT4ETgNW4lV7/w0YDpzjj5sIuFrrZX6btenAKcCbwLeBnwDDtdYbX803LvtVWuv7lFL5wKnAf4CkX96rgQla65p+qgaVE303VXfvYhr+uZS8fcqouHY/3n4vweOvtPKykYfblmXcmvXM1i+jy4fznxn7c+P8l2hrcnlq9CyGtySoC1s8P6YMIxhgUn2arGHQEAgQtAxWlsY4Ycl6asJBksEAbaEQH5bFcUImRaks+61vJJp1GFu7hgveeJBvn34OK4rLOWrRci577SkenXkweuzeXkFdl0gmy6r8PLKmF7Id/+ECvvLa26wsKmTJsKE0lw7BNQ3yG1spqW8ilk5yw+c/TUvA5IXf3kwAgxQBFuSPZRyr2ZBXztxhEzqPRTSZJpjIYFsmpu0wrKqNRJFFAS00hcOMrGpmTGYlaTdCLeVUUEUebTQbETJGhLjTTpQEAVI4mLRTBKZBMJAmXTqU9vYsPz3uOFaNKOczzy1hjxX1FBxYxowRlQQaW2GPYbgfbWDRpHH84LBPM7XU4IfTbF7762piC1Zx4JqPiEwowbrpsxhFebv+ZBGDTZ+kvWqNH3e73pe6Px/w6TUJ1nYjfsBzu9b6V/77E4EngHKtdY0/7gFgHfA6cKPWekLO8rOAN4A8rbXtB2vnaq3/5k8vB6qA6Vrr+ZvY/svAfK31N/33MaAV2FtrPbcXZd9sBwOlVC1wjtb6SQnWRF9K2y5BEwzDIOu4rK3OUrs6SSZgYNsub65wOGyvMLf9fBltgTgB26Gkup5Ioh03L8XE5nXMKx3PG6MnELIy0GIwPJOl2LEJYZIxDFKuw8Q1Gzh53oeMaGwG4Mn99qUt6j92w3UpWV9HLJ3kp6cfxUN3/onhia77nTaihElhBrI8PUHRHI7hGAbVpSWMW7uW4dX1WO0WGAbVFXmUhVqJNgcJTChm78vHYc4YQfvqBOEpRQSKIrQurCWe5xLYY1h/HHIhtpcEa70kbZh2PxtyhtsBuyNQyxkXB8YBo5VSjT2Wd4FheAEdeNmzDmP9f5f0Zvta6zalFP72ek0pFQVuAk4CSvHqYOJA2basR4jtEbK6rssB02DssCBjh3X9UsChfrv4A++dTnvSIZ1xKYqP2+z6UusaefHZKoYms9z+Qoq0YzG9qo5RjfWMaawji7fu3OrVjmEHi6sfeoVIysXGwPLvGUKkaDcilGXrOWXxm3wwbDxzhk9k6qdLOfPyAwGomVePg8HQvYo3vZ/ju4aL9x26DUdIiMFtsLRTyyXB2sC1CliitZ62lflym/as9P+dBCzoi0L5LgOOAI4BVmqtXT+z1vEX5Gx2SSF2obyISd5WnkEbHlHECV8pAuAvF0N6WR1rmoaxaG4dLResIIhDVUExy0ZUMGFtJS4uwbYUQdsm2pZlSEOC9e5IakkznjUEydBKAVWhAqxMiowTIlkwhFP/bz/G7t/1SIyyvUr6cM+FEAOJBGsD13+B65VSPwJuw6uuHA7sr7X+96YW0FpXK6UeAv6glDoPL+Cb4E9bthPLVgCkgDogpJS6EijKmV6J18FgnNZ6xU7crhB9LjRxCBOACbOGsvD9atp+Pw8na5CxAqwaVs6Zz79Exgkxb9Jo6ghTWu89Sy1NiFoKMDDIWgbhW49n1NcmAzB+C9sTQmybwZhZk96gA5Tf4P8YYE9gEdCE1xFh760sej7wAfA/oAWvE8DObujyG6ARWA8sx6u6XdkxUWu9BPgD8I5SqlEpdfZO3r4Qu8TU245k6JLzGHZCHt948RH2WrWMxqFZXjp4L+rKiqhoy+3x5lJvltASiJP308OY5QdqQgixNdLBQHxSyIku+pSbsWl/Zx3Pf/EZFk3YA4BTXnublB0iTYAoKTYU51M8JoB6/yv9XFohdgt9kgKrNq7pdr0vd68b8Kk2yawJIcROYAQtYoeM5oQF55LNeA+/TYWCFNJOGc2EzCyhpMNer3ypn0sqhBhopM2a6BWl1FPAYZuaprXO38XFEWK3FYqHuOLZQ3j2Ek31uzHCZgbXMGgMRRh/6R6E4uGtr0QIsd0GYzWKVIOKTwo50cUu99T/PUTgwQTD9hjJnr87AisglRlC5OiT6smqHtWgQwdBNahk1oQQoo9kR4bJfjfMjNlH9XdRhPjEkN6gQgghhBBil5JgTQgh+ljVslb+cdEc/vv7lf1dFCEGPRej22swkGpQIYToQ+lKh3Wn3cVM2yaLyRM/KeakunP6u1hCiAFEMmtCCNGHxly5hKF2JUEyhLGJZTI8Nfb+/i6WEIOY0eM18ElmTQgh+sj4mz5iz4Z3MYCmYJyHK06lZkgRK0cUoU98gx8/fhCmNTi+TIQQfUcya0IIsZM5WRs94/eMf30Rv591HEO+8wf2+8o1tEcdpi1ax5CGBC+NHMHvj3u1v4sqxKAzGNusSbAmhBA7UbohwX9H3oO5Ls0Gaxyzlqc5Y94ilg4Zyu8P35+Vk4dQXruB8tYmloTCfPbU91mzIdHfxRZC7MakGlQIIXZUcxtPfu453rHLCCeSfLa2BtNwiGRNxjY2cc2Lr/DamNGkA0GOX/0Ckxs+5uIlFmeecgmPTJvOgh9VESmOEIwHuf2MKPtNz+vvPRJiwBqMT0CXYE3sNEqpl4HntdbX93dZhOhr1TUpNnz/ecrue4nKwgr+csJsHp04CscweGivKfzw+f9x8PLlnfMft2QZY9rbmNzwMQBB1+ZHbzzGw9MUi0aU8f033uCz8zT3ztmL281ybvzlGIZOGQKW1V+7KITYTUiwJnY5pdRYYAUwSmu9tp+LI0Qn13HAMDAMg+baFPN/8Q58VEmg2GT8uCDBkhhtd71PYnGSWgrJs1oJ22nq80O8OqIcx/Dax7xXUcoLUydzyPIluFiksfjc6yuxyJA1LAKu90PvIxqT5KXTlLYmmLW0lkBTPl99ajG/+VQZv/jqEuZOLuLQZVVMaWojf2w+02/cn0QoyPSxIXBczJyfr0qkbJozBuUxr/xCfFINlnZquSRYE0LsOssr4cZ/QyYLtgPlhXDVGVAU2/T8X/k9PPcBHDgZHrpiy+teUwu/eBgcB+eDVRjvLAPADgXJujEcN4CVTWDgkoyUkY1EyGtZS9Z2MTAAk/ZQkIbMCBrdUqK0MAwbAxMDhyUlMUY11ZNnp4niUkALJfZSTOD7h1+EZTudRQnYDg3xGEXUkCDCCqZ6ZSHE+5H9GRZYRdKKYjQVU9HSxp3/eJLypgQGNgVGE996+2X+O/0ADlnWyB8P2Idw1ubkj1byfzc3gGFwyOIV5NtZAu0Z9ly+gBXl+YRCCV6dPJ1MJsacAydhBk1OfVwzdV0NVXuPYNrViod+t4zTn3gH2zR5+oC9aCgoYF1hHmuLopzz4ft8cf4CHjz4MBhVxNcvH86bLzXz4ZxW4gUWR59YwtSZXZ9T1foULzxWTyTP5ITPlRLNkwygEH1FgjXRJ5RSfwWOBYqANcD1Wuu/+5Pn+v8uVkq5wI1a65/t+lKKXcpx4JifwKqa7uOXV8K/f7Dx/Dc8DHe/6A0//BZ8+89w64WbX/+nfwYL1gAdT1fy7q7NtE2CYgpZiYmX0Qok0zjJACYJIn4LF5cQRtpiCRWAQYYh2CQoopUQacbVp/3xQcKkCQDNlFNENYlAiL0/XsL/Ju9BxrQ4tKaRulghHwwfx7T1azBwcP3+XKvjo0hn4pQ2t/DcjIn8+akHGdZkkyVIOTXE3DaG1DdQphv5wekXcOiKSs587UNe33MczaEQAB+OHMZBq9aSzQvy1pSJ/GjOX7Fcly8tfoVDv3kdC6JxTn9nPl9+w/9TW7We7wSL+NUjzxNwvP396lOvcscpx5LnuExoaON36gAmz63k5Eee5/9mz+b6K1aRaO0IQF0WzWvjxzePY9iIMLbtctvPVtNYlwWgrjrDRZeP7NVpIETfG3yZNekNKvrKa8DeeMHadcDdSqk9/Wkz/X+naK3zd0Wg1tLSIsP9Pdya3DhQA/hozabnf+/j7vPNW7359Tc2waJ1ne9zL9Ve3szuDNS86d57M6cpsoFJhmC3pZ0tXPSzWNQzjCxh5t19M4//+89U/vpHfP/lZzl61TrOmPc++6xfQYgs41mBG7LZMLSA2sI4ybYwb1RM4PqTDufAVUsYQg3gEiTduf6S9lai6RSHLVqN5bosGD20c9raogJsv6qzPNWI5Xr7EXJsDlm5GIBR9c3dyju2trEzUAMI2g7FLe2A90VQ0ZqktiBGKOUdp2S7k7O0ge3Aqo+bAEi0252BGsC6VV29WXeb802GB8yw2DoJ1kSf0Fr/RWtdp7W2tdb/BOYBR/ZXeeLxuAz393BBHpx+IBv5ylGbnv/yz4DpB0sGcMWpm19/USGcc0Tn+64gy/X/M8nQ1cPSJkyWaLdeYy4uBTRTRB0AyaBJqbWaGPU4OfOkCNJEnCrKcDBJU9gZ9OVl0/zgzVeZunIl+emuAKaIZmIFTWwYWcSQ1lYi6SyT19bxudcX8/GQUgppYjxLCeQEa++PHE84m6Auz8umlTW3dU4raE8STmcpqm3j3eIhZA3vUp6yAqzOHwbAY/tMoSEvAsCaojj/VVOZP7yscx1t4SANce+Y2AYY6TSHLl7J6hHFuMCkPfPoavrmUloeYMY+QwDIjweYofI713XwMcWb/lxkWIZ7MbyzDcbnrEk1qNjplFImcC3wBWAYXk/qGFC2hcXEJ8ED34MXPoS8ELSloDAPDpyy6XkPmAILfwePvgMn7AMzxm553XddAl8+AkIBDMMk85NHcdfWYx02hsKqdrKpoaRX12DEotinHYhZEGLtq6toXLqOeFuSvLpmluWX4DopjEQLGwrjfPO4b3KOfp8pNTW8NGk0X5izmJKmDCYuIdLkYZMhQohWoOuRATOWrsAxXWwgRIqUGWZ++XgAbKvrHjngOJz1pfN587ZfdQZ8C4aUMbm+Djub5NAP52HWh2mJRZi1fA2uZdAcDbPn0jVEq1tojoUYmozy832/xJT61QxtdDm9OcHxs9JMNIK85R5OsC1N7PSJfHRojD9/6nMsv38+VkM77SPKCCctmuIRph9UwK2Vc+G+I6mJj+bioSFmzspn3eoUHy9OEMs32WOvGHmxrnZpF10+kkXz2ojmWYybHN2es0EI0UuG6w7GJ5KI/tDx6A68np6/Ao4HFmitHaWUBv6rtb5WKTUaWMWu7Q0qJ7rYLq7rdutd2fRhHetPu5O89c2kDZOS9kYsgoTIkCKCQ4A0QYpoIIxXzegCD+5xPI2hAlqzJvsvXMfyimK+f8FxnPzmEq5//jGiRoKAm6U1FODfk2YwvsqmprSQfa6ZxZjZIynMlwb8YtDpk7TXauPn3a73o90fD/j0mmTWRF8oALJADWAqpc7Da6f2X396DeAAkwB5dIfYrfV8DEbhjCEULvshAG46i/vb/5K58iEaGUWQLCmiRGnv0UYOpq1YRiZVzFMzJzFn9FBS4RDX/O0Vpq2q5Z4Dj8MIObxfOoQGE84da3Pir2YihBAgwZroG/cARwPLgHbgXqDzRxC11gml1NXAP5RSEeBXWuuf90tJhdgBRiiAccWphK84lcDtb/Lsr5dy+MoF4EKGCAHSGLikCdIaieCkwhwxdw2OARnXBEzyaeGD0aVceH45l0wLUzAyf6vbFUJs3mBpp5ZLqkHFJ4Wc6GKXmTPst5DMMrypkYxhEg600popYgPDO+epLQySiiUYc/YUDrjhSHmQrfgk6pOTfpXxi27X+zHujwb8H5f0BhVCiJ1s31WXUH78BKoL8yl0WyjMeM9qy/Xb4w5gyZWzOfCXR0mgJsRONBh7g0qwJoQQO5kRDjDqgdNY86c9WFVYxgdFkxhKJcPYgB12eHLf8ZxwfCFXXzqiv4sqhBgApM2aEEL0ETdisfD4ScxdXU7l8nIs1+XdMWMIHTqcKy+q6O/iCTFIDY5sWi4J1oQQog/lnR1h7I0Z/n7wLBqiEcqKTe7/7bj+LpYQYgCRYE0IIfrYV187loscF8McfHf8QuxuBmNvMmmzJoQQu4AEakKI7SWZNSGEEEIMGoOlB2guCdaEEGInCt6cJdv57tP8e/LT/VgaIcRgIMGaEELsJEf/IzdQAzA4bcnxg7INjRC7q8GYWZM2a0IIsZO8tG5TY+UyK4TYMZJZE0IIIcSgIZk1IYQQQgixS0lmTQghhBCDxmBsIyqZNSGEEEKI3Zhk1oQQYgdlbJeHF9v9XQwhBCC/DbqdlFIvA89rra/fFdsbLJRSY4EVwCit9dp+Ls5Op5RygcO01q/1d1nE4JHMukQCG1+sk1kX13WJBr0KhUTGJWRBY9IhkXWJBqAuAe+ug7s+gg3t0NgObTY0byoOc13IZiEQAGMLXw4uXP96lm/NMrFdh6YUlEUN1rc4TCCBVRyDB1+D7/8N1jZ0LZcfhmu/ABcdBwUxb1xLO1Q2wLihUNvsbXdoMSRSEA13lSudhaAFGRvCwW07gLYNTe1QnO+tv7oRimLQkvDetyYhZEF5EZgmpDNgmdDYBqEAhILeTr++wJvHBdpTMHk4NPvrbU1CNASxCDS0euNCOeVMpLx1Z7MQDEDWAcuARMYrC0Am65UnYHUvf+6x2JyOeZJpiIS27fgI0Q8+MZk1pVRQa53p73LsbEopA7C01tmtzrybGKyfhehfjuty9pMOf1/oMr4QnjvDYnyRF0R9+Qmb+xd6LVlOHOcA8OSKHdiY61KUaMM2DFqCWw+Gbnu6nqvfLMkprM2PXnqU657+Jy6byQO0puDyv3mvCcOgNQFVTRvPZxrguHDaAfCD0+Azv4TqJggHIJWFn3wefvKF3u3Xqwvg2Gu9YC8/4hWsJbn5+T+1Nzw319v+jhpaBA9eDt+4Ez5avfn5hhXBVZ+Dy+72gsR7LoUzDvaC2GOvhflr4GQFj1zhBXq50hk47UZ48j0ozPOC0gnD4LmfeAGwGBQGY29Qw3V7/0emlMoHrgVOB8qA1cDXgJHAD4FxQBvwGHCZ1rpNKfV74GIgC2SAdVrrKf76LgK+DYwCPgau1Fo/608z/HV+A8gD7gH2Al7VWl/rz3MEcBOwB7ABuEVrfYc/7UjgeeArwE/98l4BfF1rPTNnnyYAi4EJWutVW9j3oL+tswAH+A3wVeB6rfXdSqmRwJ+BWUAImAd8R2s9x19+H+A2YAZgA4uAk7TWDT23lbPNJqAAaMe7P71Ra/0zPyP1HeBsYBpwFBADfgFM9o/1C8ClWutqf10vA3OAscDxQLX/Gf1na+Xzl/0AmAgcCawCLtdaP5VT1ov9Mg0DFgLf11q/6k+7FjgceM8v83vAcLzPM+Efz39qrS/c3LHYCQZjm1OR44VVDsc+6HS+v3CGwZ8+ZfF+lcu+9/ZRFaXrbjmr5itqb6ExL95t3Ju3/ZgDVy/dueXZZxy8v4kodP2foaJk4/E97fVd+HCzl8G+t8cIWLTJh9V1FzC9bBt4QV7lXXDl3+CmR7vmeeByL4jL9a/X4Iu/2Xh9Xz0O7rh4e0sttl+fRFVLjF93u95Pdr834KO3be1g8BfgAOAYvCDiVKASaAK+BBQBh/mvqwC01pcArwI/01rn5wRqXwWuxAt+ioEfA48opSb62zobL5CbDQzFC8YO7yiIUmoc8DTwR2AIcB5wg1LqjJzyWsAJwD7+Ou4HJiil9suZ5wK8KtqtXaF+6K/rQLygdCQwJme6CfzBHzcMLyB5xA/yAG4HngVK/LJcBqS3ss2OoHKKf+x+1qPcXwDygfeBFHAJXlA6Ay8YurXH+s7FCzILgd8D9yil8npZvgv89RXhBYX/9qtpUUqdCfwMOAfvs/gT8LRSKvf4HI73GY4CPpsTMB/v71tfBmq0tLTI8CAfjvao+swLdoyn7/QiUANoC25cLWe6zibm3DHZ0CZ2NmDRkkp1vt3i8Yxtpfqwj9nBXn4l5VZ95nllTvVcNM+r3szdx3Y2HbSnc86d3eV8/iQN72wuRrfXYNDry5hSqhz4PDBda91x69ZxW7gsZ9ZlSqk/4H1xb8mlwHVa67n++yeVUi8BXwSu95e/Q2v9vr/9XwHfzFn+TOA9rfVf/fdvKaXuAC4EHsyZ7wda6866A6XUP/ECj3eVUhZeAHPpVsqKX55faK0/9tdzJV5WEQCt9Wq8TGPHdq7y1zsJWIAX+IzGa3+2EnirF9vckpu11sv9YRvIbfdVqZS6CbirxzL/0lq/7pfvTrzAbRIwtxfle1Rr/Zw/fL+fSfsSXuD2FbzP6m1/+l+UUhf602/wx63WWv/aH95akLrTxeNxGR7kwwfH4ZqDDO76yGXPIQbXHGQSj8bZA/jpwQa/eNvFdeGbe4ONwT8WutQnwd7WnGtONs3KZrEDW7+Muj2COtO2+du+hzOmoYby1uatf52csI/XJuzNJRtPywt57bjOOoLAxZ+Cs34LK6u9NmsA151JfGxF5+xbPJ73fhuO+Qmsq4eJw7zqzWUbNp2XNoBvnQiPvgM1TZD0WzYELUhvYybTMGDf8Vj3fxt+cB+8/JFXDey6XmDmupD117nveLj2i/Ddu7xpd3oZsfCPzoCF60Ev8zJqJ6mN9jHv84fDG8vg4Te9at7mBOw1htDPzurd8ZHhPhkWW7ct95xj/X83uloopY4DrsGrjgzjZbSqt7K+ccDtSqnf9ShPR0P6EXjVbQBorV2l1JqceTuqTnMtB07Jee8Aa3rMcwfwvFLqMrwMYQCv2nZrepYnoZSq6XivlCrFC36OxMs+ddw2l/n/fgW4GnhNKZUB7gN+ugNtzVbmvlFKzcILnGbiVRsbeFm3XBtyyt+mlALo+IvZWvm6bc9/P9IfHgX8q8f05f74TZZXiL7w00MsfnrIxuOvOdjimh41Yrcevel1OK5LW9qhPeNSn4AXVsHdH8GcWn8Gw2CPyrWUtjWzbPR4Krd6GXW54qAgPz8id74AXqXBbO+tbcMdT8MP74PiPPjKsTB5BHz2QAhtYwP4N27Y+jybM7ECVt25bcvcupOT4v/+Qe/mO2lW9/fxKDy6lWUNA269wHuJQWswtnnZlmBtpf9vR6YIAKVUCHgUrz3YXX4Qcwlwec6ym8r3rwJ+orV+cBPTANaRU83ot2HL/fJfA5zYY5nxdA/OXK11t89Na/2uUmo5cAZwGnB3Lxu79yxPlK5ADLwMUgVwgNZ6g1IqDjTj18n72cjz/WVn4FU5rmDj7FeuLdWT9Jz2T+Ah4AytdbNS6mTg8V7sF70s39gei4wFnvSH1+AF37nG99j+pvZlMP5NiQHONAziYYt4GIbmw9QyuET1nGvsRst9VGMz455Nn9LdA7VNsCz4xkneSwgheuh1sKa1rlZKPQT8QSl1Hl6wNQGI+K8GP1DbE6/tVK5KvMbpuW4BrlVKLcWrhovgNc6v1VovAu4FblRKPYwXHF6K1w6rwz+Aq5VS5wB/B/bFq5bsTSvRO4Hv4WUCv9+L+fHL832/qnYDXnCW20qioyNAg98R48bchZVS5wLPaa3XA414nQC2llWrwQtyJtGVcdycAry2gy1KqdFAL29Pe12+U5VSxwAv41WH70dXVffdwK1Kqcfw2up9Gdgbrxp0Syrx9k0e3SEGvOllFlv/kxZC9LXB0k4t17Z2MDgfr1fg/4AW4D94VX4XAzcppVrxGqr/vcdytwBKKdWolJoPoLX+E17vyr8CDXjtva4GOhrk/81f11NAFV6V21t4Dek7MkEn4gWGdXjB1DVa6wd6sR/342WCXtda97Y71g3Ac8A7eFnGDcD6jvIAPwHK/bLMA96Abq1Zjwbm+MfoTbxjdP+WNqi1TuAdk3/4x+7HW5j9q3jt9VqAR+jebq83tla+v+B1OmjCq/I+vaP9ntb673g9bu/D2/9vACf6bd+25MfAdUqpBr+9oRBCCCF62KZHd/QnpZSJF9Bd4QcHO7IuA6+924+3d11+9qwBOEJr/caOlGd3N0geajwwTnQxoBk3byqz5uJevo0PphXik6FPUmALjN92u97v6X5nwKfaduuH4iqlvoCXvTPxHp0Rw8u07aiz8J6F9tA2lKUY77ElL+A14L8Fryr43Z1QHiGEEEKITdqtgzXgW3jtywA+wqta2+xDZHvD78GZBS7QWqdzxp+F11N0U74GPIP3SJEH8R7uq4HZO/okfr/acVNe1VqfsCPrFkIIIT5pBmM1yoCpBhViB8mJLvrcsf/M8sJGXYEyuJdH+6M4Quzu+qR6cn6PatBpg6AadFs7GAghhNiM578YYHi3uCzLY1Oe76/iCPGJ9In+BQMhhBBbt+6bXZfVxx/fGU1shRCfdBKsCSGEEGLQGCzZtFwSrAkhRB9or2rHfaUdY4S0NhFC7BgJ1oQQYieqrclw2+ff5rOvvsMBdi3ZoMGyH81nQttPMIzBd8cvxO5mMPYmk1s+IYTYiX5znua8V15gjL2GPNoozjQxNNHAmv3+0N9FE0IMUBKsCSHETtL43Sf4wZMPUuo0ESRDlDZMsoRIEZuznIYHPuzvIgox6A3G3qASrAkhxE6SvvXVzq8GmxAuYOIAECNB7Tl/hzeX9Fv5hBADkwRrQgixE9R82EBbKMzyomG8UzGJDbEiXMDFBAwMoCLVwkuzH2DNyO+QeOidfi6xEIOTZNaEEEJsJJuyWXLg/fxv5AzeGjGVpSUjeXHM3tREC8ht7hwkS0V7mqNOu5K7f/UeztvL+q/QQogBQ4I1sUVKqZeVUlf1dzmE2B25rsvKZ9fy9P4PsHzoUBKRcNdEw2BR0WjqiYOfYwMYk6jjpbt+RlljI++feDcPfO8t3lqR6pfyCzEYuT1eg4E8ukMIIXI4KRszbHlvUhnqb3+Dd6oi5Fvw+lvtLIkXUheP8KmFS5j+XiWp/DAxK8VRza9TlV/Ks6OOAsMA12V1eAR2qICD0h8QJg2Ai0NFew17V1sMa63ll9UZHnrY4tr//AcVaad+//GYG9oJD8/n0G/sxbDh4S2UVgjxSSDBmhBiQHObEtj3vgNFeVhfmoVhblxh0NSQ4Z1/b8D592JqmxySDrTnhXkzXkI408y5H73KB7FpbIgXoFaupKQlwTsVIzmqfjGN8RIaw/mMXLmGY0MhyseNpS4eJ9RsUF9awIoJ5cxe8hQxt43xLW2csfxRFsVnEMy6LCocSVs0zNz0NEpo4OEDp3DG++9w4TmX8frkcRS2J/npUw9jJwo46fW1WK5LbM4GDmyeQ8TOUHNDBS8V78n84eUU242cuvBNFpWPpi4cpyDZyHujRzK0qYG5Qytws1Fm1qxnbXkeRyxfTlFbhurJJUxdsIAF5SP464FHcaGzlllmE4+GxnDbsOm0B0Mc/PFizHiIMy9TqD3jsHg9XPcg7svzIZWB4UUY3z8Fzj5yo+P6zL0Lcd9ZxpQvzmTcIaO7TXthlcPcGjh5vMHkku1rN2Q7LvctcGnNwDnTDOKhwdH+SPStwdJOLZfhuoMlSSj6glLqZeB5rfX1Sqm9gN8C+wANwF3ADVprWyk1FlgBnAP8EBgFvAmcq7Xe4K9rGPAn4HCgCrgR+DMwTmu9so93RU70Qch1HFL73Yz73hoArEuPIHTr57rNk0zY/OK7y2mozVDe2EzA8XpnPltRxssjhgIwrLWNK97+kOMXfkBFohGADCZhMgC0GHFwvSAwGQjwn/33J96cJJTJ0FSUx+kL/8Po5nWd22ynApcgS+MVrM8MI5J0KKKRViOPOVMquOyCEzvnPW7+Yv78j/upSw0HYCJzidPUOf0D60BcO0R7OMg7+4zgjQmT+eljDzGspZm0aXDAhV9jdWEJATvLMw/dwtGrFwFgEwRsLP/U1yPHsf+3fsafH7yDyz5zDk3RWLfjdPTSD7ntouHsefj3IJHG+5NxABcXMB64HM44uHP+R277gFO+fROW69IWCpF86xcM2WcEAA8tdjjjce84F4Zh3rkWowu2/Qv0a8/a3DnPK/+BFfDmWZJfGGT6JKp6z7i92/V+X/ebAz56kzZroleUUoXAc8BLwDDgJOB84LIes34BLxgbAcSA63Km3Q+k8QK5Q4Gz+7bUYtCrbesM1ACcZxZuNEv1hjT19TYB2+kM1ACWFBd0Dlfmx2iIhClJtnSOC/mBGoCRc+mPZLNYjkN5fRORNq9q882R+5O0vOrKDHFcggCMaqvm4OT7zGABe7AU1w0Sbe8qA0BxexvDUvUY/iM+Mkawa38wsGxvOC+Vwc5EOHbhRwxrafbK6Lgcvmo1AFkrwOMTZnYua5HByLlHGV9XjWuaPDzjgI0CNYBF5SNY+exSP1AD73vU6Bzi0be7zW+++CGWf7MfS6epeW5x57RnV3VttykF72zYvnulZ1Z2LffWBmhOyT2X6A2jx2vgk2BN9NZJeIHW9VrrlNZ6IV5m7MIe8/1Ua12rtW4G/g4oAKXUSOBo4Pta62atdTXws11V+JaWFhkejMOlMYzpFZ3jzKMmbzRP2bAQhYUWWcvEzvm5p/FNrZ3DpW0JilMpWiLRznGZnFYirmV3hj3VeQXMWLiWaevXcOTaD9hjzRqSmTxeKD6GJwpnU2WO8nNSBiHHIYhNnDaaKSBKihmrq7n0qTcZVdvIIYtX8JvH/8WK4iGsLw/z8p5jufj086g3S0iQx3JzKllCneXIhl2ac8oI0BTuatO2/4YVXfMSoiYv3vn+lsNOAOCERR8wrLmBnibXbGDU0RMgHMwZ63b9/4uHdDu2gcMndg4ng0EqjpvUecyPHNV1nPODMGuosV2fb+569h0KBeHtW48M797DYuukGlRsUUc1KJABTtZaH5Yz7VjgMa11Xk416Cit9Vp/+nnAVVrriUqpA4C3gKDWOutPnwgsRapBxQ5w69rI/uVNjKIo1gUHYVgb34PW12R4+5ENOE8vI9mSpS1tUxeO8kbhEOLpes5a+DbLQ5NJGAH2qVxOOJPhg5IRzKzbQMR1qcsrYGhzA0baJeiAhU2cRkyCtFlh3o9PAMPo7H12ROP7BF0/JYZDW8xgXnwaRZVZYiQopL2zbK9MHc71nzqap+66kZuOOp3F5cOYtKGZkXUtjGhvggZIRcMsHjmE0c0rCRoBpq+tZlJNNYmgye0HKhYOKePIj5fz2UXv89qksZS3JpheWUn99GG8SwH37nMwi8pH8rMVr/HVmo9Y0BbjDxP2oTUSZXRlFcnSfE6/4kAOnhiBeavg54/gvrUEMlkYVojx48/CZw/a6LjOuXcu2beWMf6Le1N22IRu0/673GuzdsoEg+ll25fdyNguf/nQpSUNF+1lUBQZHFkS0alPPtA5xv91u97Pci8e8CeONAAQvbUGGKOUMrTWHX8I4/3xvdHRoGc08HHOsBA7xBgSI3jFsVucp6QsyAlfGw1f637Kfbdz6AiO8Ydcx8UwDQ4A7NYULX94m2FplwQBmm9/m4rKFbRY+dQF83h6z5l8+qPFTGxfT2W4mFQgQHM0itXgkFsNU95Wy8GZd3h0wknsu/zjbmX479QZLCsbysnnXc716+byhbwAz80sZdr4Eo4/ZRyxIbm9QQ/daN9u6Rw6CPgyk3KmjcFrYPrVzjGfAT7DdGCzv1S61xj413d79S066+yZcPbMTU47eYLJyRM2OanXgpbB1/ce8N+zQuwwCdZEbz2B17ngR0qpXwHjgCuBO3qzsNZ6rZ+l+6VS6gIgCsjz28RuxzC7ggMrP0zRFYd3TbzqEABK/LdTgTnLk9Sc/2+WtxZRUtPMtNq1uFjgt0FLEKGZkRSma2kuzGPu+LFMql/P0MZG6vODXFRWzz+uCEBgPN79DxzR97spxKA1GKtRpM2a6BWtdRNwPHAsXk/OZ4C/Ab/ZhtV8CcgD1gKvAQ/64+WJoGLAmjUhwrFPn0Ega9OaF2ZooomM38EgQZiVjGQto/mIfUiEgyydNIIn91fMm5THzNrvcPQfj4eA3DcLITZP2qyJfqOU+hTwHyCaU7XaV+REF33q3V99xPy/LOa4xR/STgyLLCmCNNHVyN/Od3h3r2E0Tyjjyj/uTzgvtIU1CjHo9Ukd97vGH7td7/dzvz7g69IlWBO7jFJqJl7Q9CFeNeq/gAVa63N3weblRBd9bq11DU1OEab/HZTFpI0w3neSy3DWMuTj7xIbN6RfyynEbkKCtV6SalCxK5UAjwCteNWg84Bv92uJhNiJGm78DMmg03lnEMAhVRAgHExRZDUSvPNkCdSE6GOD8bdBJbMmPinkRBe7xP/K/o9InUttRSGJSJi5k8cQsrMoNnDCs6f3d/GE2J30ScbrnR6Ztf0lsyaEECLXIUu/QlthkA3Fxbw7fRKZQIDpH3/M8Q+f3N9FE+ITwcHo9hoMpAuSEELsRIGiCEc3XMRRtsPTv/gXdsTipMe+hGEMji8NIcSuJ8GaEEL0AcMyye6d7w1LoCbELuMOkmxaLqkGFUIIIYTYjUlmTQgh+sCqRodvfHgQiXaTfRfU8ctzCtm3Qi65QvS1wdibTK4cQgixk61ozDL+tiwECiDP5bmMy3N/c8DM8OwZFseNlUoNIUTvyRVDCCF2oqefa2Cv37VDxALLANOAgOnd7tsuJz6Y7e8iCjGouRjdXoOBZNaEEGInydoOp79hksiLguH9agEB/54464Dp/SOEENtCMmtCCLGTTPhBHYm8PD9Qo+tf8DJshvfa56+Z/imgEGJAkmBNCCF2ggeermLK2vruI10XHP9l4Adr8EGdwcQ7JWAToi8MxmpQCdaEEGIHtGdcKm5Lc9VzJvXF8c7x/7nrRr768tPQlvHqPm3XC978bNvyJvi4PktrejD2XRNC7EzSZm2QUUr9EchqrS/p77IIMZhd+2qWn75he8GXC+PTGSKO9/77Lz7KcUvnccppl0Is6FWBQlemzTSIJDN8/eI1hLI2tXsP5U9fLWTGULkkC7GjBuPtj1wZBhmt9ddz3yulVgJXaa3v658SCbF7sm0H0zSoanNpnV9H6uM6ppw0mra1bTz+aAMjownqq+u4q3gyszPr+O+IPXmyJoyZSGNbFm7QwsTAMb0KijfGlHPqgjUEszblbc2E7CzxbIoWM7rxxh2XZDjIc7PGA7DPskr2+msczDRgUBJxOSdUxdJmg1czhbhZm2jApTRok45GOTtVyZRohmo1njFFJkeNMcgPmRimge24WObgqPoRQngkWBNC7Fbm1bic+LDNulavI+UfjjG4aKa1zev5xVsOt85xaM/C+GQ7B765jIDjsiovj7OfmceqSRV8MKmcxnCKI1aupC6vmGm/fp1XJh9KayBAS3gIDiW8Hy7i5UAh+cuTOIVRnGi4syrTcbvfwwddl9LmBPfuczgXvfMCj/7zFk49/wpaYjEvq7aZW/7K4pj3mA9/vfVpg8Azb/PUYbNxgiYEXFowqHVdvnP/24xdXsWcsaU8uLqIiWsasB5/l+qiGP89YE8+Hl7K6pI86mMhDBdcB2/buIQMKMi3aM9CIuMSNeHpgxo47OrbYX09/OB0OPco/r3U4arXHIrDMK4QnlsFSRv2KYd7TrAY/fgrcP1DMKwY7r4ExpRv8+cjRF8ZLO3UchmuOxgThoOfUiofuBY4HSgDVgNfAy7Eqwa9UCn1OHASkAaywBvALcDfgBFa67S/rjiwAThBa/3qFrZ5LXAYMA84B0gAv9da/zJnniOAm4A9/HXeorW+w592JPA8cAFwHRAHHgMu0Vq37ugx2Qo50QeIfe7J8kFN1/ugCenLtu2+8o11Lof83fbeGHDZC3MY3twOwMQPN/DhzHHUlhcA0BAO0BDNA8B0bMbWV7KkfGTnulpCAV4bV7rxRnLanwFYtsNPn3mIh6Ydi2sarAibJBwDJ2BiF8fY0vdHYWuSpnik2/omV69jSenwrpkMOOntpXzv4bc7R93whYM54635zFjlHbBEKMBPzv00mYDF22NKcN2cjbp+J4dATlNl2+Xxf/yak+e+4++ESduyOyh9tJDkZh4Hd05pE/dc9HXI+sd3toLHfrT5nRNi8/okqnrF+Eu36/3h7gUDPnqTDgYD11+AA4BjgALgVKAydwat9Wy8IO5CrXW+1vp44BmgDTglZ9YzgTVbCtRyHA5UARX+Oi5TSp0JoJQaBzwN/BEYApwH3KCUOiNneQuYDewFTAUmA7/u7U5vr5aWFhkeIMONSbqxc24oe7ueppS/jH+JLkimO6ebLrTFwp3vU1awc9gxLdpDUT8T5clYvbvO26bBT48/nZDbwufee55mgmTMALZjQlt6i8s2xaP0/N763Lw3sWy727j8ZGaj9/mJrnHRdJZQ1sZ0wejl7Ul+e3vOTjikm5ObDdQA0i2prkANoKm9388ZGR7Ywzub9AYVuwWlVDnweeDrWusVWmtXa71Ua71sa8tqrR3gz3jZrQ4X+ON6YwNwo9Y6rbWeA9wJfMWfdibwntb6r1rrrNb6LeAOvGxfriu11k1a6yrgGuBcpVSfnovxeFyGB8jwzUeZ3S5Ml+ecGr1dz3FjDU6eYHTmU5+fOoaOZ9H+85hpFFc2ds7fHnIJZb1gamRDJRHHpijVTmGiCctOsCFucMqHb2PYW3iarZ9lywQCvDN2DKXtdT2m0/mMtU2+fKUNreC6TNmwlmOXzefa5x7AoOuxH0/uN4HlFcUALB5ZwjNqPP88fBq2v4r/zRhPIhxiTXEUxzL8+M/tCj5Nw1ufX2YDSF39BSiKeeO+eQLFe43g6gO9FcaCMLm4azcKQvCN0yrgOyd7Iwrz4Gdn9vs5I8MDe1hsnbRZG5jG+v8u2c7l/wJcrZQajZeV2xuvurQ3Vmmtc+/ZV+JVxQKMAj7uMf9yumfxAFb1WD4MlALVvSyDGMQ+O9mk9dsGdQmHkqhJXnDb74wDpsHjp1vUJVwc16UwPIqaDWW0JR0OyzjMHLkHr73YyIZmh9kVkKzL8t7cFvIroHJICebqJPFmm3fLCqkPRnhm7AxKE0lqIhFvA4axxVvdomwGQhakba8naCTgBU6dfzkuuZm0QNZm9ttLeFJNBAfWx4o48aIfk8Toqm51HVrCAS6+9NOMa2mhgnYmR1PUH1LBIyd/jj1KTKZNyWd2oUEwaFAYBtMwAYeMA5btYgZMYiFoyxi4rnd8LXMafOEuaEtBcT4A1x1q8b39XMIWhC2oS4BhuOQHDcIBA245H37yBYiGIBxEiN3JYGzzIsHawLTS/3cSsGAr826UDtBab1BKPYGXESsGHtVa1/Zy22OUUkZOwDYWWOsPrwFO7DH/eH98t3XgBXEdy6eA3m5ffAJEgwYjg9veqaCnIVGDjqBoxMjuvTKPOWVot/cnfaF363Rdl9a0w8Tb0lQ7fhBGRxbP5dx3X6aqaBzlOFQXRwADE6fbH2LAcbANA9cwwXEZt6GehlMmMW92gIq4STxctJVSRHpXWMBredBdNNhjfCjovXIUhnMyfnn+PubqyMYJIfqcBGsDkNa6Win1EPAHpdR5eJmqCZuZvRIvqOvpTrwqyhjwxW3YfAXwfaXULcB04CLgMn/aP/AyducAfwf2xev0cHGPddyglLoQ7xvnWuBev3pWiN2eYRjEwxZVl0dxXZf567Lsdb+N6cDMdY0sLxrDO6PyqSsIg2liOg6O6QdGfrxjmyajGtrIDotw3WEWF+xT0X87JMQgM1jaqeWSNmsD1/nAB8D/gBbgP8CwTcx3PfBlpVSDUuqpnPHP4mXdmoAXtmG7r+IFbJXAf4Fb8QIztNYr8DJrlwB1wL3ANVrrB3KWt4EngA+BxXjVppchxABkGAbTRwZxrgxz3JAE+bbNe2NGsXBoGbb//LWO57DlCmdtVpfks+7SCBfsI9WIQogtk0d3fIIppV4GntVa/6KX818LHKq1PnY7t3ck8LzWuj8yunKiiz7lui7xnydImxaZgNn1qwXdZqKzDdrdJxicO33Hq3qFGMD6JAX2ovHXbtf7o92vDPhUm1SDfkIppQ4H9gPO2Nq8QoitMwyD1d+LUHpL2v9ZKbq+ijp6fHb86tT35dIrhOg9uWJ8Aiml3gUmAt/SWtfkjD8MeGozi/Uq+ybEJ1lJ1OR/Z1osPeMPXPDZr3sPoDUG/E29EAPKYGyzJtWg4pNCTnSxy2RWVDPsDy71ZSVdj+zwvz8u3dfg1mPkPlkI+qga9AXj7m7X+2Pc8wZ89CYdDIQQYicLjivnjvNLIZGBtixm1ubKWS5V3whIoCZEHxuMv2AgVw0hhOgDn5tq8di+Xkfr2bNn93NphBADmQRrQgghhBg0BuNDO6UaVAgh+pDZbm99JiGE2ALJrAkhxE6WvetV1l3wHIeQwMBlyZkLia34BiPGFPZ30YQY9NxNPeNwgJPMmhBC7EStL65g1QWv4BAhSQybIEPdaqqm/KW/iyaEGKAksyaEEDtJal0zS49/DIs4AO1mhmIHKimhqtyius2hPCb3yEL0JXfwJdYksyaEEDuD3ZLkn4f8F8vu+qbIECBlBnh86jSCbQHuPuopll/yeD+WUggxEElmTQghdlAmkWHB8N8yqz1IezBCJON1KihxqvnjgXtyw0EHcfCaMdz40ktsWOEyt/A9Tv/5vv1caiEGp8HYZk2CNSGE2EFvfON5ShNBwo5DJtLC0EwNJg5D2MD5CxtYVTqKkxavoLytlYJkgjG/fJznxhRx3FfH93fRhRADgFSDCiHEDnAyDuGHF5E1LFzAdiM0x4IUUo1LgJJEkr/vux/nn/FZ7jvgYOpi+QQdh8wNT9DemOzv4gsx6Lhm99dgMEh2Q2yOUuplpdRV27nsSqXUl3d2mYQYDOy5a1lZ9jPeHPI78tuy1ITjrCwqYcmQ4bxbtA9VobEkKSWYLuC0BR+SClisLCpgbUkpIdo5euU8kuWX8cLY3/Da1f8jW9ve37skhNhNSTWoEGLASrdkqJ3XQOH4fGIVeRtNd5ZU46xrwjp4HEY4gOu6PPVIFVVvVXPwGJP2yiT2okqa59VRVL+BkYn11BSVUhWIsDA+BFJBjlu1ksZIlBuOPpL9l9ZQVRznjHc/5OrPH8vL37mS4kSCG+5/jv3Xr+TG445hVWkRp875iJJ1bYB3R/zVd9/kqUlTmVTXQMBt4qhLvsWGokLKmlq59H+vUPb3xXz0+2eZ2FhF1jJ4fsJBGDbsv3ohq4pLuG+PAwmFbVaXl3JgzXrmlpcyoqmGbCwC7XmMqqrikFXvM6GphkxBIc1DhjHvnGMp+dQ4jh2e5v/Zu+/wKKr1gePf2fQeQu+9V/VgQxB7712uvSvqVa+9YbvWa9ef2HvD3kWsoKK8CihIh4RQQg2kt935/XEmySakbCCd9/M882R2zsyZM7Ob2XdPmSmZs5KZG5NZsKQAf0IEBx2YQt8RSbiBAMxYAm3i+H1uFgWpmyno0IGknDx2H5uE89NCGNMfZ89+tbwRxfDzQuiSAgO7hvTepWe5LM50Gd3JITGq9fUxUk3HDWt9nycN1lowY4wDhIlISVOXRanGVriliE+P+47stFzCY8M49PVxtB+VUpZe/P5cCk55DfwBwsb0Jub7S3ni0r+I+SEVXyDAbyUBwgOuXTkQQ1FWFwLFCbTL28oAChjEal4ZPow3h+9O59wCrv7pN7rmbCG2uJAwinn2g7c457RTmdG3D05CEVP2GcbbY4YDsKRzMhfO+YEI1w40SCwo4Mdnn2HApnWcPuFs/urZBYCNibE8dOD+XPjTX4xZs4BY/OCH3VcupKQghSLa03m9S/SwAI/tty8Aa9Pbc/1PX3HMP1MJc12KiWFqz2HsnpEKgJufT6d1GbS9fQVTXhvPoIxv+WTggWQ7ScQUFuECz34aw+GndmGfr7+ED//k5kOO4/4DD4NouOCr6YxekcWgG78iqSgHF+Cps3AuPbDqN6K4BA66A376B8J88OZVcPKYGt+7X9e4HPiun7wS6N8GfpsQRpvo1vcFqxSA4zgHAacCHVzXPcpxHAMkuq77Xah5aLDWwIwxqcDzwAHAaGAFMAEYCtwFtAemABeLSIkxpgfwMFB6tfsUuEZEsr38XODfwBleHvsZY+YBk4DjvfxWAheJyAwvjzbGmPeBg4H1wNUi8vF2HMu+wAPAIGAt8IiITPbSxgPTvGP7L9AO+Bo4L6jsA4DngF288/Ai8KiI6FVa1dnqGevITrO1VyV5fpZ+mFYxWHt2JvjtUwL9P6+g6M/VhP2+Fp/r4kB5oAY4rktEsZ9kcgmnpKx/yFl/z+OLAcNJyc+hf+YGb6kPCKNtXh7PvTWFtwbvxfA1GUwbOqAsv42JCXzXqz/7rEiliCg6rSuhLVuIZQvZMVFl67mOQ3RhMUnZufyV0o8D1ggAbQtyyKBdaekYt3gVj3mx0oIOyey/7BfCXFv+cPIZn7aibN3Sf6a2hVvpt3Uty6O6k5bSg64ZG7w1oNvWXH76dA37fP4nAM/tNa6sTC/usTfn/Po4SUU5Zevz+FSoLlibn24DNbDn+7lvag3WXpkfIM/7ibkkE75b6XLCAL0MqPoRaEajQR3HuRy4EhsHnOgtzgceB/YONR/ts9Y4zgIuBdoAc4EPgf2AkcBw4GjgZGNMNPAd8A/QBxgCdAMeq5TfecApQDwwG3gB2AMbECYCxwIZlfb/MJAEPAm8YozZts2oBsaY3sBXwDNAW+Bs4F5jzElBq4VhA8KRwABsUHaFt304NvCcC3QEjgMuqEsZdkR2drbOt7L58A4+nKArWFLvhArr+Aa2L0+Mi6SoXQRFCTZQcr2plOMFPgEcXMov9NmRkfgdB58bvHa52KIShq3aQElRFKfMmk1UcTEAvTZsou+aTaykJxl0YjMpBHDx4XLLN5+RmGcHFgxPXceRc5YAsCUqvizfEiIrlHB1ckLZfI+tOeRGBv/7OmyNivbmK5YzNyKGdnmbiC/MJeCUH5ffga4donDb230O2LCuLK3vpo1sSGiHP/jk9utoz0dV70XXFNz46LLlRb3ab7tOpfmesYVl8z7HpW+yU+P6Ot+651u5fwMHuq57H+XPmF8IDKxLJo5bzUVI1Q+vZu0pEXnQe3048DnQQUQ2eMveBVYDPwP3i0jfoO13A34BYkXE79WsnSUir3rpHYB1wDARmV/F/n8A5ovIZd7rOCAHGCUic0Mo+y0i8rox5ibgCBEZE5R+L7CriBzi1ax9X+m4HgT6ichxxph9gG+BZBHJ99LPA55vpJo1/aC3QqlfrGLFF6toO7QNwy8agBP0i9rNL6Jo0tcE0jKJuHQM4eP6krEil3cu+wN3fR7tKSZ+YxZbwqMp8oXRdmM+HbO2kEQ+Eb4iMhKi+K5HT7rk+cCBPVYto0NuFj5cIiikICySeUm9yIqIA2DchtmsS45nUdsuDE3LwFfkI4fksvLExm6mV/5KotwScsMimRfdj4XtelMS7SPgOPTMy2DA5nSywmL5udtAhmWsI7rIz/roaL7o3491nZLISIrDrF5N35x0Tv77Z5LyC8lyUvho4HBWJicwan0641amERmA2d0GMOtfh3BVuyVkfb+M94qHkr3FgYCf+F3bcfbtg4hdsx73vi9YnZjM7REDyc8r4fCFS4gigkOc5SSkrcYZ3BU+vQonKqL6N2LGAnjyC+jeDu44FWKjql8XCLgu9/3mMme9y6mDHI4foPUGO6kGufZ/kvRGhev90VsnNFlVm+M464HOruv6HcfZ7LpuiuM40cAK13U7h5qPNoM2jrVB83mAvzSgCVqWAPQGehhjtlTa3gU6YQM6gNSgtF7e38Wh7F9Eco0xePuri+7A8krLlgHHBL2ufFy5QfvpCqwvDdQ8aXUsg1IV9Dq8G70O71ZlmhMTSdT9R1VY1ql3HFd+Ma7K9Svrl1/CGMc+umbV/Cxitw5n/qerWbYxwKrYZEZ8NY9AQRgAbQu2Eh/Ix7fZR+TmrUAMARzCKaSYKIraF9Nv8wYyo1JYFdOefpkrGZ67iC2BJAKOj0DbEsLiXCJ69KHPUb1puzCHhC59cXftw5C+yRw9MqiWsOwH+VkAxAGXVFH+A70J+hF9ua3a30a77jhvXkR3bJ8Ey4R0firYZ7CdQuRzHG7as/k0VSnVgH4CbgDuCVp2BbZyI2QarDUvacBiERlay3qBoPlU729/bPNpQ0kHDq+0rI+3PBSrgfbGmJiggK1HfRVOqfoWFlN+eey9awqQQsf9+rJ/2dJRFGwoIDt1K8vHv4WLj2Js7ZPfgeXt25AVHU2HrK3ss2ERDhDtLyY3MoZFDGY00ykYXMLxf1y8zb6TGvrglGrFmtkTDC4HPnUc5wIgwXGcRUAWcFTNm1WkwVrz8hlwt9fk+AS2ubILsLuIfFjVBiKy3hjzHvC0MeZsbMDX10tbWo9lewu41RhzJvAmsCtwEVX/qK/KTOzAh3uNMTcAnbFt+Uq1WNHto4luH016v0RWLulASn4ePkrYmBjLhnhbqbw5IQ5nS/k2vkCAMALMGjCyykBNKdV6uK671nGc0cDu2AqKdOB313UDNW9ZkXYUaEZEJA87SGAItgPiVmw/r1G1bHouMAf4EcgGPsY2m9Zn2VZga9YmApuA14DbROTdELcvwQ6k2BXYAHzk5VFUn+VUqimM/Px41kS1xYcLYSWU+MLK0nIjYlgR0wW/45ATEc0mfzJJiWvZe9G1TVhipVov16k4NTXX+s113Smu686sa6AGOsBANSFjzEXY25IMqHXlHacfdNWgchZnsnbYU7gBHxFugN879yE3Kork/Hz6rNvImq4JbE2MYbfN6QxYc31TF1ep5qBBQqmPUt6scL0/dvPpTTnAIJ1qvn9c1w25K5A2g6pGY4wZg72lyHLsLUuuA15v0kIpVU/iB7TBnXQIvlumsTUuimEb11JCGMs7dyC7jcvvPfoybu8AAx44vamLqlSr1sz6rFV+ZGNn7H3X3q5LJhqs7cSMMV8CY6tKE5H4qpbvoB7Yvm/tsE2hU4B7G2A/SjWJATeNZtnaraS/uRJfG5fiqEg6r9vEbz27URgZYP8H9q89E6VUq+G67o+VlzmO8wP2vqWV76FaLQ3WdmIiclgj7+8tbLCmVKvV94kDiVr+PMu/KsEJuOTGRJMXl8KZA7Y2ddGU2ikEmlXFWpUKsbfqCpkGa0opVc+6fX4+bb/+m+l3/EiGL5kzLu1At9MPaOpiKaUameM4d1ZaFIsdrPdlXfLRYE0ppRpAzCHDKSxKpQ3Q7ajhTV0cpXYazazPWvdKr3Oxj398rS6ZaLCmlFJKKdUAXNc9pz7y0WBNKaXq0bsLSnh+Hpw3zLZ3KKUaV1PfW81xnJBGErmu+12oeWqwppRS9eSSj3KYNW0ludFRXLiwHY5/DPcOnd3UxVJKNa4XQljHxT6yMSQarCmlVD15a3YhW3v2B6f8p/2laWNDfiabUmrHuU7TVq25rlunkZ6h0MdNKaVUPXBdl9zomAqBmk1w+HttSdMUSinVKmiwppRS9eDSr/2UhEdUmXbdw4soysxjyU0fkvfi941cMqV2LgGn4tSUHMdJdBznYcdx/nAcJ81xnJWlU13y0WZQpZSqB8/MY9taNeyywQsWk93lPpIdh4JAgPl3fs7oFQ9Wvb5SqjV5GugG3Il9vOK/gGuB9+uSidasKaXUDjrpoxqaOQN+bp02hbYFubTPzyGlMI/RactJTbkAtuQ0XiGV2km4PqfC1MQOBk5wXfdjwO/9PQU4oy6ZaLCmlFIhWrnVz+TZJfy1pmJw9vvv6zlp7i/02rx+240cH4vbddlmceesLTx70PMs+HxBQxVXKdX0fEDps+ZyHMdJBtYC/eqSiTaDqnpljInDPpz9JCABSAdOF5HZXnoq0AkI/rbbS0T+buSiKlWr1K1+xr5USE5WEbEF+QzYlMEpc2bw3z5DWZvYhtPS59B78XL+WrWc5W078s7IvXhizGHkRUWXZ+I4FEVs25ft7gOO55XR+5H+TzuumPwRB90ynsOGRBOWncf0pUWsWp5JYlYWnfJz2S2pCPp3gdH9ISEGNmbZv1FV95FTamfW1PdZq2QusC/wLTAdeArIARbXJRMN1nZSxpjOIrK2nvN0gI+AfGB3EUk3xvTBPl4j2Pki8np97lvt5Px+uOd9+DsNJoyDY/eokFxY4nLHrwGWZMIFIxwOnjWTXz9fxqODx3JCxgKOT/ub+SOGskv8IbiuyxMfPs9hC+Zw2r/+zaqe/SE2ki2x8axJac8P/YaV9TVb1q4T/7fieTbGJ7LPZXeSFxldVemILiraZtm7u+xDepv2ADwx9nA+/GgTE6/9gOt++oyw7v0YUZDHwI1rCXNdXCAnPBLp3pe5XXrRc+tGDlk4my8G7kJaSgdGbljFyFsOof2EPev3vCqldtQFQGn4eAW2MiMZOLMumWiw1sSMMVcClwBdgUzgDeAWEfEbYwYAzwG7ACuAF4FHRcTxtg0HrgPOBjoA84ErROSPEHb9rTEmC3gTeFdEMurhcA4GxgDdRGQzgIgsr4d8larZ/z6B29+28x/+BrP/B8N7liVP+iXAfb+7AKz6YRm7PTuZQ69/gnGL/uHkl54DYOSHMxnx7wHssXIpE3/9hkPOv4lZPftvu6+gQQG7rU7lqIWzWRefxO4rl9pALkh4SQkHLvmLDfEJuJRfsQGKnfJeKK7jIz2lPdcfdSYdc7M5648ft9ltQkkRb+w2jhf2sA+EP232DP775VucOH8WAFvPXwyHDYWUhJBPm1KtUVPfZ62SNNd1/QCu624Azt+eTLTPWtNbBRwGJALHAOcC53uB2KfYKtSOwHHYCD3Ynd42hwJtscHc18aYNiHsd1fgAWAfYLEx5htjzLnGmKTKKxpjttQy9fBW3Q9YBlxvjFlvjFlmjPmvMaZyW83DxpjNxpg5xpiLQijrDsvOztb5VjxfND+tbB5/AJavq7DO4szy5B7rM1gXl0hWTCwDNlSsXN4cm8Du6UtxgW/71f7w9b3SFgHwe/d+2wRqXbZsYuU9l/Dli/dx+OK/KgRqLlAQEVllnovbd652f++O3KtsfsqIPUlLblf2Oqkgn9y/y38bNYf3Red1PpT5Vi7DcZynHcfZZ0cycVzXra8CqXpgjHkI6AE8jm3jThaRfC/tPOB5EXG8Jscs4AgR+Slo+7+B++vSzOj1MzsGOBUYD0wDrhSR9DqW/XngPOB/wC1Ad+AL4GURucdbZ1/gD6DQ29fbwE0iMrku+9oO+kFvzWYsgEPuhLxCGNwNfr0XkuLKkr9cHuDYjwMU+WH/uBy+euQWDtvvXJa27cTMJ26mU85WNsYl0O+6x+mVuR557EYOP/9Gvhkwssbd/vbYjey+ahlP7X0IE487r0Law5+8zFXTv6hyuzdGjeFfE64se52cl8OW2HiS83KY/vTtDF1n//Uq1w/sf9FtfO8FhYPWreLsWd9z/Y+fArC+fTs6pD0BMVEhnTKlmoEGqQJ7reeUCtf7M9JOarKqNsdxdgFOw36/BoC3gDdd161TP21tBm1ixpjTgKuxzwgLByKBmdhm0fWlgZonqPqAdkA88KkxJviDGYG9p0vIRCTXGDMXGASMAIYBcTVvVaVswA/cLCKFwBJjzFPA6cA93r6C23e+McY8jL3vTEMHa6o122cwLHwClq6F0f0gPqZC8mF9fCw4x2FllssenZOImPAAX8oyfmkTS845j0L6SqIHdueMf+J4eX5vxvz7Hq79+TM2RcfyT/uuxPuL2RgfVOnsunTMziS+IJe88AhOmvsrD+57NGkp7ctW+btTDyorbQo9Yd7vvLHgT6YOGMm+y//huXee4uojzmSv1Utx3QCL23SgTUEuSQX5FIaHE3B8FPt8/Oe7D+m3fg1LOnThjGXCge1ymTt+L5L26kOv6w/VQE2pZsZ13dnAbOA6x3H2xQZu3zqOk+G67ohQ89FgrQkZY7pjb5J3PPCliBR5NWsGWA20N8bEBAVswVf/jdiO+weKyKzt3P9A7P1eTgGSgHeAE0VEKq1X282ghojISmBONek11WoFaKBfV2on072dnarRJ9mhT7L3UYuIJWL/4exbmth/OPHAE13hiYMABgIDORH4c62fd/8sIGv9Bl5fE0d+WASxhfkc3y6Xvqse54Q38lk/O50NcRX7ir20+/5E+P38e/rnDN6wBij/oEeXFPPFi/dRAjy558EUPjuRj04eBYzbptzB4dfh3mSNAipeFJRSza7PWrBFwALsXRKq6BBbPW0GbULGmMHAP9hO+b8CewAfY9/MA720L4AbgM5e2vCgAQb3YPucnS8iS4wx8V5ef4vImlr2/Q124MJ72GrZn0Rkhz4MxpgE7HDkV4DbsLWDXwEvisj9xpie2BrEX4Fir+xTgLtE5Ikd2XcI9IOuGozzQBH4qu4CfMy83/nolYcqLFsTn4Tr+IjtmkCbBY82QgmVapYaJKp6tdd7Fa73Z6ae2JTNoMnACdgWpj2Bqdjv3E9c1y0INR8dYNCERGQBcDs2CNuCDcre8tJKgKOxAwE2YG+J8RoQfA+A0m0/9kZ2LgEuJrT39Q6gs4hcLCI/7mig5pU5GzgEGzBmAj94x1P6TRUHPOwdTyb2fjN3NkKgplSDum+cDwKBKtM+HrY7q4OaUFcntuGgC2+hwxl7aqCmVANwnYpTE1uDbfp8E+jiuu5xruu+W5dADbRmrUXxRk5eIyIDmrosLZB+0FWDch7a9pFTMQV5+J0wRqxexsNfvc3UfsOZNmA4b+5dQO/TTROUUqlmpUFCqVd6V6xZO2tFk9asdXZdd4fvaap91poxY8wYIANYDgzH3lNNbyarVDP00sFwztcuPjdAwBcGQCAsnM5bN7PL0UMY+/R/GQvc1bTFVKrVCzSjPmv1EaiBBmvNXQ9sM2I7bNPhFOzdj2tljJkP9KwiKU1EhtZbCZVSAJw9IpxzphYzZsUipvcZAsDeqYv4uecAHj8wrIlLp5RqyTRYa8ZE5C28Pmzbsa0GZEo1OodiXxhnyA+sSWjDhrgEOsfmEh2+PXfCUUptj2bQT63eabCmlFL1JP1C6P7sQGb2GgjAhDYLOKXDb8BRTVswpVSLpsGaUkrVk26J4bj/AX/AJczn8OmnqU1dJKV2Os3pPmuO4zjY54GeBrRzXXeE4zjjgE6u674baj566w6llKpnYb7m82WhlGpSd2Ifw/gs5fewXgVcX5dMNFhTSimlVKvhOk6FqYmdDRzpuu7blN9CagX2BvEh02ZQpZRqQBmF0RXuwdY5FtZcqpdepXYSYUDpIxtLg7X4oGUh0Zo1pZRqQBem7lvh9do8OOaDbW+gq5SqH83sCQZfAg87jhMFZX3Y7gI+rUsmGqwppVSD2vbb4pPlTVAMpVRTuAr7bO+tQBK2Rq0ndeyzpnXxSinVQJbkJdiGj6b/da/UTsNtJgN8HMcJA07EjgRNxAZp6a7rZtQ1L61ZU0qpBnJN+hioqoOz38/GPH/jF0gp1Whc1/UDD7uuW+C67nrXdWdtT6AGGqwppVSD2FLgVp8YFkb7p12SHivhmu+0/5pS9amZjQb91HGcHb4rtjaDKqVUA/hno5/a2j+ziuHhP+GleSVsvkIvx0q1QtHAe47j/AqkUz4iFNd1zww1E706NAJjzBPYNutooI+IrK/n/PcBpotInX9CGGNuAQ4UkfHe6/nAnSLyTojb12l9pXYG7y8s4cTPQl8/swgycl06xTV5LYBSLV5z6bPmmedNO6RZB2vGmB+AaSJyd1OXZXsZY/YGzgV6iciGpi5Pber6AHh9YHwLszUXoiIgOrLi8k1ZsHqT7V81tAeU+CFtA3RKhoRY+zozx6a3TbB/N2dDfDT4A5CxBVLiIcl7YPnyDPC70DXFbpsYa5fnFcLazeBzoHcnu2xLLsRE2nKBzTcmEnILISIM1mdB7w5QWAyyFNolwODusDnHlmVtJkT4ICsflq6FA0ZAdgHERsHGLJiXateNiYS/UiE+BrqkQFYuLFgDG7bafDJzYUAXexyH7QoB15Zz2ToY1AWio8qPvbTc0RGQUwDJsbAlj/n+aEa/4SM/UMf3xXUZddcanIQYJict5ehzRtjjzc63ZW+XaPcdG1VzPgVFUFAMyTU8ON51Yf0Wexztk8rfSx8wOxV27Q1J8ZCVZ89/dCRsyrbnxRdCz5kSP2zNs+VVaifnuu4d9ZFPsw7WmgNjTISIFO9AFn2AtS0hUFOt3B3vwKR37Bf+u9fAEcYuf/BDuO618vWSYgEXtubbVry7T4f/+xpWbbLpo/tBv07w1gy7blEJ5BfZtEmnwEe/wZzU8vwcB+77F/RoDxMesUEQwAHDYVRv+N8nNpj76Hp4/Sd48VsbJAWC+nxFR9ggpFRkuN1vbJQNAKviENTgUE/26A/fTII734WHPoYwnw1WvfJcfMkk8vsMqXu+jsO6dh0BOCZvFJ/tdi9HLJpbcZ3wMHj7ajhhr6rzmDoHjn8AcgvgxuPhv//adp2cfBh3C8xeYV/vNdAGwm9Or7jeMbvDJ7PscfVsD4vXwJDu8P0d0CG5+uNYtBoOuB1Wb7Z5vH8thIWFdAqUqjdN30+tjOM4+1eX5rrudyHn47r1fTXbljEmHpgEHA+0B1YCFwHdgBuB3kAu8AlwtYjkGmOeBC4BSoBiYLWIDPTyuwC4EugOLAeuF5GpXprj5XkpEAu8AozANhNO8tbZF3gAGASsBR4Rkcle2nhgGnAOcIdX3uuAi0VkZNAx9QUWAX1FJK2a474O+1ywSCAP+F1E9jfG9AQeB8YA+cD7wI0iku9tV1t6f+A5YDfv+F/yjqHWT6gx5gjgQewzyn4AlgKjgppBU4FbROT1oHMxAfgv0A74GjhPRLK3c/0BXtl3wT5y40Xg0e1pwq2jhv+gN2eZOZAS1D1ieE/46xE7H3cq5BVVv21EGBTv4MhFnw86J9sv8eqM7Alzq/xXal7unQA3vrHN4r8692DkVQ/WyxfFLunL+PPxG7dN6NsJlj5d9UajrwVZVv4640XomFxxnWenwkXPbH/B7jwVbj25+vTzn4IXvi1//fVtcPCo7d+fau0a5Lr/zLBPK1zvL553VJNFb47jrKi0qD02Jljlum7Ij5xqrNGgLwB7AAdg7zVyLJCBvUnc6UAyMNabbgEQkYnAdOAuEYkPCtQuxN5MbgLQBrgZ+MAY08/b1xnYQO4ooCM2GBtXWhBjTG/gK+AZoC32uV33GmNOCipvGHAYNqDoCLwB9DXGjA5a5zxsE2213y4i8gBwMbDcO4b9jTHhwOfe8fcE9sQGZQ955Qsl/VNgPtABew+Xi6srQzBjTB/gA2wglYwNCC+oZbMw4GBgJDAAe06u2J71g8o+F3tejwth//UiOzt7556PirDNgKWSYsvXqdwkWllp82SQ6iJfN6Lqyno3LtKrsau8fnmtS0l8dGjNbE0sPy4SqjjOzTHx9faLvkNuVtUJ3jms8r1OCmr6jIogu7iwinW2fQ+qUt37WxBV/n5VXYaK+ecGnaZm87+g881uvr65PqfC1JRc1+0dPGFvjHsP8GRd8mnwZlBjTAfgZGCYiJRGmEu8v0uDVl1qjHkaqG10xBXYDu2lbQRfGGO+B04F7va2nywis739PwhcFrT9acCfIvKS93qmMWYycD4wJWi9G0Rka9BxvI0N0GYZY8KAs6g5aKnO7kB/YA8RyQVyvU7+HxljJoaQvge2JvJar6ZtiTHmf8CzIez7NGzt3uve66nGmI+ArrVsd4OI5AA53vpmO9ffE+iFrQnNB5YbYx4Bng+h7DskISFB59+5Bm583fZnev7S8uUf3QBH/xe25Nnmx7FDbGD3wzzbT+n1q+CpL+Cbv2wt27/G4QzsCo99bvukFRbbZrU2cTjPXGyb45760vaNap8EHZNxHjoLOiTByQ/BsgzbpHfHKTi9O8Id70LHZMJfvAym/QUPfWT7nIV7/dAKim1fsiVrbZ8sgP6d7d+YSFiaYZtMC4tslJEQbZvqsvNgQ9b216lG+KDY63zmYPuNnT6WmIlHQscU26ScV2jTIsIxRZsZnJHOgk7dt29/rguOQ2J+Ls++PxnaJ9q+ZAHXNiUO6QYvXw5U8/4+cxGc9xRszIa7TiOhW8dt1zl5DMxYAK/8YAPLiw6GXu3h/g8hfZMtQ2Q4zqPnwNNf2z6JAzrDr4thn8FEX3XMtnkGz992MqxYD/PT4dz9idt/VM3r67zO72Rc1/U7jnMPsAp4ONTtGqPPWi/v7+LKCcaYg4DbsM2RUdhamdpGSvYGnjLGPB60LBx74GADj7LaLhFxjTHpQeuWNp0GWwYcE/Q6gB1iG2wyMM0YczW2hjAc22xbV92B9V4gFrz/aGz1aG3p3bz0vKD0ytWs1ekGpFZatoKagzV/pf52uUBN/2U1rd8VW/b8oPQW0O7VShw12k6VjR0Cma9vuzzYfsO2XXbJoVWve6SBx8+vOm3xU9suO2Wf8vkLDrJTY/MCpZCdPMZOQeKB+a7Le3MLOXla3S+tR/dxuGRXOKRXIs6t2/H7pV9n+LGWsViOA09cYKdglx627bqXVLGsNklx8EGdnqKjVL1rBvdWq81B2DgjZI3R5pDq/e0fvNAYEwl8BLwN9BCRRGzzZvBZrupg0oBzRSQ5aIoXkUu89NXY5sPS/TjYAKhUOjbgC9aHisGZKyIVfo+LyCxs0HQStobt5e0ceJAOdDDGBLcX9AEKgI0hpK+uIr3y8VRnNeXBc123rQ+rgfbGmJigZT0acf9KVa2eLu6O43DSqGgyJ9Y9vwtH+Ti0dzhO8/+iUUqFyHGcdMdxVgZNG7GteFV0Sq1eg9esich6Y8x7wNPGmLOxwVZfbE1RNJApIvnGmCHAxEqbZwD9Ki17BJhkjFmC7fsUje1ov1FEFgKvAfcbY94H/sE2VXYJ2v4t4FZjzJnAm8Cu2MEOl1C7Z4FrsDWB14awflV+xzb//s8Ycw2279hdwEsiEjDG1JY+E3sO7zPGXO8d21Uh7vst4DZjzGnYD8t4bI2ibOex1NVM7OCSe40xN2AfbvvvRtq3Uo0mOTqM2/cq4Y5fQ1u/ezwc0bf599dTqiVwnWb1v1R5WHYusNh13Wo6platsY7oXGAO8COQDXyMDUIuAR4wxuQAT2GDp2CPAMYYs8W7+Soi8hx2JOdLQCb2y/9WoLQX9KteXl8C67BNfzOBQm/7FcDh2MBwEza4u01E3g3hON7A1kT9LCJLalu5KiJSAhzplWslNnj7DfhPHdKPxnbgX48dMBBKfzVEZBl2QMJtwBZskNfg/cWC9l9a9l2BDdia1deAGoYiKtUyHdGn9nuH/HUm5F/pY+XFehclpVqp0a7r/hg0ieu6WY7jXF2XTBrl1h1NyRjjwwY914lI5WCwrnk52P5uN+9oXsoyxlwEXCMiAxp4V637g66apeSHsthKDFXdocB/TRg+bfJUO7cG+Qd4ctevKlzvJ/55aFPeuiPLdd3EKpZvdl03JdR8WuXPOWPMKdjaOx+2XTgOW9O2oyZg74/yXj3ktVMyxozBNm8vB4Zj72FXS+92pVqm1wb+yNGLqh6IoYGaUq1X0M1wwxzH2Y+KgWkfbCtjyFplsAZcTnnT4DzgcBHJ3JEMjTEbsDfoPU9EioKWT8COFK3KRSKy7d0zG5DXpFyV6SKyHcO76l0PbN+5dtim0CnAvU1aIqWUUq1GMxkN+oL3Nxp78/dSLrbC4vK6ZNbqm0GV8ugHXTW6Tz/9lAmLxpFNxWd1njIA3j66tf5WVipkDRJVPbHb1xWu95f/cUhTNoO+6rpubfePrVWzGjKhlFKtzRsDf6JzdPlr004DNaUalFNpakL1EahB620GVUqpZmPNRL3UKrUzchwnEfts9H2x3X/KwkfXdUO+z6jWrCmllFKq1XAdp8LUxJ7G3q7qTiAF21dtJfbWZCHTYE0ppepRelYJ+75dQpenS/hkU7emLo5SqmkdDJzguu7HgN/7ewpwRl0y0bp5pZSqJ9+tKOGA98tfP583jOlZnTmq6Yqk1E7H9TV5bVowH7DVm89xHCcZWMu2T2eqkQZrSilVT4IDNcthUVHbpiiKUqp5mIvtr/YtMB37hKUcYHFdMtFmUKWUUkq1Gs2sz9oFQKo3fwWQj33cZp1GiWrNmlJKKaVUA3Bdd3nQ/Abg/O3JR2vWlFKqHtR0g/EhL5Q0YkmU2rk1p5o1x7rAcZzvHMf5y1s2znGck+uSjwZrSilVD7r9n7+aFIcFm10C+rQYpXZGdwLnYR+BWXpftVXA9XXJRIO1VsoY86Ux5rqmLodSO4s1eTUkOg5h9xeSmV9dQKeUqi/NqWYNOBs40nXdtyl/7OEK7MPcQ9bq+6wZY34AponI3U1dlsbUTB7aXi1jzHjs+9LqP4Oqdev8RAkZhSGsGBZGypMBSq7xEda8bi2glGo4YdjRn1AerMUHLQuJflE2AmNMhIgUN3U5lGpxZiyA7/+G8cNg7JAdy8t14fa34evZ0LUtnLEv5BZC2gaYMA56dbDrfSYwezkcsRv8vhQ2ZUF4GPh8cOzu8P5MNqS04fAVvVkck0xWTByE8uvdcXD8fsL/V4ITCBBVXES7SD/RrstrP7zOnj/9DDFRMKoXrFgHxQG777wi8DkwvAes3wprt5TnGRMJAzpDdj6s2QwBFxJjISsfSvx2uzCfncLDICIM2idC5zbgd2HVJsjYAlHhdv3ICDh4JHzyO+QWeeUGYiNtOcIcu4+At/8OSdA2Afp2hE3ZEBkORSVQEoCLDoJP/7D5PnMRLFsHP82HqAiY9pct0+79ILsAPp0F67PsezS8Bxw12h7Tyg3wxzIID4cJY+E/x9ivuxemwZZcOO9AaJcIC1bB+7/C0O5w3J479jlRLV4zqE0L9gXwsOM4V4HtwwbcBXxal0ycmjrFNifGmHjs87WOB9pjH9dwEdANuBHoDeQCnwBXi0iuMeZJ4BKgBCgGVovIQC+/C4Arge7AcuB6EZnqpTlenpcCscArwAhguohM8tbZF3gAGIS9wd0jIjLZSxsPTAPOAe7wynsdcLGIjAw6pr7AIqCviKTVcOwvY6PzYu/4c4H/AAuA57wyCDBBRNZ42/yAV6NojIkEngSOBaKBDOAmEXkv6FjuBoZiL8Ofisg5Nbwdpfn/AfTC3qF5vXfePw5a51jgVqCvd47uFpE3jDFdgGVeWXK91S8TkVdq2ucOahkfdFXu10Uw9mbwB2yg9ONdsM/g7c/v4v+Dyd9Unda5DSx4HL74E073ngITHmYDjWDREQQKS+j/n4fZlJDM1pi47S+P5+h5s/j4lQd3OJ9mLTYK8otsMLYjLj3UBovPfG1fD+0OX9wCI66CrV479POX2iBOtQQNElX9b8z3FT5o1/y8X5NFb96zQV8FDgUigAJgKnCm67rZoebTkvqsvQDsARwAJGIDjwzsnYFPx963ZKw33QIgIhOxN6G7S0TigwK1C7Gd+yYAbYCbgQ+MMaV3FD4DG8gdBXTEBhrjSgtijOkNfAU8A7TFtknfa4w5Kai8YcBhwC5eHm8AfY0xo4PWOQ8bUFUbqAU5EXgf+2yxu7BB2p3AcV7+LjaYrcrZwGhgsIgkYs/hP96xjAC+xp7fztjg9dUQygNwFvAwkIQNBl8xxsR6+R7k5flvr8xnAU8aY8Z5AeVhgN97X+IbOFAjOztb51va/IwFNlADCARg+j87lKd/2l9Ua20mLF5D0bQ55csqB2oABcVsiomjb+ZGsqNiqs+vDvZd/k+95NOs5RXueKAG8O1f+L8Leh/np9vauq1BHQZ/mN98PsM6H9J8fWsOfdYcx+kE4Lpuluu6x2IHF+wJ9HVd97i6BGrQQppBjTEdgJOBYSKywlu8xPu7NGjVpcaYp6n9ZnNXAHeKyFzv9RfGmO+BU7E1TGcCk0Vktrf/B4HLgrY/DfhTRF7yXs80xkzG3j9lStB6N4hI6WMmMMa8jQ3QZhljwrABzBW1lLXUdyLyuZfPq8D/Aa+JyCpv2XvYm+9VpQjbRj7EGPOriKQHpV2MrUl7OWjZ9yGW6R0R+dnb/7PYwK0/9o7NVwKPich0b93fjTGvY8/tTyHmX28SEhJ0vqXN7zesvFktIhz2H75DeYYdPRoe+Ywq9WwPg7oRecRoeNH7+JfuO1hsFG3zc/mnXWdM+lJ+7zmg6vzqYOqAkfx7xhf4Wkgrx3ZJioWcgvLge3sdsRth/gAs/ty+3rUP7D/cNoVuzLLLDhnVfD7DOh/SfCu1GFuxVOoZ13WP397MWkSwhm1qgyoez+DV4NyGbQqMwtZora8lv97AU8aYx4OWhWOH0wJ0Bcpqu0TENcYEBzilTafBlgHHBL0OAOmV1pkMTDPGXI2t3QrHNtuGYm1QefKMMRWWAXlAdZ/+17G1b48A/Y0x3wLXichS7LmdHWIZaipTrlem0jL0BvbzjrVUGLamU6namX7w673w4z8wbgjs1nfH8nv4XOjd0TZ19mwHJ+xl+2GlbYCT9oKEGDh+T/juDpibCofuYvtLbc6xfb1c4KjR+D76jbltVnJIeh9M6iL+7NGPgC8s9HIE/CTn57HLquVkDO1HxqDezDntcHb94nuIi7ZNvcvW2j5razfDBq/P3Oh+tl/XUu/fzgckx8EufSCnEBavtrWBnZJh3VYoKLLljgi3feqiI2x/se7toEuKTU/bAKnr7X6L/RAVCSftCe/+DKs22/2EOdAm3tZeRXh993IKbNrgrpCSAAO72P50MVFQWASFJbbJ8lOxZXrkHFiyFmYshJR4+Gq27bM2qheEhcHb0yF9o+3rNrqf7bOWlWf71MlSGzj/a1/bvOm6sHt/yMyFf42DpDj47T67ryHd4KBRO/Y5US1eM+mzVrkQ43cks5YSrKV6f/vjNd8BeH2xPsL2B3tRRPKNMROx/blKVfVTLg24XUSmVJEGsBroGbQfBxuglUoHDq+0TR8qBmeuiFT4qSwis4wxy4CTsM2XLzfGwAMRKQHuB+43xiRjmyxfxDbtpmLPa31Lwx5fdZ1xdvAnttop7NrXTvXl8iPsVJP9htsJYFC3bdMnHk5bbCdR6ECXp0pYmx96EYquiSQiLArYLWjped7UTPyvxi6roTt69/L50f3tBHDWfhXXu6oOj7p3HDh9XMVlfTrBlUduXxmVahj1WlXeIoI1EVnvNfM9bYw5GxsI9MV2UI8GMr1AbQgwsdLmGWz7dPtHgEnGmCXYJrto7JVzo4gsBF7DBjbvY4PDK4AuQdu/BdxqjDkTeBPYFTvY4ZIQDudZ4BpsTeC1Iay/w4wx+2P79v2FfS5ZLnbQBdjavt+MMWcA72Brv/YQkR92cLePAi8ZY2YCv3j5DgccERHs+xJmjOkd1LStVIuz5jJ7GXUeqv0pBZsugYiwZvGrX6lWy20et8YJdxxnP8pr2Cq/xnXd70LNrCUNMDgXmAP8CGQDH2MHFVwCPGCMycE+zf7NSts9AhhjzBZjzHwAEXkOO5LzJSATO7L0VuxIDbAd7J8CvgTWYUeczgQKve1XYGvWJgKbsMHdbSLybgjH8Qa2ifBnEVlS28r1pCO2jJnYpsue2OASr9/e4djzuB57Ls7Y0R16I2svBB4ENnr7fQTbdw4RWQw8je3LtsULFpVqsU6tpfva1okOKXEt4vexUmrHrce2YL3gTZsqvX6+Lpm1mFt3NCVjjA8bxFwnIpWDwbrm5WD7u928o3mpOtEPumpwVdauuS7d4xxWXqqBmlKVNEgV2P3jp1e43l//w9hmUdW2I/TqUQ1jzCnY2jsf9p5rcdiath01AYgE3quHvJRSzZ3rsvLSiNrXU0qpamiwVr3Lsf3LAOYBh4tI5o5kaIzZgO0rdp6IFAUtn4DtO1aVi0TkjR3Z7/YwxtwE3FRN8mFBt+RQStUgpqgA+/tMKdUYmslo0HqlzaBqZ6EfdNXgfA+VbPNBCysppuSG+rmBrlKtTINEVfftN6PCv+EN3+/T4qO3ljTAQCmlmrWF51b+TnDZK3FtlesqpRpGc3iCQX3TZlCllKonA1LC8F/jctW3fqamwknRvzE6KRN7G0allNo+GqwppVQ98jkOjx1oL62ffrpD3VyVUgrQYE0ppZRSrUhrafoMpsGaUko1gDd/3kLgjiUkFuWT2XMX2oyo4tFVSikVAg3WlFKqnqWuK2T8IVfRJXcrAFtGz4OsV+yD0pVSDao11qzpaFCllKpnhYfdSWcvUAMoCI/imAt+Y/Nv+hhcpVTdabCmlFL1rP/sBRVuIJXepi0ZiSm0/b4zJas3N1m5lNoZtMZbd2iwppRS9ajwE+GzwbtWWDZ5z4OQ7v3os2UDP0ye1UQlU0q1VBqsKaVUPcp582cuOe48fuo9iC3RsfzUaxBfDBpFICyMdfFJPLEmoamLqFSr5joVp9ZABxgopVR9KfGz+at5fB++kAGb1uEC41IXMufR63l07BG8NWoMB8ybS/qPHei+b7+mLq1SqoXQmjVVgTHmFmPMD01dDqVahECgwsuczhfQf+smBmxaB5Q/+LBDbjb//eptZj1+E4s6duGV26Y3ckGV2nm0xj5rWrOmGpUxJhXoBJQELb5fRO5qmhIpVbOZ87OY80sGG35bQcqiVNpmbqZDfg5dtmymxOfjnZF7s89FBm58gwM2bqkxr3Z52axu0573RuzN+sOnsPuaFQxam05cSTHf9xvKO6PGkBMVQ7v8HAb1iaVneCHH7duebrt1IyKsdXzpKKXqToM1Va+MMREiUlzLaueLyOuNUiClPP+b5eeG6S4lAYiPgMRAEd3SV3H279/zwH7HkBkdy83TPuDiWdM4/7gLmd+hKx+88j/22JTBnkH5lDgOf3XuyYUnXcwfPfqSFxlN9zkb+XXD6goX1BKfD8d1CXPdsmXZUdHM7tqbzfEJ7J+2mGP/+QM/EAYM+n09y9t14X/jjwbHYarrguNwzY8uyV9t5dZv3uOxsYczaeq7nPnndBzX5bf+g8n95i4O7KmNJEqVai21acE0WGvmjDGdgOeAccA64H7geaC3iKQaYy4ArgS6A8uB60VkqrftJGAs8Btwvpfl/4nI7UH5HwE8CPQAfgCWVtp/W+AB4GAgGvgeuFxE1nnpqcCLwH7A7sB5wNv1eAqU2mFpW13+82N50JRT5JLjRLKmSx/k6F4EfDbY+bbPUPpuzODdkXsz7Zk7GLApY5u8wl2XXdekMjZ1IdP7DQUgvU073hm1N1f/9DkAr+06lgtOvAif6/LiO0/TY8tGpvcezBu7jmVlm/YAXHfkGRz7zx+Eefk6QNv8XCj9ogn6uyU2nlsPO5X9l87jnD9+KivLXksWMPGW7zjwtQPr8WwppZob/TnW/L0BFGGDsX2AM0oTjDEXAtcDE4A2wM3AB8aY4J7L44CVQBfgKOAmY8wYb/s+wAfAf4Fk4HHggqD8HeAjwAWGAT2BbODNSmW8ALgaiAc+3uEjbgDZ2dk6vxPPF/ipKOiXdyBo3u/z4WCDurjiImoyPCO9wuvem9eXzV963PkURkSSHxnFlceew94rlzA6fQl/d+5Rtk5CYcE2ea5I6VDt/vyOj5gqypSYlVU239TnWed1fnvm61vAcSpMrYHjBlXRq+bFGNMNSAf6ishyb9kBwDSgN/AZ8ICIvBq0zafAbyJyt1ezdpKIDA1KnwW8LiKPGWNuBg4VkbFB6W8AXUVkvDHGAD8BbUSk0EtvC2wEuovIqtKaNRG5M8RjSgXaA8FNpUNEZE1dzs120A/6Tu7iqX4m/2U/Bj7AdV3a5mZzxh8/8vjYwwF44LPX+feMLzjvpItZlZjCZy/eR1SgYqTnYmvBHt3ncJ4ccwh9N63j4MVzy2rVHKD97c+zMT4RgB6ZG0j772UAvD9sd8447XICjsPnL9zL/svm48chHJc/u/TCXHkfri/oN7R3fY7w+3ng89d4ZbfxPDvlGUavsU9CWB+XwNcznuOMUfoYK9UiNUgkdfthsypc7+/4cnSLj9i0GbR56+r9XRm0LC1ovjfwlDHm8aBl4cCqoNdrK+WZC5Te6KkbkFopfUXQfnsDUcA6G7eVKcA2m5bup3IetblI+6ypxvbMwWE8tr9LXlGA5BgfRX6IDCTilBzOfZERhJX4KbryLHyBf/GSz0e+46Po/pdZeP17pMz4i6ycElI2ZRJfXERuZBROSREPfPIqCQX5uH3aM7XXID4Zvgf//fod3nzzMS45/gLCAgGee28y2VHRrE1owzH/CP88eBWP7HM4Xw4YzuN7HczuaYs5ZOk8Via2ITkvm65ZmZww5xd+HzqcovZJ7DGqDeOHJdDthJM4MhAg5q4HYOsWSvKLaNOnE2fowAOlKnAbJgZsUhqsNW+rvb89sP3RSudLpQG3i8iUHcj/kErLelfKPxdIEZEA1aspTalmIyrcISo8zJsHCIfIcCIBwn3E4C0DO58Sx8jnztomnwTgyuISKCyG+Jiy5d8c9yGDrnuUtP9extL7rwDgr8496HPDk2yMT2Sf5Qt48Z2n+KnvYGY/OtDbylZsG+B4ANoCVd2DLTmoAG314q3UTkT/35sxr5nxB+A+Y8x52O+PW4JWeQSYZIxZAszFDgDYDdgoIgtD2MVbwG3GmNOAKcB44BhASosAzAEeM8ZMEpFNxpj2wAEiooMI1M4tItxOQR768DjGDLqbb/oPZ/TKxSQXFnL7QSeXNYnO6DOYq48+i2cP12ZLpRpKaxwNqgMMmr/TgVhsk+MMbFAFUCgiz2FHar4EZGKbS28FIkLJWESWAScCtwFbgKuwI01L0wPAsdjPyR/GmGzsyNLxO3ZISrVefS7ck32W/8PmuEQiA362xsRWXCHCx+iDe1e9sVJKVUEHGLQwxphDsCMuY0RE37zQ6blSjePXRWze/06SC/LxAfnhEUw87lzeH7YHu65azt0X9GDv0e2aupRKNQcNUgV2yxF/Vrje3/35ri2+qk2bQZs5Y8xIbKDxN7Y/2d3AOxqoKdVM7TWQqOKSsmaLmJJiXpgymYHrVpOa3I7Ru+7SpMVTSrU8Gqw1fynYm+J2BrYCXwLXNGmJamCM+ZLSHtOViEh8IxdHqSaxonMXhq5KK6s2mN2lJ0vaduSG+/bWx0Yp1cBaY581bQZVOwv9oKvGszmLvA7nEeu392jLiE2gU/oTkJLYxAVTqllpkKjq5iNnV7je3/PZLi0+etOaNaWUqm8piaR/MIml178PDgyddIQGako1ErfFh2bb0mBNKaUawMCjh7LYsbdH7HXUbk1cGqVUS6bBmlJKKaVajdbyPNBgep81pZRqIIEAzMpqyx8ZJU1dFKVUC6Y1a0op1QByC/0cu+RQwOGu1wFKmHka7NFVL7tKNaTWOBpUa9aUUqqeFRSXEP+ES+XBbnu+1TTlUUq1bPoTTyml6lnyY01dAqV2XlqzppRSqlaFTV0ApVSrojVrSilV3wIB8OlvYaWago4GVUoppZRSjUqDtXpgjEk1xvyricuQY4zZqynLoJSq3Z9r9TYeSjUk16k4tQaN0gxqjPkBmCYidzfG/nZG+pB0pZreDd8W83+/FUBEdLXr7Pa6C24R9+7h54Z9YxqxdEqplmqn6bNmjIkQkeKmLodSO70la2DBKthnMKQkQG4BfD8PerSD8DCYOge6psBRo2FjFvzf1zBtLsREQa8O0DHJrrdoDQztDifuCakbYOwQ8Afg5wXQtS288SP8ugg2ZkNBMZi+EBcNvy+BgiJwHEiKtftIjoOOyVBUAuOHwu794MY3ICwMurSB/YfD3VPA78LJe8IXsykpCZARFsNrQ/ei/+b1zG3XmU922YesTt1rPn7HIaKkhJz/fsz4NwfyY9+hgEtcfj4FEeEEfOGckjqH+5Z8T4/ucTgdk2Da3/acpG+EVZtgRE9YvBYyMiEiHGIjIKcQEmMhKQayC2BoN1i+3p6rfQbBSWPgoJHw2o+wOQfOGg/tk7Yt388L4Kd/oFOyPS9/p9lzXeKHQd1g3BB7PoL7BW3Yas/1sB7Qp1O9fVSU2h5uwzwfvkk5ruvWvpbHGBMPTAKOB9oDK4GLgG7AjUBvIBf4BLhaRHKNMU8ClwAlQDGwWkQGevldAFwJdAeWA9eLyFQvzfHyvBSIBV4BRgDTRWSSt86+wAPAIGAt8IiITPbSxgPTgHOAO7zyXgdcLCIjg46pL7AI6CsiaTUc+4HAg0BfoAiYIyIHemmpwLPAAcAeQCpwoYj84qWHAzcBZwPJwGzgShGZ56W/DEQAAeAYYANwl4i87KWfDdwCPAf8GwgDXgNuKA1AjTEuMFZEZgSt/7h3zHHAu8ClIuL31t8DeBoYAMwFpgLnikiv6s5BHcoyAngU2AXIBF4E7hURvzEmEngSOBaIBjKAm0TkvZr2Ww9C/6CrhvPTfDj4Tigshp7tYcY9cMx98Ody8DkQCHqbRvWyQV1hiM2GvTpASQms2twgRa/KFUefzaRvppCSn0tBWDj7XTyJmb0G7HjGrst3z9zBfsv/2fG8gnVKgoytdj4pFhY8Dp1TytMf+giufbX2fM4/EJ671M5nZIK5FlZvhphI+O4O2HNg/ZZbtVYNElVdffy8Ctf7hz8Y1uKjt7r2WXsBG4wcACRiv3AzgK3A6dhAZKw33QIgIhOB6djgIz4oULsQuB6YALQBbgY+MMb08/Z1BjaQOwroiA3GxpUWxBjTG/gKeAZoiw2E7jXGnBRU3jDgMGzQ0BF4A+hrjBkdtM552CbaagM1z6vY4CcJ6ArcUyn9XOAKL/0bbHBZ6lrgTOBwoLN3Pr4xxiQGrXMy8DWQAlwM/J8xZu+g9J5AD6APsBf2vPynhvL2xB5zX2A0cBJwKoAxJgn4Anjb29/l2KA7VNWWxcv7G+B7oBNwBPbcXO1te7ZXnsEikoj9LNXzN5Jqtt6aYQM1gLQNtpbnT/uw8wqBGsCc1NADNYDU9Y0aqJWOOEvJzwUg2l/C4Qv/rJ/MHYcnxhxaP3kFKw3UALbmwTdzK6a//lNo+bzyQ/n8N3NtoAaQXwTv/LxDRVRqRwUcp8LUGoQcrBljOmADiotFZIWIuCKyRESWisiXIjJfRAIishRbY3NALVleAdwpInO97b7AfsGf6qWfCUwWkdlejc2DwJqg7U8D/hSRl0SkRERmApOB8yvt5wYR2SoieSKShQ1QzvOOKQw4C1tLVJsibODTUUQKReT7SumTvXPgB54H+nmBC9javftFZKGIFAJ3An5sIFNqpoi87h3LN8D72MCmVAC4VkTyRWQZtkbxnBrKmw/c5pV1KfAtYLy0o4Ac4CERKRaR2djar1DVVJYjsOfqbm/fC4D7KX9fioB4YIgxJlxE0kWkwYO17OxsnW8O88N6lC0jPIzckd0hoZp+W3FRVS+vTkSYrZ1rJD7XJS8yssKXwag1qTiuC3VosajOfsvm7XAe2wgLOj8O5PZsW/YyOzsbRvUOLZ+h3cvf08HdcIPOe0G/DhXz1Hmdr2Ve1a4ufdZ6eX8XV04wxhwE3IZtjozC1mitryW/3sBTxpjHK5VnlTffFSir7RIR1xiTHrRuadNpsGXYZsRSASC90jqTgWnGmKuxAWU4ttm2NsdgmzL/NsZsAJ4VkUeD0tcGzed6fxOwtY4VyioiAa/pNLhzS2ql/aUCuwa9Xi8ieZXSu9VQ3vWlTZ5BZUrw5rsCK0Uk+BultprFynlXV5buQGqlvJdRfqyvY2v8HgH6G2O+Ba7zAsoGk5CQoPPNYf7SQ23fpzkr4OQxxB22K3xzOzz7je2zFgjAx7Ns/6x7JsDs5XDTG7DeqxGKjYSkODu/Jdf2Mzt4pO2TdvpYKPbDlF/s66lz7DqlNXZhju2DVlRNbV1pwNEhCeIibX8vF4gMg/gY288L7E/cgL243Pr1FF4w4xmRsZK8sAja52bx/LtPc/shp7AquV3V+ylVGtA5DrguvoCfgOMDx2FQxkrOmj0Df3wMYT4HcvJt37PSsjvUrWE/LgoO3xWuOhr+8zJk58PNJxK374iyVRISEuDpC+3xT50DkeGQEm/7q63fYldqEw+H7Qp3nFr+npp+OB9eDx/+BqYf0ZcdVjFPndf5WubrW2t8gkFdgrVU729/gpqtvD5IH2H7Rr0oIvnGmIlUbKILVJFfGnC7iEypZn+rsc1tpftxqBjcpGObFYP1oWJw5lYKGhCRWcaYZdhmweOAl0MZeCAic4FTvHLsA0w1xvwlIt/Vtq1XprKfrMYYHzb4DS5rr0rb9KI8cAXoYIyJDQqSKqfXxWqghzHGCTo/PWraoJKaypIO9KyUd9n7IiIl2Jq2+40xydj+ay8S1MStWjHHgSuPrLhsjwF2KnXHaeXzo3rDObVV0ldy+G7bX7468GEvUBd4r9fk+On1ZCF7py4mzO+vfkMvSIv1BUi9JJKESJfocB+222qpvvC/1xum4D/fW31abBQ8cKad6uLo3e2klGoQIQdrIrLeGPMe8LTXyTwN2ywY7U2ZXqA2BJhYafMMoF+lZY8Ak4wxS7Ad3KOB3YCNIrIQ22n9fmPM+9jg8AqgS9D2bwG3GmPOBN7E1kJdhB3MUJtngWuwNYHX1rayF5CeBnwuIhuNMZnYADTUDjUvA9cZY37CBr3XY8/950Hr7GmMOQ07EGBf4ATgoKB0H3CfMeZ6bL+3/1CxX1xdfIbtf3e1V7M5BNuMWcM3TAU1leVz7OCCm4wxD2KD1OuxNZoYY/bH1jb+hW2qzSX086hUs9UlPoyiG2Jx3ZH47q/igVOuixMIMDTF4e8LIoMSWl8tgFJNqTXWrNV1gMG5wBzgRyAb+Bg7qOAS4AFjTA7wFDZ4CvYIYIwxW4wx8wFE5DlsX6eXsCMGVwK3Uv7z8lUvry+Bddhmtpl4j90TkRXYmrWJwCZscHebiLwbwnG8gQ0ifhaRJSEe+ynAQu8YP8HWCobYG5cHscHlVO9Y9gcO9vrQlXoXezyZ2IEcl4nIjKD0NGyN2ArgN+zgigdC3H8FIrIF27dsgre/p7ABZaiPNKy2LCKyFTgYOBB7rF9j38uHvW07Yt+rTGzTcU/qNrhBqWbNcbzm1m0TcMPCKgVqSilVuzrduqMpeU2HK7H9myoHg3XNy8H2Ibt5R/OqD96tO0pEpPLgiNL0s4FbRKRy7WR9luFeYDcRObiW9Rq8LA2kZXzQVavgPFRNZbHr4l4bUXWaUjufBqkCm3jyggrX+yffHdziq9qa9U1xjTGnYGvvfNh7rsVha9p21AQgEmjoe3s1W96gkHnY2q8xwIXUfCsQpVSo/P6qa9eUUmo7NOtgDXv/r2e9+XnA4SKSuSMZeiM5S4DzRKQoaPkEvH5VVbhIRN7Ykf02Q8OxzZGJ2FuiPAi8YozpQfX3PXsd2xStlKpBv01rWdqhpsHaSqmG0hr7rLWYZlCldpB+0FWjSfv4L3otHlzxkUwe9z/N/TeyUo2mQaKqy05ZWOF6/9Q7g1p89FbXAQZKKaVq0fOYEfzRe+E2N8e9YFgTFUipnUgAp8LUGmiwppRSDWDXE4fzZO/phGF7W0zaA549VGvVlFJ1p1cOpZRqID2icvlw4LccddRRTV0UpXYarbHPmtasKaWUUko1YxqsKaVUA3pg5RCch0pwHirhk0X6sA6lGlrAqTi1BhqsKaVUA/nP0l2ZkV/+2N1jPoXlW0J9qptSSlkarCmlVANZ7O9A5bsTXPuD3kVGqYYUcJwKU2ugwZpSSjWAlVmBKpcv3tzIBVFKtXg6GlQppRrAkOcDVHXPzyJtBVWqQeloUKWUUiHJrbpijQT9iayUqiMN1pRSqhH9sdGl0+M6KlSphqKjQVWrYYx52RjzfFOXQ6mdjuOwrtDln40asCmlQqPB2nYwxvxgjLmlqcuhlGpe8osD/L2hBOeBom2eC1qB4zD0ZViaqQGbUvXNxakwtQbae6KFMsZEiEhxU5dDqe323i/wv09g/VYYOwQuOxQe+AgcB/47Afp1Br8fbn8H/lgGp4yBA0bA9a/BkjUQcGFrHmzOgcIiKCi2AVJsFBSW2G1x7LLIcPjgevjyT3jpOygstsuG96RwxQZmxXfi//Y8iMt++Zq90xbjAkW+MC457jwO/+cPTljwR1mx/TgEfD4coMjnY01CErtc/RC5UTEk5ueSFRNnjyGETs79nw+w+8p/uOrHz3ly3GHstn8PztkngVtm+Bn58bec8OfPJO3Zh75P/wsiqrhc5xfCPjfBvHR73EUlEAhAYiwUFdu/u/cDnw9mLoK1W6DED1ERtnyuC93bQdcUOH5PuPwIePFbmPILmL4w6RQIC7Pn66bXYcFqOHd/OHHvevoQKKVC4bg1/fpr5Ywx8cAk4HigPbASuAjoBtwI9AZygU+Aq0Uk1xjzJHAJUAIUA6tFZKCX3wXAlUB3YDlwvYhM9dIcL89LgVjgFWAEMF1EJnnr7As8AAwC1gKPiMhkL208MA04B7jDK+91wMUiMjLomPoCi4C+IpJWw7G/DIQBBcBJ3nHeWbo/b50TgNuAXkAqMElEPvTSzgZuAZ4CrgGSgMnAvcCzwEHAGuB8EZkRlGe156iB7bwf9OZowSoY/m/wB/XCT4yBrHw7P7Q7zHsMHv4Ernm5fJ0RPeGvaj/WNXOo8VPw0VDD2adcxqq7Lya+qBCAYp+PiEA1IwU8AaDXjU+SntJh+8oFXPLL19z91dt0ueUZouOjGLx4Mb8+VV55n3nHGbS57bhtNzzsLvhq9nbvdxsPngnXvlr++rHz4Ioj4OY34L/v22VhPpj3KAzqVn/7VTurBqn2OvOM5RX+0199rU+Lr17b2ZtBXwD2AA4AEoFjgQxgK3A6kAyM9aZbAERkIjAduEtE4oMCtQuB64EJQBvgZuADY0w/b19nYIOUo4CO2GBsXGlBjDG9ga+AZ4C2wNnAvcaYk4LKGwYcBuzi5fEG0NcYMzponfOAaTUFakFOBD4FUoDLgSeNMT298uzl5X+DV56bgLeMMXsEbd/TO0d9gH28PL4EHvTOwQfAS0HHWNs5ajDZ2dk635zm0zdWDNQAN7ugfD51vZ0p/Vu6PH0j262WcL335g1sjYkjMya+bFltgRrYi2ivzB0oF5Ce3I6U/FySCvPZWujSfWvF/ApSN1Z9PnfkfFRl3sqKr1ess/sKfh/8AUivpjw6r/PbMa9qt9M2gxpjOgAnA8NEZIW3eIn3d2nQqkuNMU8DZ9aS5RXYmqm53usvjDHfA6cCd3vbTxaR2d7+HwQuC9r+NOBPESkNbmYaYyYD5wNTgta7QUS2Bh3H29gAbZYxJgw4yytLKL4TkU+8+Q+MMVuAUUAatgbvfRH50kv/3BjzIXAu8Ju3LB+4Q0QCwFxjzFxglojM9Mr2OnCjMSbJK3Nt56jBJCQk6Hxzmh87GHbvD797/3I+B+fo0fDR7wA41xxjl593ALz2I2zJhSHdcSaMhZvfZLsM6QapGyCvcJskv+PwyNgjOHnOL3Tfuqls+S89+jNq9Qpi/eV9y0rvnlb6U90PLE9pb1+4bkjNn8HC/SVcOeMLXtt1LLlxcZw1zOH9wl2Y07kno9amsTU+nnZXHEREVefzlhPhtEdq3kEtNYplenWAG46H35bAwtXQJh7OPcDu6+JD4ONZkFsAe/SHfQaTEBO1bXl0Xue3Y76+tZanFgTbaYM1bNMewOLKCcaYg7DNf4OAKGyN1vrK61XSG3jKGPN40LJwYJU33xUbBAEgIq4xJj1o3dJmwWDLgGOCXgeA9ErrTAamGWOuxtYQhmObbUOxttLrXKD0P6g7IFWUZ9eg1+u9QK1UXqU887y/CdjaytrOkdpZxETBT3fDnBU2EBvY1QYL81faYGdId7veyN6w5ClYvg6G9bD9sk7c224DNvDKL4JNWbA2E1ZthoNGwsYs+HUR7DMIpv1l+7qdMd4GG+/+DDkFkBALYwbCkgzWzF7DFUlR7PLse5AQDZHhrBozgo9HHcDKRf9w9OefE5Fja/58wMaYeLKjo+mauYnMPQfx7375vJZfwF950XU4CS5QwpGBDP44cj867dWbjGOiiI/08e/d4sk57T7mLV/NwF3aE9Gumi+2U8fCrn3gM4GhPex5yC2CgV1g5Qbo1Ab6dLS7WrUJ5qfBuiwY0cPenTevEEb0sv3chnSHhBj44yFbw9anI7RLtPsZOwSWPgUrN8LIXrbPm1Kq0ezMwVqq97c/8E/pQmNMJPARtj/YiyKSb4yZCPwnaNuq2kbSgNtFZEoVaQCrsc2GpftxsAFRqXTg8Erb9KFicOaKSIXfyCIyyxizDNvv7Djg5XoaeJCODa5qKk9d1XaO1M4kKgL2GFBx2dAe267XLrE8aAAY0CW0/M/e3/49Y7/yZfExcO6BFdcb0JXuR+xm/xkvH1u2uBtwP2B7HUyosEkHbwLojL04BF8gHp5VwjU/1ly8DjEO6y6Lwf6bVfxXG9XBgQ5R0LdPzZl45efqrrWv17cT7Du09vVio2ytZ2Wd2thJqWautdxbLdhOG6yJyHpjzHvA015n+TSgLxDtTZleoDYEmFhp8wygcj+rR4BJxpglwFwvj92AjSKyEHgNuN8Y8z42OLwCCP7WeQu41RhzJvAmtgbrIuxghto8i+3kPwi4NoT1Q/Ey8K0x5jXswIaDsQMxxu9AnrWdI6VahatHh3PNjzXfluPZgxupMEqpFm9nH2BwLjAH+BHIBj7Gdpi/BHjAGJODHe1YuZPMI4AxxmwxxswHEJHnsCM5XwIysSNLbwVK2wte9fL6EliH/eE+Eyj0tl+BrVmbCGzCBne3ici7IRzHG9if5j+LyJLaVg6FiPyC7f/2kHc8DwD/Ku2Ptp151naOlNopvHwoHNN/p/2trFSDCuBUmFqDnfrWHU3JGOPDBivXich29pguy8vB9ne7eUfzasX0g64alfNQ1TVrfRNh6YUaqClFA92649SzUitc799+pVeLj9j0itGIjDGnYGvvfNh7rsVha9p21AQgEnivHvJSStWDKAcKq/iJkK+3slaqQbk6GlTtoMux/csA5gGHi0jmjmRojNmAvUHveSJSFLR8AnakaFUuEpE3dmS/Sqma5V7lI/xh7ykKQfpoH32lVB1pM6jaWegHXTU656EiKncNTr8QuiXq72SlaKBm0JPOSatwvZ/yUs8WX9W2sw8wUEqpBvNi7+8J/p2QEqmBmlKq7vSqoZRSDaRdZBGfDPyKQw47gshw/W2sVGNojU8w0KuHUko1MA3UlFI7QmvWlFJKKdVqtJZ7qwXTYE0pperZO/NKOP+DXAJh+9ExK5Pszz7i9MnHNnWxlFItlNbNK6VUPbvqrQ3kxMSSFxXNinaduD5lNMWpG5q6WErtFPxOxak10GBNKaXq2bqkFCjt5Ow4rGrTnrn73d+0hVJKtVgarCmlVD3KLw7gVuoz02vzBoakpZF/8TNNVCqldh4Bx6kwtQYarCmlVD167NwvKtyBufPWzfz25E3EuH7WTJndZOVSSrVcOsBAKaXq0eSuI8HnY4L8wJ7pyzhmvtAhNxuAAp9ecpVqaIHWUZlWgV45lFKqHhU59rK6KqktX8Ym8MHw3dl95TLO+f07/ujSi6FNXD6lVMujwZrCGHMLcKCIjG/qsijVksnaEgLhYQD82H942fLv+w3n4XFHMHH6F0zwBwgL0x4oSjUUvc+aUtvBGJMK9AT2EJHfg5afArwN/KiBoqo3RcWwNpN8v0MaMfyeH01hCezb3aFvso8wn8OvqwPER8DwDj4yl22iID6W6MQoHv06k5jlazArl/JNeCfe6DqCsECAYRlp7D13Nt0yN/HZgJHEFRfSLSuTmMJCOkUH2FDo8HW/kczq3pfcpJQqi1USFsbeK5fgjziJ9THxXHTC+cQVFzNkbRpHLprN5uhYvhxsiCwqJBARTrS/hF2KN2F6RxLVpyOZewxnTb9ejOsVhrNuC2RkQm4hOSUOOdExdOoaBzFR4PdDh+RGPeVKqYalwZraYcaYCBEprmW1BcAFwO9Byy7wlitVP9ZuhnG3snCrw34X305GYnRQosuIdn7iIuDXtXbJvllp/BrbiaLwCHD9xBVFkRs1mF6xbfn+mTsY2XMAEyZcyZ5rN3PzNx8CcKb8RG5EFE/udTBfDN2N6X2GEFlSTLHjww0Lq7Zo+y2Zx4nz7Me/c142H7/2CO8N34MT//6NjIRkjj7vJlYltwNgSMZKfn7qNpIL8vh7YXf6bfiWwTf+HxvnQv+STBbdeD4O9hHx8d4ElN8u5P4z4Npj6+mkKtWy+FvJCNBgGqw1Q8aYTsBzwDhgHXA/8DzQW0RSjTEXAFcC3YHlwPUiMtXbdhIwFvgNON/L8v9E5Pag/I8AHgR6AD8ASyvtvy3wAHAwEA18D1wuIuu89FTgRWA/YHfgPGwNWU1eBm40xlwlIjnGmD7AKOAZYJ9Qz41SNXp+Gixdy6PHX0BGYpttkv/aWPH1jwndKtwPLTfKBnepKR14eNyRPP7xS1x0woUcseDPsm0cIL64kL1WLuHGo84AsMFeLeKKiyq8doAT//4NB/hs8G5lgRpAn03rSS7IA2B4Rjo/9xzAK+8+zREX3ERCxsayRp5tvpJcbxzqzW/CNUeDT5tblWoN9D+5eXoDKMIGY/sAZ5QmGGMuBK4HJgBtgJuBD4wx/YK2HwesBLoARwE3GWPGeNv3AT4A/gskA49ja7hK83eAj7A/2odhmy+zgTcrlfEC4Grsj/qPQzimNcBPwGne6/OB14GCELbdYdnZ2Tq/M8y3T7J/crMIhc8NVJuWVJBHelJbciOjmNF70DbpHXO2ElFSEtJ+AAZuWBNyWnRJeUW133EI9/vZGJcAwOaYuAq3BqlS23iyc3PLXjb5+6LzOl/DfH0LOBWn1sBx3Vr/7VUjMsZ0A9KBviKy3Ft2ADAN6A18BjwgIq8GbfMp8JuI3O3VrJ0kIkOD0mcBr4vIY8aYm4FDRWRsUPobQFcRGW+MMdigqo2IFHrpbYGNQHcRWVVasyYid4Z4TKnALcAW4HZgL2wweRBwHI0zuEE/6DsDvx+ufpm8r+Zy6d4n8m3PwayNScQfFkaEAzfvCV0SfFz7Y4AIHzwUsZg3FsGWhARWJ7VlXZGPlPxc+mxcx7mzvuPhcUeyuH0XOmRv4aKZ0zhw6d8M2LCWzXHxTDrwJMYvn89nQwxJeTl8NHx38iOjqyzW+TOn8cRHLxLpt8GdC6yPS2TyXgdx6a9TSSrI5/nR47n7oJPIioxm5JpUrvjla3ptXs/qpDYcsWA2fW94nOyERP7TI4vbbr0TVm7A73cpCI+gJDwcX7t4EhIjITEW/nc27Dmw8c67UtunQUKpAy5aU+F6/+3kLi0+ZNNm0Oanq/d3ZdCytKD53sBTxpjHg5aFA6uCXq+tlGcukODNdwNSK6WvCNpvbyAKWGfjtjIF2GbT0v1UziMUXwL/B9wGpIrIfGPMcduRj1JVCwuDx84jFtvuXp0LRpQ2KgzhrG1So4G2wBAuLFvWgYB7GjlFp5KbWUj35AjeWbUB1rTlknHDWLk0kzM/msNRBSMpiYoub1oFnECAye8/y5wuvdhlTSo5jo8FvfrQ9uWL+dewnuTlH8vWrEKOKixgTMYW2g3pSLv8dqy4eSIDu0Th8/JaXZZjLJz2tD1cIG67TpRSrZdfR4OqRlB6Te6B7Y9WOl8qDbhdRKbsQP6HVFrWu1L+uUCKiFTfRgQ1pVVJRPzGmBeBW4Fz67q9Uk3J5zgkRjkkdoqxC/p1thPQo18bevxnH4qByHuyKY6KKdsuIuDHByQUFuACCSXvsnuFvmRx0NWGXOX/6IkMbtjDUUq1IBqsNTNeM+MPwH3GmPOAGGwTYqlHgEnGmCXAXGw1wG7ARhFZGMIu3gJuM8acBkwBxgPHAFJaBGAO8JgxZpKIbDLGtAcOEJHaBhGE4lFgOjCjHvJSqtlpl5/H2qBg7Yw/fgKg76YMfu/Smz21079SDcrf+irWdIBBM3U6EIttcpyBDaoACkXkOexIzZeATGxz6a1A7cPRABFZBpyIbYrcAlyFHWlamh4AjsV+Nv4wxmRjR5aO37FDKss/U0SmiUijDCxQqrHFFXkfbdfl1m/e49n3nwXsP9TPfbW+TClVdzrAoAUwxhyCHXEZIyL6hm0fPW+qUcz6Po2xM9tTGBHJHmmL+e+Xb5GSl8PA9av5fvTuHP7rf5q6iEo1Fw1SBzbmkowK1/uf/69Ti69r02bQZsgYMxIbXPyN7U92N/COBmpKNX+7je9Bm+82kJGUwm89B3DAxbcz6au3uXr9aro8OqGpi6eUaoE0WGueUrA3xe0MbMWOorymSUtUA2PMl9gb8W5DROKrWq5Uq1VUTHJBHhmlj51yXfZKW8zvt13AAXt0btqyKbUTaI1PMNBmULWz0A+6ajRnnPwNUwfvQk5UDMf/PZNfegzgn7u7EhWh3YSVCtIgUdWel66rcL2f+XTHFh+9ac2aUkrVsxde2ZdnDn6ZGT0Gsjk6ji8uTtFATalGEvpzRVoODdaUUqqeRcZEcsX0C+n96acADOytt65VSm0/DdaUUkop1Wq0xj5rWi+vlFIN6J11PQl/qISBz7bGxhmlVGPQYE0ppRrIPanDeGPLYPzA4ixwHtKATamGVuJUnFoDDdaUUqqB/FbYjQoD3lyXx3/XgE0pVTcarCmlVANxAoFKCxxeCeUJvkqp7VaCU2FqDTRYU0qpBhKVlweV7mWpo7qUUnWl1w2llGogBfHxVG4GXbm1dfzSV6q5Km6F/2Jas6aUUo3FccgocEl6TPutKaVCpzVrtTDGvAyUiMj5DZT/eGCaiFT7XhhjzgZuEZF+27mPJ4DTgGigD/A9cKeIvLM9+Smlanfvr9UEZI5DVjFMnl3CRbvoJVip+lbcCu+z1qBXCmPMD9hA5O6G3E9rYoyZBOwjIgfWU357A+cCvURkg7d4aFB6L2AF0F1EVtXHPpXa2f2dUcJNP0NNjz68+FsY0KaE/XppwKaUqlmrv0oYYyJEpLipy9GE+gBrgwI1pZqPXxbCJ7Ng9/5w/J4V076eDVPnwp/LYOZiG/d0bQfhDuQWQV4hhPtgl96wNAOKSiAsDHBhWA847wD4bQl0bweR4fDVbPjuL8gvhpgI6NMJUhLgm7l2EIBjN61VmA8SYyE7D9olwm/3Q9sEeOILWLuZ9BwYMeAMryw1O+StYjpkb+DohX9y24xP6BTIh4sOgXFD4Pt59m/aBpBlEBEGYwbBGeNh7Wb4v68hOQ4mHgaREeWZzloCH/wGI3rCaWPtMr8fJk+F1ZvteenTCXIL4PHPodhv80hJCO09U6qZa41f+I7r1n51MsbEA5OA44H2wErgIqAbcCPQG8gFPgGuFpFcY8yTwCXYZ6oWA6tFZKCX3wXAlUB3YDlwvYhM9dIcL89LgVjgFWAEMF1EJnnr7As8AAwC1gKPiMhkL208MA04B7jDK+91wMUiMjLomPoCi4C+IpJWw7G/DIQBBcBJ3nHeWbo/b52xwL3AECATeBp4WERcY0ws8Dqwt3c8S73j/Sa4vCISbow5BXgN25ewwMt+BDAOuAV43DuWOOBd4FIR8ddQ9uuAO4FIIA/4XUT2N8akYptVXzfGbAUSvXQXuF9E7jLGuMBl3nkcBMwHzhaRhV7e4V5ZzgY6eOlXiMgfXvqBwINAX6AImFNaW2iMuQK4CmgHZAGviMhN1R1HPQnla1g1pnlpsNu1NsgCePc/cNLedv6HebD/7duMpGyWIsLhsF1s0AnM6dyTXa5+MPTtXRdclwGbMljw4FX4ajvmx8+DJ7+ExWvs63P2hxcn2vmla2HEVZBfZF+/eBmccwBc/yo88JFd1rkNLHoSTn8EPhO7bI/+MPP+0MusVP1okPbKLldsrPBPtObxdi2+XTTUAQYvAHsAB2C/2I8FMoCtwOlAMjDWm24BEJGJwHTgLhGJDwrULgSuByYAbYCbgQ+MMaX9sc7ABnJHAR2xwdi40oIYY3oDXwHPAG2xwcK9xpiTgsobBhwG7OLl8QbQ1xgzOmid87BBUrWBWpATgU+BFOBy4EljTE+vPEOBL7CBSXvgCGCidxxgz/EHQH+vvG8B7xtj2lfeideH7L/AD945ixeR5V5yT+9Y+gKjsYHjqTUVWkQeAC4Glnt57V/FaqUB7EBvnbuC0s4GTsAGVenAE0FpdwLHAId6x/Ui8LUxpo2X/io2uEwCugL3ABhjBgD3AUeKSAK2SfaTmo6jPmRnZ+t8c5v/Y3l5oAYU/fBX2Xzhj3+3jEANoLgEfl1U9nLU2jQcf7W/obblOIS7ARa378Km2Pja1/9hXnmgBvhnLCibz5+5oDxQA/jFlqtkxj/ly9ZmQtr6CmXm96Vkb9la9rLJPxs6v1PN17c8x6kwtQa1NoMaYzoAJwPDRGSFt3iJ93dp0KpLjTFPA2fWkuUV2Jqpud7rL4wx32MDj7u97SeLyGxv/w9ia3hKnQb8KSIvea9nGmMmA+cDU4LWu0FEyq4+xpi3sQHaLGNMGHCWV5ZQfCcipQHFB8aYLcAoIA1bezhFRD720hd6tYpnAq+KSA62Zq3Ug8aY67EB1xch7h8gH7jNq0lbaoz5FjDYQLShPCgiK6GshvF1b97BBq1HBAWTLxhj/o0NVl/H1qb1BTqKSAZ2UAPYmlYHGGqMSRORLcDMBjwGABISEnS+uc3vO9Q2423JhTAfkcftVbZO1NF7wH0fQ0FQ4FFXPgcCjRDwJcbAMbvD89MA+KnXINwQmkCDlfjC2C19Ge1yvS+wcB+UBCA8DEoqBX4n7Q0ZW8oCsbDj9ihLijlgFLRPhA1Z4PPBUcZmd/xe8Mtiu9KQ7tCvsy3zi9/aZUfsRkJyUlk+Tf7Z0Pmdal7VLpQ+a728v4srJxhjDgJuwzaTRWFrtNbXkl9v4CljzOOVylHaub0rNggCwGtKTA9at7TpNNgybC1PqQC2JijYZGCaMeZqbA1hOKHX6Kyt9DoXKP2k9Qb2N8YcH5TuK92/MSYG22R7BLaGKuBtu03NWi3WV2ryDC5DQwk+7uD9tQPigU+95tJSEdimcbDvx03A38aYDcCzIvKoiCw3xkzABrnPG2P+wgbvUxvyQFQz1KsD/PEgfPu37XdWVrkO7NIH5AGYvgCWr4N3f7Z9toZ0g5hI2JQD+YW2cfuQUTBrmQ3MwhzwB2x/rQnjbJ+1Hu1sn64Z/8DHv8PWfEiMhpG9oW9HuPcDW8OXEAubs+x/aGU+bF81x4G2idCrPSxZa8vz7R02MDp4FGzMYnABUOQPqc9aVFEhXbds5LQlf3L90uk4o3rBjSfYPnczFsDeA2FNJvyVao9/t36wz2A4end7TtrE26CrVOcUkAfh6zkwvAfsOdAuv+YYm+eqTbZvYHQkPHeJPXdFJXDy3tv1FirVHOW3jsq0CkIJ1lK9v/2Bsrp0Y0wk8BG239KLIpJvjJkI/Cdo26oue2nA7SIypYo0gNXYJr/S/TjYAK1UOnB4pW36UDE4c0Wkwk9qEZlljFmGbT48Dni5ngYepGGP/7Jq0q8G9sUGiKle8LmR6tvqqzpnDWl79rcRG7wdKCKzqlrBqzk9xXv/9gGmGmP+EpHvROQDbA1lJLaZ9mNjTFsRydvOY1AtVZ9OdqrK0B52Anigtgr7agzrWT6/71C4+aRt17nxxO3LuzKvv1174M+1JewaQp133g0x+Hw9sZe84yomDvEue8N62kAwWGwUnF1VrwagR3u44KBtlx+yS8XXPh+cPKb2QiqlmlytwZqIrDfGvAc87d3vKw3bvBXtTZleoDYE21crWAZQ+d5gjwCTjDFLgLleHrsBG73O668B9xtj3scGh1cAXYK2fwu41RhzJvAmsCt2sMMlIRzvs8A12JrAa0NYPxRPAz8aY77C9qVzgQFAexH5EdvHrxDYBER6TaDJNeSXAfQwxkSKyA60AYVsAzZg60957WaNvIDzMeAhY8z5IrLEG4QyBvgbG8ydBnwuIhuNMZnePkqMMQOxtZE/YZt2t2LPWWMHqUo1mF06h7Pi3BJ6v+hS3e+y+WeBz6f3JVeqvhW1kueBBgv1SnEuMAf4EcgGPsYGHJcADxhjcoCnsMFTsEcAY4zZYoyZDyAiz2GbBV/CjpxcCdyKbUID2zH9KeBLYB22WW0mNuDB6zd3ODYw3IQN7m4TkXdDOI43sIHCzyKypLaVQyEi84AjgX9jmw3XAy9T3sz5MLAFWINtrs2jvLayKlOwtYQZ3nnrXR/lrI6I5GPP/1ve/m4OcdPbsZ+Dj40xWdh+jBdT/pk6Bdt/Lwfb3Hy7iPyEHZl6O/ZcbcEG4yeISAFKtSK9Uqr/LXxgNxjSvtXfOUkpVU9CunVHUzLG+LAB3XUiUjkYrGteDra/2807mpdqcZr3B121Ss5DxVSuWesQAeuu1EBNKRro1h3OvzdXuN67j6a0+Kq2ZnnF8O439jG2luZG7H3FvqyHrCdga3beq4e8lFKqzga3beoSKNXKtfjQbFvNMljD3hbiWW9+HnC4iGTuSIbeiMQS4LzgvmDeyMTJ1Wx2kYg05K0xdlhLL79SO5tMfYa7UqqOmn0zqFL1RD/oqtE5DxVRuWvww/vCVaOb6+9kpRpVwzSDXp1ZsRn04TYtvq5NhyIppVQDOTVxPpV/J2igppSqK71qKKVUAzm98yr2b7ORV4v248jecP3eeslVStWdXjmUUqoBdYouYPpJeqlVSm0/vYIopZRSqvVoJQ9vD6bBmlJKNZCbF48kPSeR2N/WMb5PBG+cm9LURVJKtUA6wEAppRrA1MVFzAt0ZktcPGuS2/L98mL+TG+MJ8gptZNzKk2tgAZrSinVAG58ax1uUHPM2qQUbnspvQlLpJRqqTRYU0qpBpCTV1xxgePwTWSHpimMUjuV1le1psGaUko1gDYF+VDppuNFYdFNVBqlVEumwZpSSjWAmLw8nECg4kJ9YoxSDa/1VaxpsKaUUvUtv+sFdMnJpm1+Lm3ysknJzQKgU/YOPeJYKbWT0mBNKaXqUdH/PiJ6zSZWJrdjY3wimbEJbI5LpOuWjWTGxPPQb/okd6UaVCusWdP7rO3kjDGdgX+ATSLSL2h5GHAfcDYQDUwFLhKRjbXkdypwE9AXyAaeEJF7qljvHeBkYKyIzKifo1EqSG4+xMVs37YFRYBrb64ZEQ4+n80vMpxAiYsvJhJ/wCV9VQ5JTgkzp6/lm79yiZu1iJKICA7rNZDdVi9nRt8hZVn235jB6j4pXDsdHv6tgAGRBTxWMJuCton8lOFjTXo2/tEDmV0UR++YEl49KR6/4+D6HMJ9+rtaqZ2ZBmtqMvAH0KvS8huAY4A9gE3Ai8BrwGHVZWSMOQN4ADgD+AGIqSJfjDHHA213tOBKVVBYDKc/Ah/NhOCuYt/dCfsNg+JiGHg5rFgPSbEwshf89E+t2VbuZbasbUcOP+9GlrftxCW//sgdX7/LQxOu5MS/f+fSEy+i34a1/NJ7EIPWrbJ91ByH/hvWkBkTZ4M+YG1ROGuL4hnl7kPUqmIKIyKhB5DhklyQx01vPMaET8fy0bDdyYuMAvyEBQLc8+VbXPfjJzjRkUwdPJLzjjiXorBwOoYX88PXz5Dy6zzwObDPYJibCt3awpRrYUCX+jnHSrUIraQ6LYjjaofXJmWMuRK4BOgKZAJvALeIiN8YMwB4DtgFWIENmB4VEcfbNhy4Dlv71QGYD1whIn+EuO8zgNOAd719BtespQF3isgL3uu+wFKgt4ikVpGXD0gH7hKRZ2rYZ1tgFnAgsIzGq1nTD3pr9/SXcNlz2y6PjoD8d+Dql+CRT3d4N2ecOpHXdxtX9nrm4zfhui6fDTUsb9uRV99+kvBAgC8GjuLIc2/A9fnotnk92TFxbI2JC2kf45b9w+T3n2XwdY9WWO64ATJvO4ekgny63PIMa5PsExGS83LIvP3cqjM70sCnN23XsSrVwBokqnKuy6pwvXcfSGzx0ZvWrTe9VdjaqkRsTda5wPleIPYpMBfoCBwHXFBp2zu9bQ7F1lS9CHxtjGlT206NMZ2Au4GLq0hLwv7OLwv6RGQZkAWMqCbLAUAXIN4Ys9AYs94Y85kxpl+l9Z7ENo0ur62M9Sk7O1vnW/u8v9LIy0qKCgtrTA9VhN9f4XWkv4QtMbEcvHguE3/+inBvBOjhi+bQb1MGAKvatA85UCvN063i+YYuDgHHXrb9QU2j/pqaSf2B5vMe6bzOVzFf71phnzUN1pqYiLwvIitExBWR2dimxgOAPbFNiNeLSL4X3DxSup0xxgEuB64VkeUi4vdqwdYCR4Sw62eAB0VkZRVpid7frZWWbwlKq6yd9/csbPDZC1gJfOoFnhhjjgX6AI+FUL56lZCQoPOtff68A+HAKn5LfHwjAJEPnws9vI9pQgzs2nvbdasR/DP9zq/fZq/URbTLyeKGbz8gLyKSGw+bQJEvjAEb1pStV+zzkZyXS0J+Xo0Plo4tLCCyuAhcF18gQN+NGdzw3YfccvDJxBfk2aZU18VxXW769kOS83MhzMfkT18kKT+XuMICuhZmkzmyv83QAUxf29euVwe4/4zm8x7pvM5XMa9qp33Wmpgx5jTgamwQEw5EAjOxzaLrRSQ/aPW0oPl2QDw2GAr+LokAutWyz9OB9sDT1axS+pMnqdLyZCDLGNMDOyih1GHYWjeAx0Rkhbefm7BNuwOMMRnA48ARIlJzFYhS2yM2Cr6ZVH4vs01Z0DaxPFCKioS0Z8v6kQHl6+YVQHSk7VPmOLA+E6Ii7HyRHycpBpauxZ8YSxs3jB86JeG6Luvn7ImbNZLXvluA3ynALS4igP0VHBEI8PuTN3PK6Vfy7i5jKuwvIcwhKQpMciGRjp/Amo0s3+BnmH8zEflFrD7/UKZM3I0Cx6GgxKVNYgRudj6+a08G9yQAjnUctpQdSzzcdX/58ThOxeNUaqfS+j73Gqw1IWNMd+B14HjgSxEpMsY8BBhgNdDeGBMTFLD1CNp8I5ALHCgis+q464OBkcB6YwxAFBBrjNkIHCAic40xK4FdgTleWftga9X+8mrj4isdSzSQT9V9w1xs82kX4Htvn6U+M8Y8IyI31PEYlKpaaYDSrvJvjUrpwfOVR412qKInweAehAHBjZndR3v/kgcMhHuOAcD/xOcUX/ECPmBW93583X+4XScQICwQ4H8HhXPlbqWX3tK/pWXtW2GXsd4E4CTGVl/+mo5NKdXi6QCDJmSMGYytoRoD/IodefkxsADbAf8f4AvsyMzOXtrwoAEG9wD7AOeLyBJjTLyX198isoZqeH3agr9zTgKuAMYC60Sk2BhzM3Amtj/cJuAFIEFEDq0h36e8PI4A1gMPAfthA8NwbG1esHRsoPq9iGyp9kTVD/2gq0bj73QWCwIJjJl4D1mxQf9qfj/u9VFNVzClmpeGGWBwQ3bFAQb3JbT4Xy5as9aERGSBMeZ2bBAWCXwPvAWMEpESY8zRwLPABmA5tj/b3UFZ3I4Nsj42xnTD1rTNxPZlq2m/mdjmSQCMMZmAX0RWBa12H9AGO3IzCvgG+Fcth3Q1tl/dXOzNE34BjhIRP+DHDqYo49WwbWiEQE2pRhWW8QqnXrGQ3MhKgZneL00ptR20Zq0FMcZcBFwjIgOauiwtkH7QVaPqe80KlnfqVrE50nVxr41oukIp1bw0TM3ajZVq1u7VmjXVgIwxY4AMbK3acOw91V5v0kIppUJSEhG+Tb8xX0kRdgyQUkqFToO15q0Htlm0HbYpdApwbygbGmPmAz2rSEoTkaH1VkKlVJVy2qdsU587LiKLit1FlVL1r8VXpG1Dm0HVzkI/6KpRfbyohGM/qXibkE2XOaTE6m9kpTwN1AyaU6kZNL7FR2/a21UppRrAMQPD6exsKbup7SkdsjRQU6oxtMInGOiVQymlGsjkgTMBOOqoo7BPhFNKqbrTYE0ppZRSrUcrvCG0NoMqpVQDWpkXw2NSQnqWv/aVlVKqClqzppRSDeToRQcBYZAO//7BZfKBJVw4Si+7Sqm60Zo1pZRqAHfMKAE3jOAezhdNa7ryKKVaLg3WlFKqAUz6JVBl35mUx0v4YmlJE5RIqZ1EKxwNqsGaUkrVs+WZJdV2cs4sgiM+gvcWasCmlAqNBmtKKVXP8otrX+eUzxq+HErtnFpf1ZoGa0opVc9iI51ta9YqPS0m0IjlUUq1bBqs7YSMManGmH81dTmUaq1K/FU83awV3vtJqWap9VWsNWywZoz5wRhzS0PuQymlmpPfluZx7D2p29SkbSOgdWtKqdC0+hv+GGMiRCSEHiSNo7mVp7HsrMettoMshaUZcPBISEkoX56dD1/8Ad3bwd6Dqt9+/Rb4bh4M7gojetltVm2C9E3QORmO3QOmL4D+ne305Z/Qoz3sNdBu/9tiSF0Po3rDta/ALwshOgI2ZEFR+Y1tC6MjyQ6LYFNkLNce+S96bVzHhqQU/D4fC0aNqbUmLaKwgG43b6bQcegUVsI1v3/N2X//Am3iIT4KSvzQJgEKiqBrW4gKh+XrYLe+8OdyiI2EJy+Evp3KM83IhBe+hZmLILcQDhkF8dEwY6E9L0V+ONrAtcdVLMzUOZBTAEcZiGj1XwuqtWsltWnBQvqvNMbEA5OA44H2wErgIqAbcCPQG8gFPgGuFpFcY8yTwFhgL2PMDcBqERno5XcBcCXQHVgOXC8iU700x8vzUiAWeAUYAUwXkUneOvsCDwCDgLXAIyIy2UsbD0wDzgHuANobY64DLhaRkUHH1BdYBPQVkbQajv1lIALbxeQYYANwl4i8HLTOWOBeYAiQCTwNPCwiblXlARKMMVcAVwHtgCzgFRG5yctvBPAosIuX34vAvSLiN8b0AlYAZ3rnqTvwK3CWiKz1tr8SuATo6m3/BnCLiNTpFurGmAjgWuAsoAuwHrhORN43xhwA/BcYAJQA3wJXiMh6b9sfgDlAL2B/b937anrvlWLKL3Dqw7bWqV9n+ONBSIyFwmIYdwvMWWHXe+YiuOiQbbffmAXmOkjfCGE+OGgkfDW74jpXvwxF3mjNHu0gbYNd/twlEBkOZz9Ze60YEFVQRBRF5IdF0aawkHu++wAXh2PO+g9uCE2exdExrI6JJbawgCWOw73DD+CUaV8Ts3pzzRtOX1A+3/9SmPsIDO9pA7XBV8CW3PL07+dtu/2MBfDjfPjMa/S46XW49wM7f9iu8IU2hijV3ITaDPoCsAdwAJAIHAtkAFuB04FkbGA2FrgFQEQmAtOxgU18UKB2IXA9MAFoA9wMfGCM6eft6wzsl/lRQEdsMDautCDGmN7AV8Az2Ccjnw3ca4w5Kai8YcBh2GCnIzZY6WuMGR20znnAtJoCtSAnA18DKcDFwP8ZY/b2yjMU+AJ4EBuIHQFM9I6jyvIYYwYA9wFHikgCMBQb6GKMSQK+Ab4HOnn5nQtcXalMp3jnpSsQB9wZlLbK218iNsA8Fzg/hOOs7G7gX8BJXl77Aku8tELvONsDw7HB3GOVtj8XeBxIAh4P4b1XO7t3ZpQ3Dy5dC38ss/MLV5UHagDv/Fz19j8vtIEagD8A3/617TpF3i0zXLc8UCvN852fQwrUgj2y75E8+ukrJBQWkFiYT8ecraFt6AV0eVHR+H1hLO7QlT+69anTvnGBz8TO/zi/YqBWk2//Lp9/a0b5/Jd/QlZe3cqgVLPT+jqt1RqsGWM6YIOVi0VkhYi4IrJERJaKyJciMl9EAiKyFFujdEAtWV4B3Ckic73tvsAGJqd66WcCk0Vkttds9iCwJmj704A/ReQlESkRkZnAZLYNRm4Qka0ikiciWcDb2AANY0wYtrboudqO3zNTRF739vcN8D42SARbgzVFRD4WEb+ILASe9I6jyvJga6IcYKgxJl5EtnjHATY4KwLuFpFCEVkA3F/F8d0hIhu9Y3sTMKUJIvJ+0Hs1G3iN2t+XCrwazsuAa0XkLy+vVSLyl7ePGSIyyzsnGdiazsr7eE9EvvO2zaP2977BZGdn63xLmN81KFiJj4YBXezynh2gbVCT6K59qs5naHfcqIiy5f7ubalRTGSFPAuHdit7GWrIFlNcRLEvrOz1/E49QtyyXERJMdFFhfTK3FD7ypXkDfSaQYf3xPWF+MXUqwNQxTnv1xkSYprP50Hnd4p5VbtQmkF7eX8XV04wxhwE3IZtjozC1iCtryW/3sBTxpjHK5VjlTffFSir7fKaEtOD1i1tPgu2DFuDVCoApFdaZzIwzRhzNTaoCMerzQpBahWvd/XmewP7G2OOD0r3Vdp/hfKIyHJjzARsoPe8MeYvbBAzFXt8qSIS/F2xzFsebG3QfC5Q9k1mjDkNWxPXB3uckcBM6qY9tsZum/fd28du2KbNkdjmageIr7RaaqXXtb33DSYhIUHnW8L8DcdDQgwsXgNnjIeubcs/2D/cCc9+Y/us/ftIEoL6VpXl068zzrRJ8PYMGN6DsBP3goc+gb/TYG0mdG4DZ+9na6EGdIFxQ2wfrx7t4N9HEeUAndvC8gycgV3gtrchs+raKtebBmSkc9YplzL5g+dwcSgJcdRnmL8E1/HReetmCiMiOG32DLpmZ0J4GIR7v6OjImxNX1Is+Hy25qxtAqzbate571/EHj/GrjukO87U22yZF6yy2/XvAu0S4e9UexyuC7v0KWvqTEhIgFcuh2E9bJ/Aq44Cx2k+nwed3ynm613rqEyrIJRgLdX72x/4p3ShMSYS+Ai4DnhRRPKNMROB/wRtW9VwpzTgdhGZUs3+VgM9g/bjUDFQSQcOr7RNHyoGR26lYAcRmWWMWYZt0jsOeLkOHd57VfG6NMBIwx7/ZTVsX1V5PsA2AUZim1Y/Nsa09Y6jpzHGCdqm8vFVyxjTHXgd27/wSxEpMsY8RFDNW4g2YIPA/pQ3fQZ7G3gPOElEsowxRwKfVlqn8vtf23uvdnY+H1x+RNVpw3rC4yG05u8z2E6l7q3iLjUn7l0+XznPq44qn59YTVkob2A5y5ty/8+QkRsg5YX1tinXV3PDhT8snJUXQPek0gECx1DxN+d2OGCkneoiPgbuaPDKbaXUDqg1WBOR9caY94CnjTFnY79w+wLR3pTpBWpDsH2YgmUAlfsjPQJMMsYsAeZ6eewGbPSaEF8D7jfGvI8NDq/A9ocq9RZwqzHmTGzz367YwQ6XhHC8zwLXYGsCrw1h/VJ7erVV72L7bZ0A/9/encdJVVwLHP+dGZaBAdkUBdkRUVQ0WrglRqPRKMY9xhgUAVcimjwfLsG4BOPDXZOoTzQKrrjviqhEfUpErYiARhGQXZBFQJYRGKj3x6mROz1bzzDT0zNzvp9Pf+i+S91zq5ue07Xcy5Fx3d3AO86519CxdAEddL+D9/6d0gpzzvVGW5n+DyhAx/4FNLl5BZ1cMMI5d3Pc7nK0ZTAdLdCWvWXAJufcgej4uc/L3StFbNH8X+Am59x84DP0fWjrvZ+OjmFbDaxxznUBrkij2Iree2PqrPwmOfRsksOk4R15f2EhBz9e8T6dW9nMS2NMxdKdYDAEndn3DrAGeAGdVDAU/WO+FrgLTZ6Sbgecc26Vc+4zAO/9fej4pjHoTMX5wFXojEuAh2JZ44Fv0Bmnk9EB7Xjv56Ata8OAFWhyd7X3/sk0zuNRNPmZ5L0vrbWoLE/GY65EJ1tc6L1/L8bzKfBL4A9o1+RSYCzajViWJsA1cftVaEJ6ivf+e+/9auAo4Ofo+U9A6+S2dAKNY9yuQd+jVWgSNS7N80x1JXruz6Pv+ztoSxvAeeg4ujXAs0CFrWVpvPfG1As75Nd2BMaY+kRCJWc+ZZpzLgf9o36Z9z41GaxsWYKOd7sy3bLipTsKvfdVmU1pskd2f9BNvbJp8xaa3F7+RW/zgILh1rJmGrQaGV0m1xYU+74P1zar86PYsvKbwjl3GtoylINeSywfbWnbVgPQVq2nq6EsY4wp1bo0RsNOtGFixpg0ZWWyBlyEji8D+BTo771fuS0FOueWoZfMONt7vzGxfABljwc7f1uOme2ccyOAEWWsPsZ7/24m4zGmvmidl0N5t2p/8Gg4uFO2fv0aU8fVw/vwZn03qDHVxD7oJqO63lXI/IKSy4N1fRpTpGa6Qf/8ffFu0Gvy6nz2VqM3cjfGmIZq3oWNSP2N8OGA2onFGFO3WbJmjDE15JleE8jne/Jy4NOzhH4drFXNGFN5lqwZY0wNaZwTGNf7LQouacQeO+RWvIMxZtvVv1uDWrJmjDHGGJPNrE3eGGNqyKkzDmMDeTCjkAd+AYP3sq9cY2pePWlOS7CWNWOMqQFd/17IBppR9IdjyAR4d35h7QZljKmTLFkzxpgaMH9DyWVDJmQ+DmMaHBuzZowxpqrmrK7tCIwxdZEla8YYUxO2lLyDweZaCMMYU/dZsmaMMdVszYYt9fKWN8aY2mFTk4wxppp1u9eSNWNqTT38r2cta/WQc268c+6y2o7DmIbq2/VldHiGQKNbbEaoMaZy6nXLmnPubeBN7/1fajuWTPLeH1PbMRjTUB34UCHklPE7WITNIZS+zhhjylCvk7Vs4Jxr7L3fVNtxGFMn3f4SPPcBHLgrXHESXDIW5i6FXx0I970Js5ZAsyZw7L6w/Xbw0Ww43kH7VnD/RNi9E9w2GJo3hX99AVeNg4XL9f7qm7dA63xY/h0sXAG5OTD4cD3eyrXQqjl0bQ+Nc1lZEJiyoTk/nfkpm3JyOHrIH5nSuSfdVyzlpQduYG3TPEYdfgLTOnRjWsduFXaBdr5yMa2/X0+jzZu5ftILHNFhM01Xr4WhR8OenaH/9fD1t9AiD1o2g6WrYVNskWvSSOPv2AZeGgF3vKwx5zWGgo2wsRA6bw+H9IHbBkGLZrrfmIlaf+u+h727aR1NnK79K+1b67KNhTDpC+jeHt67Hlo2Lxn8Kx5ueRF2bgt/PRvatSy+/q3p8JenYfuWsH8vuOl57Za64UwYdHgVPwjGNGwS6sCvPOdcC+Ba4GRgB2A+cD7QCfgj0B1YB7wIXOK9X+ecuxMYChQCm4BF3vvesbxzgd8DnYGvgMu996/HdRLL/B3QHHgQ6Au8672/Nm5zKHATsBuwGLjdez86rjsMeBMYDPw5xnsZcIH3fu/EOfUEZgA9vffzyjn3sUBuPIeT43kOBz4H7osxeGCA9/7ruM/bxBZF51wT4E7gRCAPWAKM8N4/nTiXvwB7AFuAl7z3g8t5O4rK/wTYBTgMmAcM996PT2wzFPgDsFOM9VLv/btx3Y+AvwN7oRPkvgCO9d6vLO+42yj7P+imuDc+gaNGbn19cG/414zKl3PFyTDyN7DjEE3CquDxvQ7gtOkf/DAU5sm+B3LamZcAcPk/n+eG8Y9x9ZGnct1Rp1a67P0WzObdu6+mWeEmTRjbtoBl36W3c6vmsHp92esvOQ5uHQyzl0CvC6Ey3/dH7Q0Trim+bOkq6HI+bIi/P884FB7+/db1awqg49mw9vuS5YnAzLug507px2DquxoZXSbXbyz2QQ9XNqnzo9jqypi1+4EDgCOA7dDEYwmwGvgt0Bo4JD7+BOC9Hwa8C1znvW+RSNTOAy4HBgBtgCuBZ51zu8RjnYkmcscBO6LJ2E+LAnHOdQdeA+4B2gGDgFHOueS3dC5wDPCjWMajQE/nXL/ENmejCVWZiVrCr4BngLbAdWiSNhI4KZYf0GS2NIOAfsDu3vvt0Dr8TzyXvsAEtH47oMnrQ2nEUxT/X9G6/x/gOedct1ju6THOgWgd3Qe85pzrGve9C3g9ns+OwCXAxjSPWyVr1qyx53Xt+aJvKWbJKqpk4QpYv6HKiRpAq+8Liv1V2Xn11t8VM9p3BKCgcZMqlb20RStN1AA2byF8W4k415dy5d2kWIfr5iyuXKIG8LWeY/J9WTf/m62JGmjdJrdZU1B6ogZ6/G9WlSjTnttzU7Gs7wZ1zrUHfg3s6b2fExfPjP/OSmw6yzl3N5oglOdiYKT3fmp8/apz7i3gN2gL00BgtPd+Sjz+zcCFif1PBz723o+Jryc750YD5wBPJba7wnv/wyUwnXOPownOR865XOCsGEs6/um9fyWW8xDwv8DD3vuFcdnTwLll7LsRaAH0cc69771fkFh3AdqSNjax7K00Y3ree/9GfP5obEn7LZq4DUbr8IO4/n7n3Dlx/agYUxegs/d+LjA5zWNWWcuWLe15XXt+4gFw64vw6XzYqTVc82sYeq8mKLvtDF8s+mF7mjWB/KawfI2ua9MC3p+hLU8X9YdW+TDsGLhzPOXKbwrrUhKgHCE3BFblNaP19wUE4O6DjtRVW7Yw5EP9L9Nl5TJ2WrWCJa3blX8MgLAFJEe7QV8bx7JWrdlh9Sr4eV/koN5w3VMVFgHAuT+Hx96DVetKrtuuOVx8rJ7Wz/pqV/LkL7eub5wLm1ImQjRppF2hInD9b4Hi70v+frvCrw6Cp9+HvCZw6QnFt+nYVruSx/xTy++6g3ZVg3aJ7t+rRJn23J5XuzrfjlZS1idrQLf475epK5xzRwJXo12BTdEWraUVlNcduMs597fEskbAwvh8Z7RbDwDvfXDOJROcoq7TpNnACYnXW4AFKduMBt50zl2Ctm41Qrtt07E4Ec9651yxZcB6oKxP/iNo69XtQC/n3ETgMu/9LLRup6QZQ6q5pbzuFJ93Bp5IWT87LgdN5q4C3nPObYox/tl7b9PkzFat88HfDDO/1rFjLZtB//10/NZuO+vYtVlLNCHr1UETjXnLtJutUS7MWKTJQ5sWWt7fz4WLjgUCbCjUMWvtWsJ36+GTOZrwnbA/fLYAps2Dfbrpfu1actTy71i8NrBq8ixymjfhaNqyaOE89v/PdHbp24ZF3Q+kWYcO/OH/XuSJvQ5mStdeZU8yCIE9F82hz+bVHHnwjpz04K9p0eEcbXXq3RFyc2HAITBphiY3mzbBirWwYDls2Ai7ddJu0j6dYY8ucNNZ8O+vtPu0YIO2bO3YWhPctvFrITcXJv0PfDQLvvoGDtsD8vNg4jRN6tq3gjb5WldvTYd9ekCnUpJOEXhyuCbK7VroWLdUDwyDy0/S96V9Kx1HGLZAv100DmNMpdWFZG1u/LcXsfsOII7Feh4dD/aA977AOTcMHc9VpOQlxDURu8Z7X9ZP10VAUXdd0Ri2zon1C4D+Kfv0oHhyFrz3xfocvPcfOedmA6ei3ZdjMzHxICZANwI3Oudao+PXHkC7duei9VoV3Up5/Wp8vgBNipN6AC/FmOYAQwCcc3uhXaJzYlzGbNW0MezZdevr7bfTB0CPnfSRtEeX0p8X2bVj6cdJbtu3mz6SOrSlA8BB+rE+Mz6g5w+bnBP/vSwE8katY2OTvNKPJcL0O3qXXJ4cqN+7kz7SkZ8HP+1T8XY5OXDArvooctKBJbf7Zb+Sy5JEdOJGeXrvvPX5AVX9ijHGFMn6ZM17vzR2893tnBuEJls90cHyecDKmKj1AYal7L4EHQSfdDtwrXNuJjA1lrEfsNx7/wXwMJrYPIMmhxcDyW/4ccBVzrmBwGPAvuhkh6FpnM69wH+jLYGXprH9NnPOHY6O7ZsGFKATFIpasEYDHzjnzkRbwnKBA7z3b6dR9InOuSOAt9Fu6n5s7YIeC/zVOfci8DFwBrAP2g2Kc+4s4I04IWJVjMda1Uy9ICJsySm7BWlmudN3jDGmpLoywWAIOvvwHWAN8AI6sH0ocJNzbi06aP2xlP1uB5xzbpVz7jMA7/196EzOMcBKdGbpVUDjuM9DsazxwDdo195kYEPcfw7asjYMWIEmd1d7759M4zweRVucJnnvZ1a0cTXZEY1xJdp12hVNLonj9vqj9bgUrYsz0yz3fnRiwGq0K/pk7/1XsdzH0Jmwj6B19DugfxyfBnA48O/4vr2Pvm+PbstJGpNNBuzVuMwB/bu0y/rfyMbUbZLyqAfqxKU7apNzLgdNYi6LSci2lCXoeLcrt7Ws2lRHLzZsH3STUVLGnQrCcEvWjIlq5tIdo1IudQKI3AAADz1JREFU3fHHun/pDvvWKIVz7jS09S4HveZaPtrStq0GAE2Ap6uhLGOMMcaUUOdzsxIsWSvdRej4MoBP0S68bbpgq3NuGTou62zv/cbE8gHo2LHSnO+9z3j3oHNuBDCijNV2KytjjDEmg6wb1DQU9kE3GVVaN+j+7eGDgfYb2ZioZrpBb9hUvBv0isZ1vqmtrkwwMMaYOmXtxTnob4Stfzf+dYZdZ8wYU3n2E88YY2pAfpMcXuz9CiHA8ccfV9vhGGPqMGtZM8aYGiR1vgPGGFPbrGXNGGOMMfVHPfyBZC1rxhhjjDFZzJI1Y4wxxpgsZsmaMcYYY0wWszFrxhhjjKk/bMyaMcYYY4zJJEvWjDHGGGOymCVrxhhjjDFZzMasGWOMMab+qIdXoraWNWOMMcY0KCIyV0T2rO040mUta8YYY4ypP+pfw5q1rBljjDHGiMhAEZkuItNE5DkRaR+Xvy8i/eLzu0Xks/i8kYgsF5H8mo7NWtZMgyAiE4Dtq7PMRo0abV9YWLi8Osus66xOSrI6KZ3VS0kNsE5eCyEcXd2FhuGNKt22FrtEbwD2CyEsFpHrgL8DpwETgSOAj4CfAAUi0gHoBnweQlhXXbGXxZI10yDUxBeCc8577111l1uXWZ2UZHVSOquXkqxOatXPgFdDCIvj69HA1Pj8n8AIEXkUWAG8gyZv3dFErsZZN6gxxhhjGjoBQsqyoteTgH2BY9HkrKil7Qg0katxlqwZY4wxpqGbCPQXkZ3i63OBNwFCCBuAj4Er4rLJwI+BvvF5jbNuUGOq7t7aDiALWZ2UZHVSOquXkqxOMutNESlMvB4BvCEiAfgKOD+xbiLQD/AhhEIRmQXMCSFszESgEkJqq58xxhhjjMkW1g1qjDHGGJPFLFkzxhhjjMliNmbNmDQ555oDY4D9gEJguPf+5XK2z0MHpa6vr9Px060T59wJwNVAU3TW1QPe+1szGWtNc87tCjwItEOn9w/03s9M2SYX+BtwNDrT7Abv/T8yHWumpFknVwG/QT8/hcAI7/2ETMeaKenUSWLb3sAU4G7v/fDMRWmyjbWsGZO+4cAa7/0uwHHAP5xzLcrZ/nrg/YxEVnvSrZMlwHHe+z2Bg4GhzrlDMhhnJtwD3OW93xW4C71OU6oBwC5AL+Ag4FrnXLeMRZh56dTJh0A/7/3ewBDgCedcswzGmGnp1ElRYj8aeD5zoZlsZcmaMek7Df2iJf4S9sAxpW0YE5FewMMZi652pFUn3vsPvPdfx+ergc+BrhmMs0Y559qj12EaFxeNA/Z1zu2QsulpwH3e+y3e+2XoH+JTMxZoBqVbJ977Cd779fHlNLTltV3GAs2gSnxOQC8T8TLwZYbCM1nMkjVj0tcFmJd4PR/onLqRcy4fuAMYmpmwalVadZLknNsNOJAMXUwyQzoDi7z3mwHiv19Tsi4qXV91WLp1kjQQmO29X5iB+GpDWnXinOsL/AK4PeMRmqxkY9aMiZxzH6N/TEuzYyWKuhnt5ljknOu17ZHVnmqsk6LyOgAvABcWtbQZA+CcOxS4DjiytmOpTc65xsB9wGDv/Wbn6uVwV1NJlqwZE3nv9y1vvXNuPtp1tywu6gK8VcqmPwH6O+euBvKANs65ad77vtUZbyZUY50UdQG9CdzsvX+yOuPMAguAnZ1zufEPbC7QMS5PKqqvj+Lr1Ja2+iTdOsE5dxDwCHCC935GhuPMpHTqpAPQE3g1JmqtAXHObee9Py/TAZvsYN2gxqTvKeIVrWOLWT/gtdSNvPd9vffdvPfd0Flu0+tiopamtOrEOdcOeAO4sz7OfvTeLwU+AU6Pi04HpsRxaUlPAec653LiOKUTgWcyFWcmpVsnzrl+wBPAr7z3H2c0yAxLp0689/O999snvkPuQMc5WqLWgFmyZkz6bgZaO+dmoQN/z/PerwFwzo10zl1Qq9HVjnTr5ApgV+B859wn8TG4dkKuMRcAFznnvgQuiq9xzr3qtvZlPYzexmYmek/Bkd77r2oj2AxJp07uBpoBoxOfjb1qJ9yMSKdOjCnGbjdljDHGGJPFrGXNGGOMMSaLWbJmjDHGGJPFLFkzxhhjjMlilqwZY4wxxmQxS9aMMcYYY7KYJWvGmKwmIt1EJIhIpxo+zgUi8nDi9XgRuawmj2lKJyKzRGRQmttm5PORCSLSVERmishutR2LyS6WrBlTT4hIDxF5SkSWiMhaEVkgIs+JSJO4fpCIzCplv7KWnxH/CF5dyrq3RWRDPM5qEZkiIqfUzJnVPBHJB0YC1xYtCyEcE0K4qdaCqkB8b35S23E0BDVR1yJymIgUJpeFEDYAt6DXLzTmB5asGVN/vAosBnoDLYGDgAmAVLG884BvgXNEJLeU9deFEFoA7YBxwBMismsVj1XbzgCmhxBm13YgpsEbBxwuIrvUdiAme1iyZkw9ICLt0CTtnhDC6qAWhhDuib/WK1ve7sAhwFnovQqPKWvbEEIhehX6XKDEledFZJiITElZ1l1ENotIt/h6TGwJXCMi/xGR35YT27Ui8mbKsrdF5E+J13uKyAQRWS4i80VklIg0LueUT0Rvh1VqmYmutrNifOtE5FURaSMiN4jI0tiieWFi/0GxO+9yEVkct7k1GUdF5y0ifUXkNRFZJiLfisgbcfnUuMnrsXWz1Ft4iUhzEflrPMZyEXleRLqknOOtIvJMjGG2iJxQViUlzum/RGRh3OcWEWkXy/hORL5ItkKJSCMRuVpEvornMFFE9kysbywityXq8PJSjnuIiLwX958tIv8tImn/CBGRU0RkamwFnioiJ6WeU8r2Y4vqtKy6FpG58bzei8u9iPQrrYzEsrmiLdYdgfFAbtx3rYicBRBC+A69d+zx6Z6fqf8sWTOmHgghrAA+A/4hIgNFpE9l/piV4ny0pelltMWuzPsSinazXghsAqaWssmjwO4isk9i2SDg7RDC3Pj6PWAf9KbVI4GxItKnKoGLSHvgHeBZ9CbZBwFHAn8sZ7d9gf+kUfwpwE/QG7B3Az4AZsfjDAbuSCZD6E3buwA9YhzHAcMT68s8bxHpEM/jnXisnYAbAUIIe8f9jwohtAghnFNGvLcDB8ZHV2A58JIUbyk9C7gNaAXcCTwoIs3LqYOuMd4esS4uQhOPm4E2aL2PSWx/KTAQ6I8m/u8Cb4jIdnH9FcAvgYOB7vFcuxbtLCJ7oJ/Bm4EdgGOBYcCZ5cT4AxE5CP0MXoG2Ao8AxonIAensX0FdXwD8HmgLPA28mjiv8sr8Gv0BtDmW2SKE8GBik+noZ9IYwJI1Y+qTw4C3gT+gN4v+RkSuSknauovIquQDbRX7gYjkoX8IH4iL7gf6S8kB3FfG/RcCJwCnhBBKjH0LIawEXkCTGWI8ZyXKJ4RwfwhhRQhhcwjhcWBaPJ+qGAhMDSGMDiFsDCEsAkbF5WVpA3yXRtnXhRC+jcnxy8CmEMJ9IYTCEMJ4YCXwo8T2W4BLQwgFsYv1JmI9QIXnfSYwK4QwKoSwLp5LsRbF8ohIDnrOfwohLAohrEM/G7sD+yc2fSKEMCmEsAW4F03aepVTdAHw5xjPVDRB/yiEMDmEsBl4BNhFRFrF7QcDN4YQvoitvCOBzWjSRYzxxhDCrBBCAZrMJu+DOBR4KoTwQqynL9Cksrz3M2kw8EwIYXx8n14BngOGpLl/ee4PIfw7hLARTaQL0MRzW32HJoDGAJasGVNvhBCWhxBGhBD2RVs+LgOuJpEcAHNCCK2TD+B3KUWdCrRA/+iCtmosBVJbb66PZbQPIRwcQnipnPDGAANiK9zhMb5nQZMKERkpIjNiN9UqYG+0FaUqugM/TklIH0BbpsqyEqiwRQQdE1hkfcrromUtE6+XhhDWJ17PBTpBWufdDfgyjZjKsgOQh944HoAQwlr0veyc2G5xYv26+DR5DqmWxsSuSGo9FJ1vURmdU2LYgtZDUQyd4utkDEsT5XUHTk95P69BW+nSUez40WyK10FVzS16EvRG2/OJ7+822g4dL2oMYMmaMfVSCGF9CGEs2lKzTyV3Px8df/apiCxBW87aAmdL6RMN0vE68D3a6jAIeDy2ogCcjiaCpwBtYgI5lbInRqwF8lOWdUw8nwe8mZKUtoqTIcoyBahSt2sF2qd0KXZD6xMqPu+5lN/CFcpZB7AM2IAmOwCISAugPbAgreirx4KUGHLQeiiKYVF8XbQ+H42xyDzggZT3c7sQwh5VOX7UI3H8ij5PUHZdJ+MWtMu76P0tVq6INKL4eSUT3lR7op9JYwBL1oypF0QHuo8SHVjfOA7qPgX90n+3EuX0AX4MnIQmeUWP/dGWqf5ViS+2pjwEXAycTKILFG1FKESTixwRGYK2MJXFA/uKyH7xPIdR/I/xQ4ATkSEikhdbsHqIyNHllPk88PNKn1jFcoAbRKSZiPRAu/iKxiZVdN6PAL1FJyg0j+/rEYn1SygnmUvU+XUi0jEmjbcCXwAfVtP5pWMscJmI7BpbVq8EGgGvxPUPA5eKSE8RaYZ2FScT9buB34jIcYnPdh8RObQSxz9FRH4hIrkicgz6GSwaVzcFTap/GT8rJwE/TSmjrLoeIiL7ik4auRRonjgvDxwhOpmmKXA9kJzksgSdYFAskRSRluj/txfTPD/TAFiyZkz9sBH91f4s2n2yDPgTcFEI4alKlHM+8HEI4aUQwpLEYxrwVFxfVWOAQ9Gu2GSy8CA6UH8W2srSh3ISzBDC22jS8Rra/bYjMCmxfgnwM3SG51y0i/M5tDWlLA8De8eEqjrNQ89pDnqOr6HJCFRw3nEQ+mHo5IiFwDdAcqbklcBIEVkpIqPLOP5/oUnDR2gXXQfg+Di2LFNuRi9H8Tp6Doejg/WLxgiOQi8xMxmtp/lovQEQQvgUbZH9A/p+L0UTsLS6yUMI/0LHSN6CfhZuAs4IIUyO62ejkwTuRf/vHA08k1JMWXV9L/C3WO5pwLEhhNVx3aNowvUx2u06H32fi+L6Ek1EP4zdu0UTJk4H3gohzEzn/EzDINrNbowxDZuIXAD8OISQ1izDNMobhA7ut+tl1UMiMhd9fx+paNtKlNkU+BRNqD+vrnJN3deotgMwxphsEEK4B7intuMwDVecLVveOEXTQFk3qDHGGGNMFrNuUGOMMcaYLGYta8YYY4wxWcySNWOMMcaYLGbJmjHGGGNMFrNkzRhjjDEmi1myZowxxhiTxf4fNmdsVPwJ6RMAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAawAAAFACAYAAADgTkhVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAp5ElEQVR4nO3dfXwdZZ338c9Jmsa2QCm0WKgtD0uLAkJNf2yX2yd8AIF9uXZ5EFoIKNpS9Aa992YXbmQBQVxYVlxRHlpYsBSpWHCL8gIKrDzpStmfoQIitNpCQmqhhVIClKRJzv3HTODkcDI5J2fOyczJ9/165XXmN3PNzDWknF+umWuuK5PNZhEREUm6uuGugIiISDGUsEREJBWUsEREJBWUsEREJBWUsEREJBWUsEREJBVGDXcFatmZZ56Z/eEPfzjc1RARSZtMoZVqYVXQa6+9NtxVEBGpGUpYIiKSCkpYIiKSCjXzDMvMZgBLgF2BV4BT3H1tXpl64CrgSCALXObuN4TbbgYOyil+EDDH3X9hZhcBXwM2hNt+4+5fr+DliIhInppJWMB1wNXufouZnQwsAj6dV+YkYF9gOkFie8LMHnD35939lL5CZnYw8CtgZc6+N7v72RW9AhERGVBN3BI0s92AJmBZuGoZ0GRmk/KKngBc7+697r4JWAEcX+CQXwF+4u6dFaqyiIiUqCYSFjAVaHf3HoDwc0O4Ptc04IWcuDW/jJmNBuYBN+bte6KZPWlm95nZoXFWXkREBlcrCStOc4BWd1+ds+46YG93Pwi4ArjTzHYttLOZLTAzNzPfsmVLxSsrIjJS1ErCagOmhJ0q+jpX7BGuz9UK7JkTTytQ5jTyWlfuvtHdt4fL94f7HFioIu6+2N3N3W3ChAlDvBwREclXEwnL3V8GVgNzw1VzgSfC51S5lgPzzawufL41B7ijb6OZfQD4OHBr7k5mNiVneSawF/BcnNcgIlILWtq7uPaxDlrau2I/di31ElwILDGzC4AtwCkAZnY3cIG7O7AUmA30dXe/2N3X5RzjVOCX7v5q3rG/a2azgB6gC2h2942VupCW9i5WtXUye2ojTVNGV+o0IiKxamnv4rifbKYnC/WZDm4/aWKs32GZbDYb28Gkv+bm5uzSpUtL2qelvYvjb91Mdy+MqoPl8+L9hYuIVMr5973G0ifeeidu/shYvnPEzkM5lMYSTINVbZ109wbL3b1BLCIiSliJM3tqI6PC38qouiAWEUmDYw4Y+05SqQvjONXSM6ya0DRlNN85fDz3rtnGkTPG6HagiKRKNu8zTmphJUxLexfn37+Vh9YHn5XoaSMiUgmLHu/ol7AWPd4R6/GVsBJGz7BEJK1eeqM3Mi6XElbC6BmWiKTV3jvXR8bl0jOshGmaMprl8ybqPSwRSZ1Xt/VGxuVSwkqgpimjlahEJHWOnDGGh9Z39YvjpIQlIiKxmDtzHMA7vZz74rgoYYmISGz2m9TAa2/3st+khtiPrYQlIiKxaGnv4phbNpMFMnTw85PjHVpOvQQTqJKjHYuIVMrlD2/t9x7W5Q9vjfX4amElTP/Bbzs0+K2IpIa/uD0yLpdaWAmjF4dFJK16s9FxuZSwEmb21Ebqw4H16zN6cVhE0mPi2ExkXC4lLBERicWo+kxkXC4lrIRZ1dZJT9iM7snqlqCIpMeEMXWRcbmUsBJGYwmKSFptfKM7Mi6XegkmjMYSFJG0evWt6LhcSlgJpLEERSSNRmVge7Z/HCfdEkwgvTgsImk0K+8P7fy4XGphJYxeHBaRtNpjp7rIuFxqYSWMXhwWkbT6r3WdkXG5lLAS5vW3eyNjEZGkersrGxmXSwkrYZ55eXtkLCKSWPmdLGLudFEzz7DMbAawBNgVeAU4xd3X5pWpB64CjiQYTPgyd78h3HYR8DVgQ1j8N+7+9cH2i1ulZ+wUEamUCuer2klYwHXA1e5+i5mdDCwCPp1X5iRgX2A6QWJ7wswecPfnw+03u/vZBY492H6xqfSMnSIildKTjY7LVRO3BM1sN6AJWBauWgY0mdmkvKInANe7e6+7bwJWAMcXcYqh7jckc2eOY8kXJypZiUiqbO+NjstVEwkLmAq0u3sPQPi5IVyfaxrwQk7cmlfmRDN70szuM7NDS9hPRGTEq8tEx2UfP97Dpdp1wN7ufhBwBXCnme1a6kHMbIGZuZn5li1bYq+kiEhi5d8C1C3BgtqAKWHniL5OEnuE63O1AnvmxNP6yrj7RnffHi7fH64/cLD98rn7Ync3d7cJEyYM6WKWrX6TU3+2mWWr3xzS/iIiw6HC+ao2Epa7vwysBuaGq+YCT4TPm3ItB+abWV34fGsOcAeAmU3pK2RmM4G9gOcG2y9uy1a/ybkrt/LQ+i7OXblVSUtEUkO9BIu3EFhiZhcAW4BTAMzsbuACd3dgKTAb6OvufrG7rwuXv2tms4AeoAtodveN4bao/WJ175pt74nV+UJE0qChHjp7+sdxqpmE5e7PEiSV/PVH5yz3AGcMsP+pEccecL+46T0sEUmr7T3RcblqJmHVirkzx9H6Wjf3rnmbI2e8T60rEUmN/F7scQ8sVxPPsGpJS3sXix5/k3Vbelj0+JuaYkREJKSElTA//8Nb77wd3pMNYhGRNGisj47LpYQlIiKx6OqJjsulhJUwxxwwlvqwL2h9JohFRNKg0u9hqdNFwjRNGc2lR4x/Z/BbzTYsIhJQwkqYlvYuvnXfVnqy8OjzXew3qUFJS0RSoT7Tf4T2eo0lWNvU6UJE0qpxVHRcLiWshFm7eXtkLCKSVF3d0XG5lLAS5tW3spGxiEhSaQLHEaahPhsZi4gk1ZiG6LhcSlgJU+kZO0VEKmWH0ZnIuFxKWAmzz4SGyFhEZKRSwkqY02fv8M600nWZIBYRSYNK3yFSwkqgTN6niEga9PZmI+NyKWElzKq2zn7vYa1q6xzeComIFOkD40dFxuVSwkqY2VMb+90SnD21cXgrJCJSrAoPJqiElTDPbdpOXyu6NxvEIiJp8Pxr3ZFxuZSwEua2p96KjEVEkmpUXSYyLpcSVsI05v2C82MRkaQ6aebYyLhcGq09YXYem4mMRUSS6pzDxrOxo4eH1ndy2N6NnHPY+FiPrxZW0mQz0bGISEK1tHfxi2ff5tVtWX7x7Nu0tHfFenwlrIRp27o9MhYRSapVbZ10hy8Ld/fG/1qOElbCvLi1JzIWEUmq19/ujYzLpYSVMI2jMpGxiEhS/fKPb0fG5VLCSphxDXWRsYhIUm3r7o2My1UzvQTNbAawBNgVeAU4xd3X5pWpB64CjiR4B/syd78h3PbPwIlAd/hznruvDLddBHwN2BAe6jfu/vVKXEdHV29kLCKSVLu8r47Nb/X0i+NUS3++Xwdc7e4zgKuBRQXKnATsC0wHDgUuMrO9wm2PA4e4+8HAacBtZjYmZ9+b3X1m+FORZAXw/h3qI2MRkaTavK03Mi5XTSQsM9sNaAKWhauWAU1mNimv6AnA9e7e6+6bgBXA8QDuvtLd+4aVeJJgsPRdK133fFN3ro+MRUSSas/x9ZFxuWoiYQFTgXZ37wEIPzeE63NNA17IiVsLlAE4Bfizu7+Ys+5EM3vSzO4zs0Pjq3p/v9+wPTIWEUmq517pjozLVSsJKzZm9kngEmBuzurrgL3d/SDgCuBOMyvY+jKzBWbmZuZbtmwp+fwvvdkbGYuIJNVb26PjctVKwmoDpoSdKvo6V+wRrs/VCuyZE0/LLRO2nG4B5rj7c33r3X2ju28Pl+8P9zmwUEXcfbG7m7vbhAkTSr6Q/PnOYp7/TESkYvJfwon7pZyaSFju/jKwmndbRXOBJ8LnVLmWA/PNrC58vjUHuAPAzA4BbgOOc/eW3J3MbErO8kxgL+A5RETkHflv4cT9Vk7NdGsHFgJLzOwCYAvBcyjM7G7gAnd3YCkwG+jr7n6xu68Ll68BxgCLzKzvmM3u/hTwXTObBfQAXeH6jZW4iLpM/1aVBmsXkbTIfwsn7rdyaiZhufuzBMkof/3ROcs9wBkD7H9IxLFPjaOOxchmo2MRkZGqJm4J1pIKzzAtIpJaSlgiIpIKSlgiIpIKSlgiIpIKSlgiIpIKSlgiIpIKSlgiIpIKg76HZWajgCcIpt6Id/pIERGRIg3awnL3bmBn9EqQiIgMo2JvCf4AuDRsbYmIiFRdsQnodIIBX88ws78A74wQFc7wKyIiUlHFJqzvVLQWIiIigygqYbn7kkpXREREJErRz6TC+aJOI5hSvg240d3/p1IVExERyVVUpwszmwM8Aown6OK+E/Cwmf195aomIiLyrmJbWBcCx7r73X0rzOwo4DLgPytRMRERkVzFdmvfC7g3b91KYM9YayMiIjKAYhPWC8Bn89Z9BmiNtzoiIiKFFXtL8BLgTjO7HVgH7A0cC1Rt6ngRERnZimphufsdwKeBt4BDgG3AZ9399grWTURE5B0DtrDM7A53PzZc/rK73wT8tmo1ExERyRHVwvpMzvIPKl0RCTTURcciIiNV1DOsP5jZMuApYLSZnVeokLt/tyI1G6G6e6NjEZGRKiphnQycC3wKqAcOL1AmCwyYsMzsAHf/Q048PzxuBvipu18zlErXsvw5XDSni4hIYMCE5e7rCUZpx8xWu/unhnD83xKMioGZLSBIblcSfA9faGZZd792CMcVEZERptjBb2cO8fiZnOWFwInu/gCAmf038EMgloRlZjOAJcCuwCvAKe6+Nq9MPXAVcCRB0rzM3W8oZ5uIiFRHpR/p597RmgY8mBM/Gq6Ly3XA1eH8XFcDiwqUOQnYF5gOHApcZGZ7lblNRESqoNIJq8HM5prZPKAbaMzdRv8W2JCZ2W5AE7AsXLUMaDKzSXlFTwCud/ded98ErACOL3ObiIhUQaUT1ksEz60uJXjZeFbOtkOBP8d0nqlAu7v3AISfG8L1uaYRDDPVpzWnzFC3iYhIFRQ9H9ZQuPteEZvXEdxqqylh55IFAJMnTx7m2oiI1I6iElbY6eD/EYwduJu7jzezzwF7u/t1Qzmxu8c5cG4bMMXM6t29J6zvHuH6XK0EI8z3TTyZ23Ia6rZ+3H0xsBigublZvdJFRGJSyuC3nwXOAW4M160hmA9rwIRlZgcDG9x9k5mNAv4R+AJBZ4w7gO+5e9lf6u7+spmtBuYCt4SfT4TPm3ItB+ab2c8JehPOAT5R5jYREamCYp9hzQO+4O4/B/rGXnieYJ6sKLcC48LlbwNfJugQ8VPgq8D5JdR1MAuBM81sDXBmGGNmd5uZhWWWEtyKXAs8Blzs7uvK3CYiIlVQbAtrHPBy3rrRwNuD7DfN3Z8Pl78IHOXufwIws18AvyJovZXN3Z8FZhdYf3TOcg9wxgD7D2mbiIhUR7EtrN8RtI5yzQMeH2S/DjPbI1zeif4TPr4ITCzy/CIiMsIV28I6G3jIzE4ExprZLwEjGGcwyu3ANWb2JeAm4BIz+xbB+1ffBp4YUq1FRGTEKXYCx6eBDwH3ADcAjwAzw9twUc4luJ34InAUQaeLt4A3CXocfm1o1RYRkZGm6Pewwh533yvl4O7+FnB42AX+MIJbiB3AauDn7v5GKccTEZGRq9j3sArOhQXFzYfl7iuBlSXUS0REpJ9iO10cnvdzKnARwbtZRTGzDxRaFhERKUax04u8p3OFmf1vIH9w2ShPAruEy88QzpMlIiK1IUP/KTpiGd08RzmD315L+HJukTIDLIuISA3IZKLjcpWTsA6mtMSTHWBZRERqQENddFyuYjtd3E//JDOOYP6pUnoNqlUlIlLDxjZAZ0//OE7Fdmv/dV78BnCeuz8cb3VERCStGurqeHe42b44PsV2uvh2rGcVEZGa09gQHZdrwISVMwZgJHffUOS59NxKRKSG7dSYiYzLFdXCepHoJNPXg7G+yHOpl6CISA3b3hMdlysqYe0d54ncfULO8o5xHltERIbfLmPr4JWe/nGMBkxY7l5wCngREZFCpk9s4LG27f3iOBU9+K2ZfZBgANtJ5NzSc/eLSzjGFGCcu68poY4iIpICbVu6I+NyFfse1lzgxwTDKx0Ufh5MMM1IKa4C9ieYqkRERGrI4+1dkXG5ir3B+C2g2d0PAd4KPxcCLcWeyMx2Ihgst9HMmkquqYiIJFp+D7xie+QVq9iENQ1YnrfuZqC5hHMdCzwELAXmlrCfiIikwM55nSzy43IVe7TXgPHh8ktm9iGCkdfHlXCuE4FlwG3ACSXsJyIiKdDTEx2Xq9iE9QDw9+Hyz8L4ceCeYnY2s/cDfwPc6e7PAK+b2cdLrKuIiCTYK9t6I+NyFTs002k54YXAswTzWS0p8jxfBO51921hfBvBbcFHi9xfREQSbnR9/8FvR8f8EKvYXoLT3L0VwN2zwK0lnmcu8K858W3Ar83sTHePudEoIiLDYUxDho6ubL84TsXeElxnZveb2Ylm1ljKCcxsMsHzr7v71oXvYa0GZpdyLBERSa43OrORcbmKfXF4OvAl4F+Aa8zsp8CN7u6D7ejuG4EDCqw/ooR6iohIwnX2RMflKvYZ1nqCZ1cXmtlngFOBB81snbsfHEdFzOwpd//wEPYbC9wEzAK6gbPd/a4Bys4HziEYqeMe4Cx37zWzLwAXAI3hthvd/XvhPocRtA77RufodHe1DEVE8uwwGrZ29o/jNJRO8g8D/wk4cGCMddlriPudDXS4+77A54EbzGyH/EJmtjdB0j2UoMU4HTg53LwR+Ly7Hwj8L+CMvF6Mz7j7zPBHyUpEpICG+kxkXK6iE5aZHWRm3wc2AD8AfgPsF2Ndhnqz8wTgOgB3X0uQSI8qUO44YIW7b3L3XuD6cF/cfVXfvF7uvhX4I7DnEOtTlgnvy0TGIiJJtWNjXWRcrmJ7CbYAHwR+QTC6xX1hb8EkmAbkjizfCkwdarlwkN+/AU7PWT0j/G+wHbjG3Yvtzl+ygyc38NDzXf1iEZE0aKiLjstVbKeL/wB+4u6vxXv6wYWJYtoAm98f87l2B+4Evp4zk3ILMNXdt4a3FR8ws3Z3f2CAYywAFgBMnjy55Do8/XJ3ZCwiklTDNh9WLne/OtazlsDdIwfKNbNWgtt3m8JV04AHCxTtK0dOubac4+xGMILHFe7+s5zzv56zvN7MVgAfDcsWqu9iYDFAc3Nzya3Qnp7eyFhEJKkqPR9WzA22srQOcb/lhLfvzGw6cAhwb4FydwBzzGySmdUB8wmGmcLMdgXuB37k7jfk7mRmu5tZJlzeBTiC4B2yitjWHR2LiCTV03/piozLVfQEjuUys/HA3wIfcPd/DV8orsvp7DDUHodXAD82sz8BPcACd+8Iz3kxsMHdr3P3dWZ2CfBYuN99wC3h8rnADOB0M+t7dvUDd7+JYJT5M8xsO8F/r5vd/c4h1nVQb/dExyIiSfXkS92RcbmqkrDC+a9WAn8B9iYYpukggpbRseUc293fBI4fYNsFefEiYFGBcv8I/OMAx/gR8KNy6liKOqA3LxYRSYNMhn79vTMxd3Ie9PvQzPY1s783s33KOM8PgH9y94MIXu4F+G+C3niSI/8XHPcvXESkUnZszETG5YpMWGZ2DME7SXcAz5jZ0UM8zwHAj8PlLIC7v0Fp82mNCL3Z6FhEJKm6u7ORcbkGa2GdD5wH7EgwSsR5QzzPJvK6ppvZvkD7EI9Xs/J/vcpXIpIW+Y/c434EP1jC2hv4Xvic6Epg3yGeZwnwUzP7GJAxs1nADQSjTYiISA3IH9gi5oEuBk1Y9eEwRrj7dmCoQxleTvBu1N0EU408SDB541VDPJ6IiCRM7sC3heJyDdZLcLSZ5d4GfF9ejLt/d7CThJM0ngecZ2YT3X1z6VUVEZEkq8v0f+5eF3OnscES1mPA4Tnxqrw4CwyasHIpWYmI1KZsNjouV2TCcvfD4jiJmfVSuP9AF8GAtLcCl7l7vK9Fi4hI9eS9h0WVW1gFhUMVHQ2c7u5/V8Qu3yQYCun7BAlqT+AbwM3AGwQv7Y4jmFxRRERSqLEe3uruH8eppIRlZnsAXwW+AuxOOBZfEb5MMEHi8znHehD4ubt/xMx+SzBKuhKWiEhKVfo90kETVtiaOopgyoyjCd6pmgDMcvenijzPPgQTP+baAPwVgLs/aWaTiq20iIgkT30d/V6+qq9mt3YzOx9YD6wIVx1LcDtvK/BSCed5ArjczBrD4zYC/xKuJxz26ZVSKi4iIsmy27j6yLhcg7WwLiZIJHPc/e6+lWZW6nnmA78EFprZy8BuBNOJfD7cPhndDhQRSbWGUdFxuQY73CmEycbMniKceZgSRwxy97VmdgDBYLdTCIZkeix8Pwt3/2+CwXBFRCSlOjp7I+NyRd4SdPdb3P2TwIHAQwTjCbYDE4Gim1nhc7DTgDMJphS5BLjfzH41tGrXrvxeoBqsXUTSYvOb2ci4XEU9EnP3P7r7NwlaRwsIXiC+y8weL/I8lxIkqTaCVtbvgP2p4My9aaXBb0VECiupD4e7d7r7Unf/OEGrq9jbePOAz4UTJW4PP+cAe5VyfhERSa5Kz+c35E6H7v5M2Ooqxi7u/vtwudvM6t39MeBTQz2/iIgkS35CiXvG9MhOF2a2lkHuSrn7jCLO025m09y9FVgHHGVmm4HtRddUREQSbdIOdbRt7e0Xx2mwXoLfyVnOAFcDXxvCea4FZhF0Zf8+wXtdGYJOHCIiUgM+/8ExXLPqzX5xnAYb/HZJbmxmV+avK4a7X5WzvMzMHgV2cPdnSz2WiIgkU0dXNjIuV8yvdRXH3V8cjvOKiEh6xf1MTERERqhjDhhLfdgzsD4TxHEalhaWDKw+Az3Z/rGISBo0TRnN7SdNZFVbJ7OnNtI0ZXSsxy+1l+BOZrYmt0yRvQSlSJWesVNEpJKapoyOPVH1KaWXYCKZ2VjgJoJeiN3A2e5+1wBl5xMMspsB7gHOcvdeMzsMuBvoS8ad7j57sP0qcT0N9dDZ0z8WEUmLlvau4WlhDaVH4DA4G+hw933NbDrwqJnt6+5v5BYys70JutF/hGAE+nuAkwlmPQZ4xt3fMz5iEfvFqqc3OhYRSaqW9i6Ov3Uz3b0wqq6D5fMmxpq0BpsPa5SZNeSt+5KZ/buZHRNbLcpzAnAdBKPCA04w4WS+44AV7r4pbB1dH+47mKHuNyQ92ehYRCSpVrV10h3+kd3dG8RxGqyX4G0E09sD70zouBj4GPATM/tKrLUZmmnACzlxKzB1COVmmFmLma0ys1OHcPxY7DwmExmLiCTV7KmNjAqzyqi6II7TYM+wjGBKkD5nAl9195vN7FjgPII5sirGzFoIkkYh74/pNC3AVHffGt4CfMDM2t39gVIPZGYLCEa0Z/LkySVX5JxP7MS5K7f2i0VE0qBpymi+c/h47l2zjSNnjKnuMyxggrtvADCzDwHjgZ+F21YQtLYqyt2borabWSuwJ7ApXDUNeLBA0b5y5JRrC8/xes751pvZCuCjwANR+w1Q38WE/12am5t1Q09ERoyW9i7+38qtZIGH13ex36SG6j3DAt40sx3CZQOedve3wzhDMt7jWk4wKSRhp4tDgHsLlLsDmGNmk8ysjmAm5Z+F++0eTjKJme0CHMG7c3UNuF8l3LtmW2QsIpJUlz+89Z33oLJhHKfBEtajwCVm9kGCpJCbCPYD/hJrbYbmCmBnM/sTcBewwN07AMzsYjNbCODu6wgmkXwMWEswavwt4TGOBZ42s9XAI8BSd7+ziP1id+SMMZGxiEhStb7WExmXa7AW0jkE7yd9A3gauDJn20nAr2OtzRC4+5vA8QNsuyAvXgQsKlDuR8CPIs5RcD8REXnXnP37j9Y+Z//qjta+HviQme3i7q/mbf5XoCvW2kjBW4JzZ44bptqIiBTvnMPGA3Dvmrc5csb73onjUtQzqALJCnd/LdaaCAD779bAQ+u7+sUiImlxzmHjY09UfTRae8Lck9fCyo9FREYqJayEaX2tNzIWERmplLASZqfGTGQsIjJSKWElzMGTGyJjEZGRSgkrYVq39kTGIiIjlRJWwszcvSEyFhEZqZSwEmZcY11kLCIyUunbUEREUkEJK2GOOWAs9WHHwPpMEIuISDJGW5ccTVNGc/tJE1nV1snsqY2xzycjIpJWSlgJ1DRltBKViEge3RIUEZFUUMISEZFUUMISEZFUUMISEZHYtLR3ce1jHbS0xz9dojpdiIhILFrauzj+1s1098Koug6Wz5sYawcytbBERCQWq9o66Q5nROruDeI4KWGJiEgsZk9tZFSYVUbVBXGcdEtQRERi0TRlNMvnVW7gAyUsERGJTSUHPtAtQRERSQUlrASqZLdQEZG00i3BhKl0t1ARkbRSCythKt0tVEQkrVLfwjKzscBNwCygGzjb3e8aoOx84BwgA9wDnOXuvWZ2FnBaTtF9gBvc/R/M7DDgbmBNuK3T3WdX5GLo6xbaEbaw4u8WKiKSVqlPWMDZQIe772tm04FHzWxfd38jt5CZ7Q1cCHwEeIUgYZ0M3OzuVwFXheUagHbg1pzdn3F3q/ylVL5bqIhIJbW0d6lbe4QTgFMB3H2tmTlwFLA8r9xxwAp33wRgZtcDXwZuziv3eWCju3tFax1B82GJSBpV+hl8LSSsacALOXErMLWMcqcBN+atm2FmLcB24Bp3XzL06oqI1KZCz+BHVMIKE8W0ATa/P+Zz7Q58GvhSzuoWYKq7bw1vKz5gZu3u/sAAx1gALACYPHlynNUTEUm0Sj+DT3zCcvemqO1m1grsCWwKV00DHixQtK8cOeXa8sqcCtzt7ptzzv96zvJ6M1sBfBQomLDcfTGwGKC5uTkbVXcRkVqioZkGtxw4HfCw08UhwNwC5e4AHjGzbxN0uphP/44VELSs/iF3Rdjq2ujuWTPbBTgCOD/WKxARqREaminaFcDOZvYn4C5ggbt3AJjZxWa2EMDd1wGXAI8Ba4F1wC19BzGzjwI7Aivzjn8s8LSZrQYeAZa6+50VvSIREXmPTDaru1aV0tzcnF26dOlwV0NEJG0yhVbWQgtLRERGACUsERFJBSUsERFJBSUsERFJBSUsERFJBSUsERFJBSWsBNKMwyIi71ULI13UFM04LCJSmFpYCaMZh0VEClPCSphgtONgWTMOi4i8S7cEE0YzDouIFKaElUCacVhE5L10S1BERFJBCUtERFJBCUtERFJBCUtERFJBCUtERFJBCUtERFJBCUtERFJBCUtERFJBCUtERFJBCUtERFJBCUtERFJBCUtERFJBCUtERFIh9aO1m9lY4CZgFtANnO3udxUoNwW4BWgC1rq75W2fD5wDZIB7gLPcvXewbSIiUh210MI6G+hw932BzwM3mNkOBcq9AVwInJS/wcz2DrcdCkwPf04ebJuIiFRPLSSsE4DrANx9LeDAUfmF3H2ruz9CkLjyHQescPdNYcvp+vC4g20TEZEqqYWENQ14ISduBabGeIw4ji8iImVK/DMsM2shSBqFvL+adSmGmS0AFgBMnjx5mGsjIlI7Ep+w3L0paruZtQJ7ApvCVdOAB0s8Td8x+kwD2orYVqi+i4HFAM3NzdkS6yEiIgNIfMIqwnLgdMDNbDpwCDC3xGPcATxiZt8GXgHmA7cWsU1ERKqkFp5hXQHsbGZ/Au4CFrh7B4CZXWxmC8PlejN7kSDBHWRmL5rZRQDuvg64BHgMWAusI+gCH7lNRESqJ5PN6q5VpTQ3N2eXLl063NUQEUmbTKGVtdDCEhGREUAJS0REUkEJS0REUkEJS0REYtPS3sW1j3XQ0t4V+7FroVu7iIgkQEt7F8ffupnuXhhV18HyeRNpmjI6tuOrhSUiIrFY1dZJdziPRXdvEMdJCUtERGIxe2ojo8KsMqouiOOkW4IiIhKLpimjWT5vIqvaOpk9tTHW24GghCUiIjFqmjI69kTVR7cERUQkFZSwREQkFZSwREQkFZSwREQkFZSwREQkFZSwREQkFZSwREQkFZSwREQkFZSwREQkFTLZbHa461CzzGwT8MIQd58IbI6xOmmgax4ZdM21r9zr3ezuR75nbTab1U8Cf2bNmuXDXQdds65Z16xrTtL16pagiIikghKWiIikghJWci0e7goMA13zyKBrrn0VuV51uhARkVRQC0tERFJBEzgOIzObASwBdgVeAU5x97V5ZeqBq4AjgSxwmbvfUO26xqXIa/5n4ESgO/w5z91XVruucSnmmnPK7gc8AVzj7mdXr5bxKvaazeyLwD8DGYJ/359195eqWde4FPlvezfgJmAqMBr4FXCWu3dXubplM7N/A44F9gI+7O5PFygT6/eXWljD6zrganefAVwNLCpQ5iRgX2A6cChwkZntVbUaxq+Ya34cOMTdDwZOA24zszFVrGPcirnmvv+5FwErqle1ihn0ms3MgIuAw939QOBjwNZqVjJmxfyezwP+6O4HAR8GZgHHVK+KsVoBfILod01j/f5Swhom4V9aTcCycNUyoMnMJuUVPQG43t173X0TwT+S46tW0RgVe83uvtLd3wrDJwn++t61ahWNUQm/Z4BzgbuANVWqXkWUcM3/B/g3d98I4O5b3f3t6tU0PiVccxbY0czqgEaCVlZ71SoaI3f/tbu3DVIs1u8vJazhMxVod/cegPBzQ7g+1zT6/wXTWqBMWhR7zblOAf7s7i9WoX6VUNQ1m9lBwOeA71e9hvEr9ve8P7CPmT1iZi1mdr6ZZapc17gUe82XADOAvwAbgZXu/ptqVrTKYv3+UsKSxDKzTxL8Dz53uOtSSWbWAFwPLOz7whshRgEHAYcDnwSOApqHtUaVdzzBXYPdgSnAJ8zsuOGtUnooYQ2fNmBK+Nyi7/nFHuH6XK3AnjnxtAJl0qLYa8bMDgVuAea4+3NVrWW8irnm3YG/Au42s+eBbwLzzSyt7+4U+3t+Abjd3TvdvQO4E/jrqtY0PsVe85nAT8JbZFsJrvlTVa1pdcX6/aWENUzc/WVgNe+2HuYCT4T3eXMtJ/jyqgvvh88B7qhWPeNU7DWb2SHAbcBx7t5S1UrGrJhrdvdWd5/o7nu5+17AvxPc919Q5erGooR/27cCR5hZJmxlfgb4fdUqGqMSrnk9QY85zGw08FngPb3rakis319KWMNrIXCmma0h+MtrIYCZ3R32oAJYCqwD1gKPARe7+7rhqGxMirnma4AxwCIzWx3+fHh4qhuLYq651hRzzT8FXgaeIfiy/wPwH9WvamyKueZvAh83s6cIrnkNwe3g1DGzq8zsReADwANm9odwfcW+vzTShYiIpIJaWCIikgpKWCIikgpKWCIikgpKWCIikgpKWCIikgpKWCIikgqaXkREymJm44B/IRh2aEeCkQzmufsT4fbngckEU8X0OdTdn6pyVSXllLBERggz293d/xLzMTMEI3BvA/7a3dvMbB/gzbyiX3X3W+I8t4w8SlgiVWZm3wDOIBj8dAvwE+B8d+8JJwG8HvgIwTA+NwL/7u6ZcN9RwD8BXwJ2Ixgd4ix3/10Rp/4vM3udYEikn/VN61GmI4CPAh9w91cBUj4SiySYEpZI9b1IMDL588BM4F7geTP7D+CXwEqC8eZ2B36Rt+/FBGPuHUkweOyXgJVmNt3dtwxy3ibgaILZnL9jZqsI5m26IxyI9R1m9togxzrI3VsJBm79M3COmX0Z6CAYB/JCd9+eU/5KM7uKYDDUa9294CSWIlE0NJPIMAunGp9GMJX4fwE7u/u2cNtXgBvcPRPefnsd+Ft3fyRn/6eAy0u55RY+d/oCQfI6DHgA+EYRE/LlH+cG4CvA94DzCeY6uhv4sbtfGpb5JPA7oDM810+B85S0pFRqYYlUmZnNBf4B2Ifg/8HRBAODTgFe7ktWodzJ7yYCOwC/NLPcvzQbCAYgLZq7v2lmvwc+SDAn1YHAuBIvBYIWVQ/wLXfvBNaa2dXAPODS8FwP55S/38yuBE6m8BTyIgNSwhKpIjObSjDP1zHAPe7eFbawjGCq9ElmNiYnaU3L2X0zQWeGz7r7/wzx/PsRTFt+AjCed6dx8bxybwxyqP3DW4KrB9gedeumF0jrzMIyjHRLUKSKzOxDBNNpfBT4LTCbYBK/PxLMjfQMwS21cwmeYd0JfDin08WlwMcIet2tNbMdwmM95e4bBjn3/QSdOW4neHb1iLuX9QVgZjsSTJGxBLiAoJV4L3Cju19uZnsStCR/C2wP674cuMTdf1jOuWXk0YvDIlXk7n8ELiRIRK8RJKZl4bZu4O8IOkdsIuguvhToyjlE3753hj3+1hLMu1TM/8vfBnZ394Xu/nC5ySqscwfwOYKkuQV4KLyefwuLjAOuDK9nC3A1wZxISlZSMrWwRBLMzE4H/q+7zxjuuogMNz3DEkkQM/sosJFgltYPE7xzpRduRVDCEkmaaQS31CYS3EZbTjDs0aDCKcr3LLDpBXc/ILYaigwT3RIUEZFUUKcLERFJBSUsERFJBSUsERFJBSUsERFJBSUsERFJBSUsERFJhf8PG0gGL5iE+ZcAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# Shapely Importance Features Test\n", "\n", "shap_test = SHAPFeatureImportance(\n", " attrs=['gender','age'],\n", " threshold=10\n", ")\n", "\n", "shap_test.run(\n", " model=estimator[-1],\n", " model_type='trees',\n", " x_train_encoded=x_train_encoded,\n", " x_test_encoded=x_test_encoded,\n", ")\n", "shap_test.shap_summary_plot(x_test_encoded)\n", "shap_test.shap_dependence_plot(x_test_encoded, show_all=False) # Show only dependence plots of attributes that failed the test" ] }, { "cell_type": "code", "execution_count": 8, "id": "2c4567df", "metadata": { "tags": [] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABDAAAAI4CAYAAACcFxlBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA/bUlEQVR4nO3dfbxlZV03/s9XBjCeBhMyJG1KMVPRURFF0dDM0tGELPHhZ2AFmalZkVmG4VONt91aWWbkrfRghCIWagkIAmryMDwMA4pZgnehdYfiCIiow/f3x14nN8dzZs4MM7PXwPv9ep3X7HWtta7ru/ZZr4H9mWtdu7o7AAAAAGN2t1kXAAAAALApAgwAAABg9AQYAAAAwOgJMAAAAIDRE2AAAAAAoyfAAAAAAEZPgAEAwGapqpOq6vWzrgOAuxYBBgCwWarq2qq6papumvq591bo88lbq8YljHdCVf3N9hpvY6rq6Kr6+KzrmK+qzq2qrw+/3+ur6rSq2m8L+umquv+2qBGAuxYBBgCwJZ7R3XtM/XxhlsVU1bJZjr+ldoC6X9LdeyR5QJK9k7xltuUAcFcmwAAAtoqqWl5V/6eqvlhV11XV66tqp2Hf/arqnKr60vCv+e+uqr2HfX+d5L5JPjD8a/8rquqwqvqPef3/zyyNYQbFqVX1N1X11SRHb2z8JdTeVfXiqvpsVd1YVa8bav5kVX21qt5TVbsMxx5WVf9RVb89XMu1VfX8ee/DX1XVf1fV56vqd6rqbsO+o6vqE1X1lqr6cpJTkrw9ySHDtX9lOG5VVV02jP3vVXXCVP8rhnqPqqr/O9Twqqn9Ow21/dtwLZdU1X2GfQ+sqrOq6stV9ZmqevZS3p/u/nKS9yV5yCLv3zFV9a9Dv6fPzcipqvOHQ9YO13fkUsYDgIUIMACAreUvk3wryf2TPDzJU5L8wrCvkvx+knsn+eEk90lyQpJ09wuS/N98e1bH/1rieM9McmomMwPevYnxl+InkjwyyWOSvCLJiUmeP9T6kCTPnTr2e5Psk2T/JEclObGqfmjY99Yky5P8YJIfSfKzSV44de6jk3wuyfck+f+SvCjJJ4dr33s45ubhvL2TrEryS1V1+Lx6D03yQ0l+NMmrq+qHh/ZfG2p9WpK9kvxckq9V1e5Jzkryt8PYz03ytqp68KbemKraJ8mzkly2wL4nZfK7fXaS/ZJ8PsnfJUl3P2E47GHD9Z2yqbEAYDECDABgS/x9VX1l+Pn7qrpXkqcmeXl339zd/y+Txw2ekyTd/a/dfVZ339rd/53kzZl8uL8jPtndf9/dt2XyQX3R8Zfojd391e6+KsmVSc7s7s919/ok/5RJKDLt+OF6zkvyoSTPHmZ8HJnkt7r7xu6+Nsn/TvKCqfO+0N1v7e5vdfctCxXS3ed297ruvq27r0hycr7z/XpNd9/S3WuTrE3ysKH9F5L8Tnd/pifWdveXkjw9ybXd/a5h7EszmVXx0xt5T/54mBWyNskXMwlH5nt+knd296XdfWuS38pkRsmKjfQLAJtt7M9dAgDjdHh3f2Ruo6oOTrJzki9W1Vzz3ZL8+7D/e5L8cZLHJ9lz2HfDHazh36def//Gxl+i/5p6fcsC2987tX1Dd988tf35TGaX7JNkl2F7et/+i9S9oKp6dJLVmcz82CXJrkneO++w/5x6/bUkewyv75Pk3xbo9vuTPHruMZXBsiR/vZFSXtbd79hEufdOcuncRnffVFVfyuSar93EuQCwZGZgAABbw78nuTXJPt299/CzV3fPPZ7w+0k6yUO7e69MHp2oqfN7Xn83J9ltbmOY2bDvvGOmz9nU+FvbPYZHMubcN8kXklyf5JuZhAXT+65bpO6FtpPJYx6nJ7lPdy/PZJ2MWuC4hfx7kvst0n7e1Puz9/BYxy8tsd/FfCFT1zu8L/fM7a8ZAO4wAQYAcId19xeTnJnkf1fVXlV1t2ERzLnHHvZMclOSr1TV/kl+Y14X/5XJmhFz/iXJ3YfFLHdO8juZzELY0vG3hddU1S5V9fhMHs94b3dvSPKeJG+oqj2r6vszeexiY1/Z+l9Jvm9ukdDBnkm+3N1fH2a3PG8z6npHktdV1QE18dCqumeSDyZ5QFW9oKp2Hn4eNbV2xpb62yQvrKqVVbVrkt9LcuHw+Mzc9f3gYicDwFIJMACAreVnM3nc4VOZPB5yaiaLOibJa5I8Isn6TNaLOG3eub+f5HeGNTWOG9adeHEmH8avy2RGxn9k4zY2/tb2n8MYX8hkAdEXdffVw76XZlLv55J8PJMP+O/cSF/nJLkqyX9W1fVD24uTvLaqbkzy6kxCkaV683D8mUm+muT/JPmu7r4xk4VNnzPU/Z9J3piNBENL0d1nJzk+k/U0vpjJ7I/ptUdOSPKXw+92Sd96AgALqe6FZi0CALCQqjosyd909/fNuBQAuEsxAwMAAAAYPQEGAAAAMHoeIQEAAABGzwwMAAAAYPSWzboAxmWfffbpFStWzLoMAAAA7qIuueSS67t73/ntAgxuZ8WKFVmzZs2sywAAAOAuqqo+v1C7R0gAAACA0RNgAAAAAKMnwAAAAABGT4ABAAAAjJ4AAwAAABg9AQYAAAAwegIMAAAAYPQEGAAAAMDoCTAAAACA0RNgAAAAAKMnwAAAAABGT4ABAAAAjJ4AAwAAABg9AQYAAAAwegIMAAAAYPQEGAAAAMDoCTAAAACA0RNgAAAAAKMnwAAAAABGT4ABAAAAjJ4AAwAAABi9ZbMugHFZd936rHjlh2ZdBgAAAFvBtatXzbqErcYMDAAAAGD0BBgAAADA6AkwAAAAgNETYAAAAACjJ8AAAAAARk+AAQAAAIyeAAMAAAAYPQEGAAAAMHoCDAAAAGD0BBgAAADA6AkwAAAAgNETYAAAAACjJ8AAAAAARk+AAQAAAIyeAAMAAAAYPQHGXUBVrayqp826DgAAANhSAoy7hpVJBBgAAADssAQYO5Cq+vuquqSqrqqqY4e2m6rqjUP7R6rq4Ko6t6o+V1U/WVW7JHltkiOr6vKqOnK2VwEAAACbT4CxY/m57n5kkoOSvKyq7plk9yTnDu03Jnl9kh9LckSS13b3N5K8Oskp3b2yu0+Z32lVHVtVa6pqzYavrd9uFwMAAABLtWzWBbBZXlZVRwyv75PkgCTfSPLhoW1dklu7+5tVtS7JiqV02t0nJjkxSXbd74DeqhUDAADAViDA2EFU1WFJnpzkkO7+WlWdm+TuSb7Z3XOhw21Jbk2S7r6tqvx+AQAAuFPwCMmOY3mSG4bw4oFJHrMZ596YZM9tUxYAAABsewKMHceHkyyrqiuSvC7JBZtx7keTPMgingAAAOyoPGKwg+juW5M8dYFde0wdc8K8c/YY/vxykkdty/oAAABgWzIDAwAAABg9AQYAAAAwegIMAAAAYPQEGAAAAMDoCTAAAACA0RNgAAAAAKMnwAAAAABGT4ABAAAAjJ4AAwAAABg9AQYAAAAwegIMAAAAYPQEGAAAAMDoCTAAAACA0Vs26wIYlwP3X541q1fNugwAAAC4HTMwAAAAgNETYAAAAACjJ8AAAAAARk+AAQAAAIyeAAMAAAAYPQEGAAAAMHoCDAAAAGD0BBgAAADA6AkwAAAAgNFbNusCGJd1163Pild+aNZlsAnXrl416xIAAAC2KzMwAAAAgNETYAAAAACjJ8AAAAAARk+AAQAAAIyeAAMAAAAYPQEGAAAAMHoCDAAAAGD0BBgAAADA6AkwAAAAgNETYAAAAACjJ8AAAAAARk+AAQAAAIyeAAMAAAAYPQEGAAAAMHoCjJGrqptmXQMAAADMmgADAAAAGD0Bxg6iJt5UVVdW1bqqOnJoP6yqzq2qU6vq6qp6d1XVsO9pQ9vHq+qPq+qDs70KAAAA2DLLZl0AS/ZTSVYmeViSfZJcXFXnD/senuTBSb6Q5BNJHldVa5L8eZIndPc1VXXyYh1X1bFJjk2Snfbad5tdAAAAAGwpMzB2HIcmObm7N3T3fyU5L8mjhn0Xdfd/dPdtSS5PsiLJA5N8rruvGY5ZNMDo7hO7+6DuPmin3ZZvswsAAACALSXA2HHURvbdOvV6QyYzazZ2PAAAAOxQBBg7jvOTHFlVO1XVvkmekOSijRx/dZIfrKoVw/aR27g+AAAA2GasgbHjeH+SQ5KsTdJJXtHd/1lVD1zo4O6+papenOTDVXV9Nh52AAAAwKgJMEauu/cY/uwkvzH8TO8/N8m5U9svmdr90e5+4PCtJH+aZM22rhcAAAC2BY+Q3LkdU1WXJ7kqyfJMvpUEAAAAdjhmYNyJdfdbkrxl1nUAAADAHWUGBgAAADB6AgwAAABg9AQYAAAAwOgJMAAAAIDRE2AAAAAAoyfAAAAAAEZPgAEAAACMngADAAAAGD0BBgAAADB6AgwAAABg9AQYAAAAwOgtm3UBjMuB+y/PmtWrZl0GAAAA3I4ZGAAAAMDoCTAAAACA0RNgAAAAAKMnwAAAAABGT4ABAAAAjJ4AAwAAABg9AQYAAAAwegIMAAAAYPQEGAAAAMDoLZt1AYzLuuvWZ8UrPzTrMu7yrl29atYlAAAAjIoZGAAAAMDoCTAAAACA0RNgAAAAAKMnwAAAAABGT4ABAAAAjJ4AAwAAABg9AQYAAAAwegIMAAAAYPQEGAAAAMDoCTAAAACA0RNgAAAAAKMnwAAAAABGT4ABAAAAjJ4AAwAAABg9AQYAAAAwegKMEaqqmzbj2BOq6rhNHHN4VT3ojlcGAAAAsyHAmJGqWrYdhzs8iQADAACAHZYAYzNV1Yqqurqq3lFVV1bVu6vqyVX1iar6bFUdXFW7V9U7q+riqrqsqp45nHt0Vb23qj6Q5Myq2qOq3lVV66rqiqp61tQ4b6iqtVV1QVXda4m1HTOMubaq3ldVu1XVY5P8ZJI3VdXlVXW/Bc47tqrWVNWaDV9bv5XeKQAAANh6BBhb5v5J/ijJQ5M8MMnzkhya5Lgkv53kVUnO6e5HJXliJuHB7sO5hyQ5qruflOT4JOu7+8DufmiSc4Zjdk9yQXc/LMn5SY5ZYl2ndfejhvM+neTnu/ufk5ye5De6e2V3/9v8k7r7xO4+qLsP2mm35Zv5VgAAAMC2tz0fY7gzuaa71yVJVV2V5Ozu7qpal2RFku9L8pNTa1PcPcl9h9dndfeXh9dPTvKcuU67+4bh5TeSfHB4fUmSH1tiXQ+pqtcn2TvJHknO2MzrAgAAgFESYGyZW6de3za1fVsm7+mGJM/q7s9Mn1RVj05y83RTkl6g/29291z7hiz993RSksO7e21VHZ3ksCWeBwAAAKPmEZJt44wkL62qSpKqevgix52Z5CVzG1V1jzs47p5JvlhVOyd5/lT7jcM+AAAA2CEJMLaN1yXZOckVVXXlsL2Q1ye5x7AY6NpM1su4I45PcmGSs5JcPdX+d0l+Y1hQ9DsW8QQAAICxq28/qQDJrvsd0Psd9YezLuMu79rVq2ZdAgAAwExU1SXdfdD8djMwAAAAgNGziOcOoqpeleRn5jW/t7vfMIt6AAAAYHsSYOwghqBCWAEAAMBdkkdIAAAAgNETYAAAAACjJ8AAAAAARk+AAQAAAIyeAAMAAAAYPQEGAAAAMHoCDAAAAGD0BBgAAADA6AkwAAAAgNFbNusCGJcD91+eNatXzboMAAAAuB0zMAAAAIDRE2AAAAAAoyfAAAAAAEZPgAEAAACMngADAAAAGD0BBgAAADB6AgwAAABg9AQYAAAAwOgJMAAAAIDRWzbrAhiXddetz4pXfmjWZdzpXbt61axLAAAA2KGYgQEAAACMngADAAAAGD0BBgAAADB6AgwAAABg9AQYAAAAwOgJMAAAAIDRE2AAAAAAoyfAAAAAAEZPgAEAAACMngADAAAAGD0BBgAAADB6AgwAAABg9AQYAAAAwOgJMAAAAIDRE2DcCVTVTZvYv3dVvXh71QMAAABbmwDjrmHvJAIMAAAAdlgCjDuRqtqjqs6uqkural1VPXPYtTrJ/arq8qp60yxrBAAAgC2xbNYFsFV9PckR3f3VqtonyQVVdXqSVyZ5SHevXOikqjo2ybFJstNe+26vWgEAAGDJBBh3LpXk96rqCUluS7J/kntt6qTuPjHJiUmy634H9DatEAAAALaAAOPO5flJ9k3yyO7+ZlVdm+Tusy0JAAAA7jhrYNy5LE/y/4bw4olJvn9ovzHJnrMrCwAAAO4YAcady7uTHFRVazKZjXF1knT3l5J8oqqutIgnAAAAOyKPkNwJdPcew5/XJzlkkWOet12LAgAAgK3IDAwAAABg9AQYAAAAwOgJMAAAAIDRE2AAAAAAoyfAAAAAAEZPgAEAAACMngADAAAAGD0BBgAAADB6AgwAAABg9AQYAAAAwOgJMAAAAIDRE2AAAAAAoyfAAAAAAEZv2awLYFwO3H951qxeNesyAAAA4HbMwAAAAABGT4ABAAAAjJ4AAwAAABg9AQYAAAAwegIMAAAAYPQEGAAAAMDoCTAAAACA0RNgAAAAAKMnwAAAAABGb9msC2Bc1l23Pite+aFZl3Gnde3qVbMuAQAAYIdkBgYAAAAwegIMAAAAYPQEGAAAAMDoCTAAAACA0RNgAAAAAKMnwAAAAABGT4ABAAAAjJ4AAwAAABg9AQYAAAAwegIMAAAAYPQEGAAAAMDoCTAAAACA0RNgAAAAAKMnwAAAAABGT4ABAAAAjJ4AYzuoqhdV1c8Or4+uqnvPuiYAAADYkSybdQF3Bd399qnNo5NcmeQLs6kGAAAAdjwCjG1gmG1xXJJOckWSf0tyU5JrkxyU5N1VdUuSVyX5he4+Yjjvx5L8Unf/1CL93pTkz5M8MckNSZ7T3f9dVSuTvD3JbsNYP9fdN1TVuUkuT3Jwkr2G9ou2wSUDAADANuURkq2sqh6cSTDxpO5+WJJfmdvX3acmWZPk+d29Msk/Jvnhqtp3OOSFSd61ke53T3Jpdz8iyXlJfndo/6skv9ndD02ybqo9SXbv7scmeXGSdy5S87FVtaaq1mz42vrNul4AAADYHgQYW9+Tkpza3dcnSXd/ebEDu7uT/HWS/6+q9k5ySJJ/2kjftyU5ZXj9N0kOrarlSfbu7vOG9r9M8oSpc04exjo/yV7DOPPrOLG7D+rug3babfmmrxAAAAC2M4+QbH2VyaMjS/WuJB9I8vUk7+3ub23GuUsZZ/4xm1MbAAAAjIIZGFvf2UmeXVX3TJKq+u55+29MsufcRnd/IZMFPX8nyUmb6PtuSX56eP28JB/v7vVJbqiqxw/tL8jk8ZI5Rw51HJpk/XA8AAAA7FDMwNjKuvuqqnpDkvOqakOSyzJZvHPOSUnePizieUh335Lk3Un27e5PbaL7m5M8uKouSbI+QziR5Kihz92SfC6TtTTm3FBV/5xhEc87dHEAAAAwIwKMbaC7/zKTtSgW2ve+JO+b13xokr9YYt/HJzl+XtvlSR6zyCnv6+7fWkrfAAAAMFYCjBkbZlPcnOTXZ10LAAAAjJUAY8a6+5Hz26rqwiS7zmt+QXfvsZl9H3YHSgMAAIDREGCMUHc/etY1AAAAwJj4FhIAAABg9AQYAAAAwOgJMAAAAIDRE2AAAAAAoyfAAAAAAEZPgAEAAACMngADAAAAGD0BBgAAADB6AgwAAABg9JbNugDG5cD9l2fN6lWzLgMAAABuxwwMAAAAYPQEGAAAAMDoCTAAAACA0RNgAAAAAKMnwAAAAABGT4ABAAAAjJ4AAwAAABg9AQYAAAAwegIMAAAAYPSWzboAxmXddeuz4pUfmnUZO5RrV6+adQkAAAB3emZgAAAAAKMnwAAAAABGT4ABAAAAjJ4AAwAAABg9AQYAAAAwegIMAAAAYPQEGAAAAMDoCTAAAACA0RNgAAAAAKMnwAAAAABGT4ABAAAAjJ4AAwAAABg9AQYAAAAwegIMAAAAYPQEGAAAAMDoCTBmoKpu2oxjT6iq47ZlPQAAADB2AoxtpKqWzboGAAAAuLMQYMxTVSuq6uqqekdVXVlV766qJ1fVJ6rqs1V1cFXtXlXvrKqLq+qyqnrmcO7RVfXeqvpAkjOrao+qeldVrauqK6rqWVPjvKGq1lbVBVV1ryXWtnI4/oqqen9V3WNoP7eq3lhVF1XVv1TV44f23arqPcPxp1TVhVV10DZ42wAAAGCbEmAs7P5J/ijJQ5M8MMnzkhya5Lgkv53kVUnO6e5HJXlikjdV1e7DuYckOaq7n5Tk+CTru/vA7n5oknOGY3ZPckF3PyzJ+UmOWWJdf5XkN4e+1iX53al9y7r74CQvn2p/cZIbhuNfl+SRC3VaVcdW1ZqqWrPha+uXWAoAAABsPwKMhV3T3eu6+7YkVyU5u7s7k9BgRZKnJHllVV2e5Nwkd09y3+Hcs7r7y8PrJyf507lOu/uG4eU3knxweH3J0OdGVdXyJHt393lD018mecLUIact0N+hSf5uGPvKJFcs1Hd3n9jdB3X3QTvttnxTpQAAAMB2Z52Ghd069fq2qe3bMnnPNiR5Vnd/Zvqkqnp0kpunm5L0Av1/cwhEMvS1NX4PczVO91dboV8AAACYOTMwtswZSV5aVZUkVfXwRY47M8lL5jbm1qzYEt29PskNc+tbJHlBkvM2ckqSfDzJs4exH5TkwC0dHwAAAGZJgLFlXpdk5yRXVNWVw/ZCXp/kHsNioGszWS/jjjgqk/U2rkiyMslrN3H825LsOxz/m5k8QmKRCwAAAHY49e0nGbizqaqdkuzc3V+vqvslOTvJA7r7G4uds+t+B/R+R/3h9irxTuHa1atmXQIAAMCdRlVd0t3f8Q2a1sC4c9styUeraudM1sP4pY2FFwAAADBWAoyRqKpXJfmZec3v7e43bGmf3X1jku9IrQAAAGBHI8AYiSGo2OKwAgAAAO7MLOIJAAAAjJ4AAwAAABg9AQYAAAAwegIMAAAAYPQEGAAAAMDoCTAAAACA0RNgAAAAAKMnwAAAAABGT4ABAAAAjN6yWRfAuBy4//KsWb1q1mUAAADA7ZiBAQAAAIyeAAMAAAAYPQEGAAAAMHoCDAAAAGD0BBgAAADA6AkwAAAAgNETYAAAAACjJ8AAAAAARk+AAQAAAIzeslkXwLisu259VrzyQ7MuY6u7dvWqWZcAAADAHWAGBgAAADB6AgwAAABg9AQYAAAAwOgJMAAAAIDRE2AAAAAAoyfAAAAAAEZPgAEAAACMngADAAAAGD0BBgAAADB6AgwAAABg9AQYAAAAwOgJMAAAAIDRE2AAAAAAoyfAAAAAAEZvqwYYVXVYVT12a/Y5ZlW1sqqeNus6NqWqVlTV82ZdBwAAAGyprT0D47Ak2zTAqImxzBxZmWTBAKOqlm3fUhY21LEiiQADAACAHdaSgoCq+tmquqKq1lbVX1fVM6rqwqq6rKo+UlX3qqoVSV6U5Fer6vKqenxV7VtV76uqi4efxw397VtVZ1XVpVX151X1+araZ9j3a1V15fDz8qFtRVV9uqreluTSJMdX1Vum6jumqt68kfqPr6qrhzFPrqrjps67eLiu91XVbkP7zwzjr62q8xfpc5ckr01y5HC9R1bVCVV1YlWdmeSvhro/NlznpXOzU4aZKudW1alDXe+uqhr2ra6qTw3v9x8MbSdV1duHvv6lqp4+tN+9qt5VVeuG38UTh/ajq+q9VfWBJGcmWZ3k8UOdv7qU3zkAAACMySZnCVTVg5O8Ksnjuvv6qvruJJ3kMd3dVfULSV7R3b9eVW9PclN3z33w/tskb+nuj1fVfZOckeSHk/xuknO6+/er6ieSHDsc/8gkL0zy6CSV5MKqOi/JDUl+KMkLu/vFVbV7kiuq6hXd/c3hnF9cpP6DkjwrycOH6700ySXD7tO6+y+G416f5OeTvDXJq5P8eHdfV1V7L9Rvd3+jql6d5KDufsnQxwlJHpnk0O6+ZQhEfqy7v15VByQ5OclBQxcPT/LgJF9I8okkj6uqTyU5IskDh/d2euwVSX4kyf2SfLSq7p/kl4daDqyqByY5s6oeMBx/SJKHdveXq+qwJMd199MXuhYAAAAYu6U85vCkJKd29/VJMnwgPjDJKVW1X5JdklyzyLlPTvKgYXJBkuxVVXsmOTSTD+rp7g9X1Q3D/kOTvL+7b06SqjotyeOTnJ7k8919wXDOzVV1TpKnV9Wnk+zc3esWqeHQJP/Q3bcMfX5gat9DhuBi7yR7ZBKwJJNA4aSqek+S0zb5Dt3e6XNjJdk5yZ9U1cokG5I8YOq4i7r7P4aaLs8koLggydeTvKOqPpTkg1PHv6e7b0vy2ar6XJIHDtf21iTp7qur6vNTY5zV3V9eSsFVdWyGEGmnvfbdrIsFAACA7WEpj5BUJjMupr01yZ9094GZzHy4+0b6P6S7Vw4/+3f3jUOfi421mJvnbb8jydGZzL541ybqX8xJSV4yXMdrMlxHd78oye8kuU+Sy6vqnhvpY2N1/mqS/0rysExmXuwyte/Wqdcbkizr7m8lOTjJ+5IcnuTDU8fM/x10Nu/9WlR3n9jdB3X3QTvttnyppwEAAMB2s5QA4+wkz577ED88QrI8yXXD/qOmjr0xyZ5T22cmecncxjATIUk+nuTZQ9tTktxjaD8/yeFVtdvwmMgRST62UFHdfWEmAcPzMnk0YzEfT/KMYb2IPZKsmtq3Z5IvVtXOSZ4/Vef9uvvC7n51kuuHcRYy/3rnW57ki8PMiRck2Wkjx2aob3l3/2OSl2eySOicn6mqu1XV/ZL8YJLPZPJ+PX849wFJ7ju0b26dAAAAMGqbDDC6+6okb0hyXlWtTfLmJCckeW9VfSyTD/hzPpDkiGGxyMcneVmSg4YFKT+VySKfyWS2w1Oq6tIkT03yxSQ3dvelmcyKuCjJhUne0d2XbaS89yT5RHffsNgB3X1xJo+grM3kcZA1SdYPu48fxjkrydVTp71pWBjzykxCgrWLdP/RTB6Rubyqjlxg/9uSHFVVF2TyaMemZkXsmeSDVXVFkvMymcEx5zND2z8leVF3f33of6eqWpfklCRHd/et+U5XJPnWsCipRTwBAADY4VT3/CcTtsOgVbsm2dDd36qqQ5L8WXev3IJ+PpjJIqFnb+K4Pbr7pmFRzfOTHDuEJTuEqjopyQe7+9RtPdau+x3Q+x31h9t6mO3u2tWrNn0QAAAAM1dVl3T3QfPbl7KI57Zw3yTvqaq7JflGkmM25+Th2zkuSrJ2U+HF4MSqelAma1z85Y4UXgAAAAAzCjC6+7OZfI3olp7/ldz+Gz0yrNGxUJjxo939vC0da+j7x5O8cV7zNd19xB3pd6m6++jtMQ4AAACM1axmYGx13f2l3H7Ry63Z9xn59lesAgAAANvZUr6FBAAAAGCmBBgAAADA6AkwAAAAgNETYAAAAACjJ8AAAAAARk+AAQAAAIyeAAMAAAAYPQEGAAAAMHoCDAAAAGD0BBgAAADA6AkwAAAAgNFbNusCGJcD91+eNatXzboMAAAAuB0zMAAAAIDRE2AAAAAAoyfAAAAAAEZPgAEAAACMngADAAAAGD0BBgAAADB6AgwAAABg9AQYAAAAwOgtm3UBjMu669ZnxSs/NOsytpprV6+adQkAAABsBWZgAAAAAKMnwAAAAABGT4ABAAAAjJ4AAwAAABg9AQYAAAAwegIMAAAAYPQEGAAAAMDoCTAAAACA0RNgAAAAAKMnwAAAAABGT4ABAAAAjJ4AAwAAABg9AQYAAAAwegIMAAAAYPQEGAAAAMDobfUAo6oOq6rHbu1+t4Wquraq9tnGY/xjVe29LcdYQg0vr6rdZlkDAAAA3BHbYgbGYUm2aYBREzvE7JHuflp3f2XGZbw8iQADAACAHdaSQ4Cq+tmquqKq1lbVX1fVM6rqwqq6rKo+UlX3qqoVSV6U5Fer6vKqenxV7VtV76uqi4efxw397VtVZ1XVpVX151X1+bnZEFX1a1V15fDz8qFtRVV9uqreluTSJMdX1Vum6jumqt68SO27V9WHhtqvrKojp3a/dKhhXVU9cDj+u6vq74frvaCqHjq0nzBc+zlV9dmqOmZoP6yqzq+q91fVp6rq7XMBy9wsj6n6/6KqrqqqM6vqu4ZjHjWM9cmqelNVXbmR38PRVXVaVX14qOF/Te17ytDHpVX13qrao6peluTeST5aVR9d6u8bAAAAxmRJAUZVPTjJq5I8qbsfluRXknw8yWO6++FJ/i7JK7r72iRvT/KW7l7Z3R9L8kfD9qOSPCvJO4ZufzfJOd39iCTvT3LfYaxHJnlhkkcneUySY6rq4cM5P5Tkr4Yx/yDJT1bVzsO+FyZ51yKX8BNJvtDdD+vuhyT58NS+64ca/izJcUPba5Jc1t0PTfLbSf5q6viHJlmV5JAkr66qew/tByf59SQHJrlfkp9aoI4Dkvxpdz84yVeG9yND3S/q7kOSbFjkGqatTHLkMNaRVXWfIfz5nSRPHq5nTZJf6+4/TvKFJE/s7icu1FlVHVtVa6pqzYavrV/C8AAAALB9LVvicU9Kcmp3X58k3f3lqjowySlVtV+SXZJcs8i5T07yoKqa296rqvZMcmiSI4b+PlxVNwz7D03y/u6+OUmq6rQkj09yepLPd/cFwzk3V9U5SZ5eVZ9OsnN3r1ukhnVJ/qCq3pjkg0OwMue04c9L8u3Q4dAM4UJ3n1NV96yq5cO+f+juW5LcMsxoODiTMOKi7v7cUPPJQx+nzqvjmu6+fGq8FcP6GHt29z8P7X+b5OmLXMecs7t7/TDWp5J8f5K9kzwoySeG93qXJJ/cRD8ZrvHEJCcmya77HdBLOQcAAAC2p6UGGJVk/gfbtyZ5c3efXlWHJTlhkXPvluSQ4UP/tzucSjQWGGsxN8/bfkcmMySuzuKzL9Ld/zLM7Hhakt+vqjO7+7XD7luHPzfk2+/HQjX0vD+X2j7t1qnXG5J81yJjbcr8fpYN/ZzV3c/dgv4AAABg1Ja6BsbZSZ5dVfdMJmtEJFme5Lph/1FTx96YZM+p7TOTvGRuo6pWDi8/nuTZQ9tTktxjaD8/yeFVtVtV7Z7JLI3pGRP/o7svTHKfJM9LcvJixQ+PeXytu/8mk0dPHrHxy835SZ4/nHtYJo+ZfHXY98yquvvwXhyW5OKh/eCq+oFh7Ysjh+vbpO6+IcmNVfWYoek5SzlvARckeVxV3X+oe7eqesCwb/7vBAAAAHYoSwowuvuqJG9Icl5VrU3y5kxmXLy3qj6W5Pqpwz+Q5Ii5RTyTvCzJQcMilZ/KZJHPZLLOxFOq6tIkT03yxSQ3dvelSU5KclGSC5O8o7sv20h570nyiSEIWMyBSS6qqsszWcvj9Zu45BPmak6yOrcPaC5K8qFMAoPXdfcXhvZPDsdemcnjNO/fxBjTfj7JiVX1yUxmUmz2QhTd/d9Jjk5y8lD3BUkeOOw+Mck/WcQTAACAHVV1z2bJg6raNcmG7v5WVR2S5M+6e+UW9PPBTBYJPXtr17jAWCckuam7/2Be+2FJjuvuTa1dsVi/e3T3TcPrVybZr7t/5Y5Vu2V23e+A3u+oP5zF0NvEtatXzboEAAAANkNVXdLdB81vX+oaGNvCfZO8Z3jk4htJjtmck4fFLy9KsnZ7hBfb2Kqq+q1Mfh+fz2QmBQAAADCYWYDR3Z9N8vBNHrj4+V9J8oDptmFdioXCjB/t7i9t6VhTY56wSPu5Sc69A/2ekuSU6baq+vEkb5x36DXdfcSWjgMAAAA7qlnOwNjqhpBi5azr2Bq6+4wkZ8y6DgAAABiDpX4LCQAAAMDMCDAAAACA0RNgAAAAAKMnwAAAAABGT4ABAAAAjJ4AAwAAABg9AQYAAAAwegIMAAAAYPQEGAAAAMDoCTAAAACA0Vs26wIYlwP3X541q1fNugwAAAC4HTMwAAAAgNETYAAAAACjJ8AAAAAARk+AAQAAAIyeAAMAAAAYPQEGAAAAMHoCDAAAAGD0BBgAAADA6C2bdQGMy7rr1mfFKz806zI227WrV826BAAAALYhMzAAAACA0RNgAAAAAKMnwAAAAABGT4ABAAAAjJ4AAwAAABg9AQYAAAAwegIMAAAAYPQEGAAAAMDoCTAAAACA0RNgAAAAAKMnwAAAAABGT4ABAAAAjJ4AAwAAABg9AQYAAAAwets1wKiqw6rqsdtzTAAAAGDHt71nYByWZJsGGDWx1a+rqpZtgz532tp9AgAAwJ3RVvmgX1U/W1VXVNXaqvrrqnpGVV1YVZdV1Ueq6l5VtSLJi5L8alVdXlWPr6p9q+p9VXXx8PO4ob99q+qsqrq0qv68qj5fVfsM+36tqq4cfl4+tK2oqk9X1duSXJrk+Kp6y1R9x1TVmzdS//FVdfUw5slVddzQfm5V/V5VnZfkV6rqR4drWldV76yqXYfjHlVV/zxc/0VVtWdV7VRVbxqu64qq+sXh2MOq6qNV9bdJ1lXV66rqV6ZqeUNVvWyROg+rqvOr6v1V9amqevtcWFNVzx3qurKq3ji07VRVJw1t66rqV7fsNwwAAACzdYdnFVTVg5O8Ksnjuvv6qvruJJ3kMd3dVfULSV7R3b9eVW9PclN3/8Fw7t8meUt3f7yq7pvkjCQ/nOR3k5zT3b9fVT+R5Njh+EcmeWGSRyepJBcO4cINSX4oyQu7+8VVtXuSK6rqFd39zeGcX1yk/oOSPCvJw4f349Ikl0wdsnd3/0hV3T3JZ5P8aHf/S1X9VZJfGkKTU5Ic2d0XV9VeSW5J8vNJ1nf3o4ag4xNVdebQ58FJHtLd1wzBzmlJ/mgII54z7F/MwUkelOTzST6c5Keq6p+TvDHJI4f34syqOjzJvyfZv7sfMlzr3hvpFwAAAEZrazwW8aQkp3b39UnS3V+uqgOTnFJV+yXZJck1i5z75CQPqqq57b2qas8khyY5Yujvw1V1w7D/0CTv7+6bk6SqTkvy+CSnJ/l8d18wnHNzVZ2T5OlV9ekkO3f3ukVqODTJP3T3LUOfH5i3/5Thzx9Kck13/8uw/ZdJfjnJ2Um+2N0XD2N/dejnKUkeWlU/PRy/PMkBSb6R5KLuvmY4/tqq+lJVPTzJvZJc1t1fWqTWDOd+bhjj5KH+byY5t7v/e2h/d5InJHldkh+sqrcm+VCSMxfqsKqOzRAS7bTXvhsZGgAAAGZjawQYlcmMi2lvTfLm7j69qg5LcsIi594tySFz4cH/dDiVaCww1mJunrf9jiS/neTqJO/ayHkb63O6343VNP/659pf2t1n3K5x8n4sVOvRSb43yTs3Uc/8sXqx2rr7hqp6WJIfzyRseXaSn1vguBOTnJgku+53wELXAgAAADO1NdbAODvJs6vqnkkyPEKyPMl1w/6jpo69McmeU9tnJnnJ3EZVrRxefjyTD9tzMxnuMbSfn+TwqtpteEzkiCQfW6io7r4wyX2SPC/JyRup/+NJnlFVd6+qPZKsWuS4q5OsqKr7D9svSHLe0H7vqnrUUO+eNVnw84xMHjHZeWh/wFDzQt6f5CeSPGo4b2MOrqofGB43OXKo/8IkP1JV+9RkYdDnJjlvWDfkbt39viTHJ3nEJvoGAACAUbrDMzC6+6qqekMmH5g3JLkskxkX762q65JckOQHhsM/kOTUqnpmkpcmeVmSP62qK4Zazs9koc/XJDm5qo7MJCT4YpIbu/vSqjopyUVDf+/o7suGdSQW8p4kK7v7hkX2Z1i34vQkazNZV2JNkvULHPf1qnrhcF3Lklyc5O3d/Y2hzrdW1Xdlsv7FkzOZVbEiyaXDjJL/TnL4IjV8o6o+muQr3b1hsVoHn0yyOsmBmbxf7+/u26rqt5J8NJPZGP/Y3f8wzL54V337W1l+axN9AwAAwChV9/ieGBgWvdzQ3d+qqkOS/Fl3r9yCfj6YySKhZ2/iuD26+6aq2i2TUODY7r50S2rfEkPAcGmSn+nuz27kuMOSHNfdT99Wtey63wG931F/uK2632auXb3YxBkAAAB2JFV1SXcfNL99a6yBsS3cN8l7hg/230hyzOacPHzbxkVJ1m4qvBicWFUPSnL3JH+5ncOLByX5YCYzKRYNLwAAAOCubJQBxvBB/uF34PyvJHnAdNuwRsdCYcaPdvfztnSsO6q7P5XkB6fbhm9x+et5h97a3Y9Ocu52Kg0AAABGY5QBxrYwfDXpylnXsRTDV76unHUdAAAAMBZb41tIAAAAALYpAQYAAAAwegIMAAAAYPQEGAAAAMDoCTAAAACA0RNgAAAAAKMnwAAAAABGT4ABAAAAjJ4AAwAAABg9AQYAAAAwegIMAAAAYPSWzboAxuXA/ZdnzepVsy4DAAAAbscMDAAAAGD0BBgAAADA6AkwAAAAgNETYAAAAACjJ8AAAAAARk+AAQAAAIyeAAMAAAAYPQEGAAAAMHrLZl0A47LuuvVZ8coPzbqMXLt61axLAAAAYETMwAAAAABGT4ABAAAAjJ4AAwAAABg9AQYAAAAwegIMAAAAYPQEGAAAAMDoCTAAAACA0RNgAAAAAKMnwAAAAABGT4ABAAAAjJ4AAwAAABg9AQYAAAAwegIMAAAAYPQEGAAAAMDoCTAAAACA0RNgAAAAAKO3QwUYVXVYVT121nVsiar6yap65YzGXllVT5vF2AAAALA17FABRpLDkmzTAKMmtvr70t2nd/fqrd3vEq1MIsAAAABghzWKAKOqfraqrqiqtVX111X1jKq6sKouq6qPVNW9qmpFkhcl+dWquryqHl9V+1bV+6rq4uHncUN/+1bVWVV1aVX9eVV9vqr2Gfb9WlVdOfy8fGhbUVWfrqq3Jbk0yfFV9Zap+o6pqjcvUvuKqrq6qt4x9PnuqnpyVX2iqj5bVQcPxx1dVX8yvP6Z4di1VXX+0LZTVf1BVa0b3ouXbuT9uraqXjNc37qqeuDQvntVvXN4Ly6rqmdW1S5JXpvkyOF9O3KB/o6tqjVVtWbD19Zv7q8PAAAAtrllsy6gqh6c5FVJHtfd11fVdyfpJI/p7q6qX0jyiu7+9ap6e5KbuvsPhnP/NslbuvvjVXXfJGck+eEkv5vknO7+/ar6iSTHDsc/MskLkzw6SSW5sKrOS3JDkh9K8sLufnFV7Z7kiqp6RXd/czjnFzdyGfdP8jPDOBcneV6SQ5P8ZJLfTnL4vONfneTHu/u6qtp7aDs2yQ8keXh3f2t4Hzbm+u5+RFW9OMlxSX5heB/P6e6fG/q9KMlHhvEO6u6XLNRRd5+Y5MQk2XW/A3oT4wIAAMB2N/MAI8mTkpza3dcnSXd/uaoOTHJKVe2XZJck1yxy7pOTPKiq5rb3qqo9MwkPjhj6+3BV3TDsPzTJ+7v75iSpqtOSPD7J6Uk+390XDOfcXFXnJHl6VX06yc7dvW4j13DN3P6quirJ2UP4si7JigWO/0SSk6rqPUlOm7qWt3f3t+beh42Ml6nzLknyU8PrpyT5yao6bti+e5L7bqIfAAAAGL0xBBiVyYyLaW9N8ubuPr2qDktywiLn3i3JId19y+06nEo0FhhrMTfP235HJrMnrk7yro2clyS3Tr2+bWr7tizwHnf3i6rq0UlWJbm8qlZm4fdhKWNumBqjkjyruz8zfeAwFgAAAOywxrAGxtlJnl1V90yS4dGJ5UmuG/YfNXXsjUn2nNo+M8n/PBYxBAFJ8vEkzx7anpLkHkP7+UkOr6rdhsdEjkjysYWK6u4Lk9wnk8dBTt7Ca1tQVd2vuy/s7lcnuX4Y58wkL6qqZcMxm3qEZCFnJHnpXIBTVQ8f2ue/bwAAALBDmXmA0d1XJXlDkvOqam2SN2cy4+K9VfWxTD7gz/lAkiPmFvFM8rIkBw2LXn4qk0U+k+Q1SZ5SVZcmeWqSLya5sbsvTXJSJmtDXJjkHd192UbKe0+ST3T3DRs5Zku8aVh888pMQpW1mcz4+L+ZrL2xNpPgZHO9LsnOQx9XDttJ8tFMHrVZcBFPAAAAGLvqvvOt2VhVuybZMCyGeUiSP+vulVvQzwczWST07K1d41jtut8Bvd9RfzjrMnLt6lWzLgEAAIAZqKpLuvug+e1jWANjW7hvkvdU1d2SfCPJMZtz8tQ3eKy9K4UXAAAAMFZ3ygCjuz+b5OGbPHDx87+S5AHTbcMaHQuFGT/a3V/a0rE2pqren8lXq077ze4+Y1uMBwAAAGN1pwwwtoUhpFi5ncc8YnuOBwAAAGM180U8AQAAADZFgAEAAACMngADAAAAGD0BBgAAADB6AgwAAABg9AQYAAAAwOgJMAAAAIDRE2AAAAAAoyfAAAAAAEZv2awLYFwO3H951qxeNesyAAAA4HbMwAAAAABGT4ABAAAAjJ4AAwAAABg9AQYAAAAwegIMAAAAYPQEGAAAAMDoCTAAAACA0RNgAAAAAKMnwAAAAABGT4ABAAAAjJ4AAwAAABg9AQYAAAAwegIMAAAAYPQEGAAAAMDoCTAAAACA0RNgAAAAAKMnwAAAAABGT4ABAAAAjJ4AAwAAABg9AQYAAAAwegIMAAAAYPQEGAAAAMDoVXfPugZGpKpuTPKZWdcBm2GfJNfPugjYDO5ZdjTuWXYk7ld2NO7ZhX1/d+87v3HZLCph1D7T3QfNughYqqpa455lR+KeZUfjnmVH4n5lR+Oe3TweIQEAAABGT4ABAAAAjJ4Ag/lOnHUBsJncs+xo3LPsaNyz7Ejcr+xo3LObwSKeAAAAwOiZgQEAAACMngADAAAAGD0Bxl1UVf1EVX2mqv61ql65wP6qqj8e9l9RVY+YRZ2QLOl+fWBVfbKqbq2q42ZRI0xbwj37/OHv1iuq6p+r6mGzqBPmLOGefeZwv15eVWuq6tBZ1AlzNnXPTh33qKraUFU/vT3rg/mW8PfsYVW1fvh79vKqevUs6hw7a2DcBVXVTkn+JcmPJfmPJBcneW53f2rqmKcleWmSpyV5dJI/6u5Hz6Bc7uKWeL9+T5LvT3J4khu6+w9mUCokWfI9+9gkn+7uG6rqqUlO8Hcss7LEe3aPJDd3d1fVQ5O8p7sfOJOCuctbyj07ddxZSb6e5J3dfer2rhWSJf89e1iS47r76bOocUdhBsZd08FJ/rW7P9fd30jyd0meOe+YZyb5q564IMneVbXf9i4UsoT7tbv/X3dfnOSbsygQ5lnKPfvP3X3DsHlBku/bzjXCtKXcszf1t//Va/ck/gWMWVrK/8smk3+Me1+S/7c9i4MFLPWeZRMEGHdN+yf596nt/xjaNvcY2B7ci+xoNvee/fkk/7RNK4KNW9I9W1VHVNXVST6U5Oe2U22wkE3es1W1f5Ijkrx9O9YFi1nq/xscUlVrq+qfqurB26e0HYsA466pFmib/y8pSzkGtgf3IjuaJd+zVfXETAKM39ymFcHGLeme7e73D4+NHJ7kddu6KNiIpdyzf5jkN7t7w7YvBzZpKffspUm+v7sfluStSf5+Wxe1IxJg3DX9R5L7TG1/X5IvbMExsD24F9nRLOmeHdYReEeSZ3b3l7ZTbbCQzfp7trvPT3K/qtpnWxcGi1jKPXtQkr+rqmuT/HSSt1XV4dulOvhOm7xnu/ur3X3T8Pofk+zs79nvJMC4a7o4yQFV9QNVtUuS5yQ5fd4xpyf52eHbSB6TZH13f3F7FwpZ2v0KY7LJe7aq7pvktCQv6O5/mUGNMG0p9+z9q6qG149IsksSwRuzssl7trt/oLtXdPeKJKcmeXF3//12rxQmlvL37PdO/T17cCaf1f09O8+yWRfA9tfd36qqlyQ5I8lOmazKfFVVvWjY//Yk/5jJN5D8a5KvJXnhrOrlrm0p92tVfW+SNUn2SnJbVb08yYO6+6uzqpu7riX+HfvqJPfM5F8Ek+Rb3X3QrGrmrm2J9+yzMvmHjW8muSXJkVOLesJ2tcR7FkZjiffsTyf5par6ViZ/zz7H37PfydeoAgAAAKPnERIAAABg9AQYAAAAwOgJMAAAAIDRE2AAAAAAoyfAAAAAAEZPgAEAbDVVtaGqLq+qK6vqA1W19yaOP6GqjtvEMYdX1YOmtl9bVU/eCrWeVFU/fUf72cwxX15Vu23PMYdxj66qk+e17VNV/11Vu27knD/ZPhUCwKYJMACAremW7l7Z3Q9J8uUkv7wV+jw8yf8EGN396u7+yFbod7uqqp2SvDzJdg8wkpyW5MfmhSc/neT07r51BvUAwGYTYAAA28onk+yfJFV1v6r6cFVdUlUfq6oHzj+4qo6pqouram1Vva+qdquqxyb5ySRvGmZ23G9u5kRVPbWq3jN1/mFV9YHh9VOq6pNVdWlVvbeq9thYoVV1bVX93nDOmqp6RFWdUVX/VlUvmur//Kp6f1V9qqreXlV3G/Y9t6rWDTNP3jjV703DjJELk7wqyb2TfLSqPjrs/7NhvKuq6jXz6nnNUP+6uferqvaoqncNbVdU1bOWcr3d/dUk5yd5xlTzc5KcXFXPqKoLq+qyqvpIVd1rgffndrNVquqmqde/Mfzerpi+BgDY2gQYAMBWN8w2+NEkpw9NJyZ5aXc/MslxSd62wGmndfejuvthST6d5Oe7+5+HPn5jmNnxb1PHn5XkMVW1+7B9ZJJTqmqfJL+T5Mnd/Ygka5L82hLK/vfuPiTJx5KclMkMhcckee3UMQcn+fUkBya5X5Kfqqp7J3ljkiclWZnkUVV1+HD87kmu7O5Hd/drk3whyRO7+4nD/ld190FJHprkR6rqoVNjXT/U/2fDe5YkxydZ390HdvdDk5yzGdd7ciahRYaaH5Dko0k+nuQx3f3wJH+X5BVLeK8y9POUJAcM78vKJI+sqics9XwA2BzLZl0AAHCn8l1VdXmSFUkuSXLWMBvgsUneW1Vzxy207sJDqur1SfZOskeSMzY2UHd/q6o+nOQZVXVqklWZfPj+kUweOfnEMN4umcwG2ZS5sGVdkj26+8YkN1bV16fW8riouz+XJMOaEocm+WaSc7v7v4f2dyd5QpK/T7Ihyfs2Muazq+rYTP6fbL+h7iuGfacNf16S5KeG10/OEEIM78ENVfX0JV7vB5O8rar2SvLsJKd294aq+r5Mgp/9hnOv2Ui98z1l+Lls2N4jk0Dj/M3oAwCWRIABAGxNt3T3yqpanskH5l/OZDbDV7p75SbOPSnJ4d29tqqOTnLYEsY7ZRjjy0ku7u4ba/Ip/qzufu5m1j63FsRtU6/ntuf+n6nnndNJKov7endvWGhHVf1AJjMrHjUEESclufsC9WyYGr8WqGFJ19vdtwyBzxGZhCC/Oux6a5I3d/fpVXVYkhMWOP1bGWbuDu/vLlNj/353//nGxgaArcEjJADAVtfd65O8LJMP6LckuaaqfiaZfACuqoctcNqeSb5YVTsnef5U+43DvoWcm+QRSY7JJMxIkguSPK6q7j+Mt1tVPeCOXdH/OLiqfmBY++LITB6/uDCTxz/2GR6deW6S8xY5f/pa9kpyc5L1w7oTT13C+GcmecncRlXdI5t3vSdn8njJvYbzkmR5kuuG10ctct61SR45vH5mkp2H12ck+bm5NTeqav+q+p4lXAcAbDYBBgCwTXT3ZUnWZvKv/c9P8vNVtTbJVZl8CJ7v+EzCgLOSXD3V/ndJfmNYZPJ+88bYkMlMj6cOf2Z4lOPoTBaovCKTD+rfsWjoFvpkktVJrszkUYv3d/cXk/xWJutJrE1yaXf/wyLnn5jkn6rqo929NpNHL65K8s4kn1jC+K9Pco9hsdC1maynsTnXe2YmC4me0t1zMzlOyOTxno8luX6R8/4ik5DmoiSPziR4SXefmeRvk3yyqtYlOTWLh00AcIfUt//bBQDAYobHK47r7qfPuBQAuEsyAwMAAAAYPTMwAAAAgNEzAwMAAAAYPQEGAAAAMHoCDAAAAGD0BBgAAADA6AkwAAAAgNH7/wGvIiX735gTUgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# User inputted Feature importance test\n", "\n", "imp_test = FeatureImportance(\n", " attrs=['gender','age'],\n", " threshold=10\n", ")\n", "\n", "imp_test.run(df_importance)\n", "imp_test.plot(df_importance, show_n=10) # Show top 10 most important features" ] }, { "cell_type": "code", "execution_count": 9, "id": "2d8ac2d5", "metadata": { "tags": [] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABBEAAAGRCAYAAAAzcysUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABCG0lEQVR4nO3de7xVdZ3w8c83UAkvaIiZguAkoohKiGZaeMzL4GXE25OXytRMGW/TPI8WUzNFTU7aOE/pEw5DxVhThmbiUFJWNnhJTfBSKqIhkhBaiOItzNDv88dahzaHfTiLwzlnH875vF+v/WKvtX6/3/rutfY6rPXdv99akZlIkiRJkiS15S2NDkCSJEmSJG0aTCJIkiRJkqRKTCJIkiRJkqRKTCJIkiRJkqRKTCJIkiRJkqRKTCJIkiRJkqRKTCJIkiqLiIyI3dpZd3FEHN7KsvdFxOP1ykbEpyLi6+2LuF1x7hIRr0REnw5qb2pE/FP5vikilnZEu2V7a223rhIRIyLiwYh4OSIu7ur1N0pEDCuPgb5dvN5HI6KpfD85Ir7dleuXJKmWSQRJ6uHKC/JV5YXx7yPiPyNiq0bHVSsz78zMEa0s+5fMPAc2/iIuIs6MiDfKbfFKRDxVbo/da9b3dGZulZlvVGjrrrbWmZkTM/Of2xNvnXWulcRZ33brZJ8A5mTm1pl5dWeuqCMv3Bt5AV7v+xIR10bEF9qqm5l7ZeacDoihQ5NYkqTeySSCJPUOf5OZWwFjgP2Bf2xZoKt/XW2ge8ptMQA4HFgF3B8Rozp6RR3Vm6EbGgo82hEN9aLv3QZz20iSuiOTCJLUi2Tm74AfAaNgzS/bF0TEb4DflPM+FhELI+L5iJgVETu1aOboiFgUEc9FxL9GxFvKeu+MiJ9HxIpy2XciYtsWdfePiPkR8ULZA6BfWbfVX0hb/Hp8R/nvyrInwSFlnHvXlN+h7HkxqI1t8UZmPpmZ5wO3A5PL+mv98l3+gryo7Lr/VER8MCL2BKYC7ynjWFmWvTYi/j0iZkfEq8Ch9X5tLodoPFf2Evlgzfw5EXFOzfSaX68jovmz/6pc5yktt1tE7Fm2sbLsAn9czbJrI2JKRNxSfpZfRsQ7W9s+EXFc2cbKss09y/k/Bw4FvlrGsXudunMi4osRcV9EvBgR/x0Rb2uxfT8aEU8DP4+It0TEP0bEbyPiDxHxrYgYUDbXcp+/p2zn7Ih4rPwu3RoRQ2vWv1dE/LT8bvy+3N7jgU8Bp5Tt/KosOyAivhERz0TE7yLiC83Jn4joExFXlvtqEXBMa9urLD8pIp4st+/8iDiheb/Q4vsSEecCHwQ+Uc77QVl2cUR8MiJ+DbwaEX1j3aFA/SLi+nI9D0TEvjUxrNVbpfn7FxFbUhz7O8VfeuLsVG775rhXRMQNNfuqX0R8u5y/MiLmRsTb17cNJEk9n0kESepFImIIcDTwYM3s44F3AyMj4v3AF4EPAO8AfgvMaNHMCcBYil4NE4Czm5sv6+4E7AkMobwwr/FB4K+BdwK7U6dHRBvGlf9uWw45uL2M70M1ZU4DfpaZyzeg3ZuA97WcWV54XQ0clZlbAwcBD2XmY8BEyl4NmbltTbXTgcuArYF6wx12BLYHdgY+AkyLiDaHJGRm82fft1zn9S1i3Qz4AfATYAfgIuA7Ldo+DfgcsB2wsIxzHWVi4LvAx4FBwGzgBxGxeWa+H7gTuLCM44lWQj6D4ruxE7CaYjvWOoTie/LXwJnl61Dgr4CtgK+W5Vru83si4niKhMCJZXx3lvESEVsDPwN+XK57N+C2zPwx8C/A9WU7zRfe3yzj2w14F3Ak0JzI+RhwbDl/LHByK5+12ZMU36MBFNv52xHxjnrfl8ycBnwH+FI5729q2jmNImGxbWaurrOeCcD3gLcB1wE3l/u/VZn5KnAUsKxc31aZuQy4mOJvwCHl9noBmFJW+0j5WYYAA8vPsKqNbSBJ6uFMIkhS73BzFL+W30Xxq/u/1Cz7YmY+n5mrKC7yp2fmA5n5J+AfKH49HVZT/oqy/NPAVygueMjMhZn508z8U3kB/38pLkxqfTUzl2Tm8xQXsKd1wGf7JnB6lD0igA8D/7WBbSyjuCCr501gVES8NTOfycy2uvH/d2b+IjPfzMzXWinzT+V2uh24hSJps7EOpLj4vjwzX8/MnwM/ZO1tfFNm3ldemH4HGN1KW6cAt5T788/AlcBbKZIoVf1XZj5SXrz+E/CBWHt4x+TMfLXme/d/M3NRZr5C8b07NVrvzn8exff2sfKz/AswuuyNcCzwbGb+W2a+lpkvZ+Yv6zVS/qp+FPDxMpY/AF8GTi2LfAD4Ss139ovr+8CZ+b3MXFbu++spevcc0NaGquPqcp2tXbDfn5k3lvvm/wL9KPZ/e5wHfDozl5bH/GTg5HLb/5kiebBb2XPn/sx8qZ3rkST1ECYRJKl3OL789XNoZp7f4uJkSc37nSh6HwBQXtCtoPjVvF7535Z1mocRzCi7hL8EfJviF3faqrsxygvEV4FDImIPil+UZ21gMzsDz9dp+1WKC+qJwDPlUIA92mhrSRvLXyjbbdYh26FsY0lmvtmi7dp992zN+z9SJB1aa6v2e/AmxefauZXy9bTc15ux9veh1e9d+b4v0FrX+aHAVWUX+5UU+y7K+IZQ9AioYmgZ1zM1bf0HRU+O5rhafo5WRcQZEfFQTVujWPcYqKKt79Ca5eW+WUr7v0NDgZk1MT8GvEGx7f8LuBWYERHLIuJLbfV4kCT1fCYRJElZ834ZxUUFsKY7/0DgdzVlhtS836WsA8WvtAnsk5nbUAwxiBbraq1ue2Kt9c1yfR8GblxPD4DWnEDRJX7dFWbemplHUAzvWAB8rY1YWpvfbLtyuzar3Q6vAv1rlu3YRlu1lgFDanpkNLf9u1bKt9VW7fcgKPbdhrTVcl//GXiuZl6r37uy/Grg99TfnkuA88rEWPPrrZl5d7mstXs9tGxrCfAnYPuadrbJzL3K5c/U+Rx1lb0gvgZcCAwsh7g8wl+OgXqfo73foTUxlft7MH/5Dv2R1r9DrW3Lo1psy36Z+bvM/HNmfi4zR1L0QjmWYpiKJKkXM4kgSap1HXBWRIyOiC0ouon/MjMX15S5NCK2K++v8HdA89j8rYFXKG6AtzNwaZ32L4iIweWN2z5VU7eq5RTDC/6qxfz/okgEfAj4VpWGypvm7RoR/w9oohjD3rLM26O4weCWFBebr1D8SgvFBe7giNh8Az8DwOciYvOIeB/Fhdn3yvkPASdGRP/y5ngfbVHv96z72Zs198j4RERsFhFNwN+w7j0tqrgBOCYiDit/ef4/FJ//7g1o40MRMTIi+gOfp0jutPbYzO8Cf1/uj634y70LVlN/n08F/iEi9oI1N0f8X+WyHwI7RsTHI2KLiNg6It5dLvs9MKw50ZKZz1DcQ+LfImKb8iaD74yI5mE4NwAXl9/Z7YBJ6/m8W1JcpC8vYzqL8gamNetu+X1Z3/5cn/0i4sRyyMHHKfbNveWyhyiG9/SJ4maStUOKfg8MjL/ctBKKbXlZmQQhIgZFxITy/aERsXc5DOUlikTQeh99Kknq+UwiSJLWyMzbKMavf5/iV9h38pfx4c3+G7if4mLlFuAb5fzPUdxs8cVy/k11VnEdxUXbovL1hTpl1hffHynupfCLsvv1geX8pcADFBdxdXsU1HhPRLxCcVE0B9gG2D8zH65T9i0UF9DLKLrMHwKcXy77OcVjDp+NiOfq1G3NsxQ3r1tGcV+CiZm5oFz2ZeB1iou9b5bLa00Gvll+9rXuo5CZrwPHUYzxfw64Bjijpu3KMvNxioTM/yvb+huKx4S+vgHN/BdwLcXn7UdxA7/WTC/L3wE8BbxGcWPIuvs8M2cCV1B0s3+J4hf/o8ryLwNHlDE/S3FfgkPL9TQna1ZExAPl+zOAzYH5FPvlRopeJ1D0LLgV+BXF96ved5pyvfOBfwPuodh/ewO/qClS7/vyDYobmq6MiJvXs31a+m+KYTYvUPS+ObG8PwIUib2/AVZS3GtiTbvld+G7wKJynTsBV1EM//lJRLxMkYxoTrrsSLE9XqIY5nA7xTAlSVIvFplt9ZiTJKn7i4jpFHee39AnPqiDRcQc4NuZ+fVGxyJJkjpWa3c9liRpk1E+PeJEikfxSZIkqZM4nEGStEmLiH+m6M7+r5n5VKPjkSRJ6skcziBJkiRJkiqxJ4IkSZIkSarEJIIkSZIkSarEJIIkSZIkSarEJIIkSZIkSarEJIIkSZIkSarEJIIkSZIkSarEJIIkSZIkSarEJIIkSZIkSarEJIIkSZIkSarEJIIkSZIkSarEJIIkSZIkSarEJIIkSZIkSarEJIIkSZIkSarEJIKk9YqIjIjdGh2HJEmSpMYziSBJkiRJkioxiSCpU0RE30bHIEmSJKljmUSQNlERMSYiHoyIlyPiexFxfUR8oVx2bEQ8FBErI+LuiNinpt7iiLgkIn4dES+W9frVLL80Ip6JiGURcXaLdW4REVdGxNMR8fuImBoRby2XNUXE0oj4ZEQ8C/xnF20KSZLUzUXEpIh4sjxvmR8RJ5Tz+0TEv0XEcxHxVERcWA6l7FsuHxAR3yjPTX4XEV+IiD6N/TRS72YSQdoERcTmwEzgWuBtwHeB5v+MxwDTgfOAgcB/ALMiYouaJj4AjAd2BfYBzizrjgcuAY4AhgOHt1j1FcDuwGhgN2Bn4DM1y3cs4xkKnLvxn1SSJPUQTwLvAwYAnwO+HRHvAD4GHEVxbjEGOL5FvW8CqynOO94FHAmc0yURS6orMrPRMUjaQBExjiJxMDjLgzgi7gLmUCQOnsvMf6op/zhwbmbeHhGLgX/MzG+Xy74EbJOZEyNiOvCHzJxULtsdeJwiofAk8AqwT2Y+WS5/D3BdZu4aEU3AT8q2XuvkTSBJkjZhEfEQ8Fng74DrM/M/yvmHAz8FNqM4p3ka2DYzV5XLT6M4pzm0EXFLAscsS5umnYDf5dpZwCXlv0OBj0TERTXLNi/rNHu25v0fa5btBNxfs+y3Ne8HAf2B+yOieV4AtV0Kl5tAkCRJLUXEGcD/BoaVs7YCtqc491hSU7T2/VCKZMIzNeceb2lRRlIXM4kgbZqeAXaOiKhJJAyh6C2wBLgsMy9rZ7tDaqZ3qXn/HLAK2Cszf9dKfbs2SZKktUTEUOBrwGHAPZn5RtkTISjOPQbXFK89D1kC/AnYPjNXd1G4ktrgPRGkTdM9wBvAhRHRNyImAAeUy74GTIyId0dhy4g4JiK2rtDuDcCZETEyIvpTdDMEIDPfLNv+ckTsABARO0fEX3fkB5MkST3OlhQ/NCwHiIizgFHlshuAvyvPKbYFPtlcKTOfoRgq+W8RsU1EvCUi3hkRh3Rp9JLWYhJB2gRl5uvAicBHgZXAh4AfAn/KzHkUNyn6KvACsJDyxokV2v0R8BXg52W9n7co8sly/r0R8RLwM2DERn0YSZLUo2XmfODfKH4E+T2wN/CLcvHXKBIFvwYeBGZT3EjxjXL5GRTDMudTnNfcCLyjq2KXtC5vrCj1EBHxS2BqZvpoRUmStEmKiKMozmeGNjoWSfXZE0HaREXEIRGxYzmc4SMUj2r8caPjkiRJqioi3hoRR5fnMztTDKWc2ei4JLXOJIK06RoB/Ap4Efg/wMnl2EFJkqRNRQCfoxiq8CDwGPCZhkYkab0cziBJkiRJkiqxJ4IkSZIkSarEJIIkSZIkSaqkb6NWvP322+ewYcMatXpJkrqt+++//7nMHNToOHoDz0ckSaqvtfORhiURhg0bxrx58xq1ekmSuq2I+G2jY+gtPB+RJKm+1s5HHM4gSZIkSZIqMYkgSZIkSZIqMYkgSZIkSZIqadg9ESSpN/jzn//M0qVLee211xodirqhfv36MXjwYDbbbLNGh6IaHrdaH49bSb2dSQRJ6kRLly5l6623ZtiwYUREo8NRN5KZrFixgqVLl7Lrrrs2OhzV8LhVazxuJcnhDJLUqV577TUGDhzohYjWEREMHDjQX7u7IY9btcbjVpJMIkhSp/NCRK3xu9F9uW/UGr8bkno7kwiSJEmSJKkS74kgSV1o2KRbOrS9xZcfs97lK1eu5LrrruP888/foHaPPvporrvuOrbddttWy3zmM59h3LhxHH744RvUdlWTJ09mq6224pJLLmlzXTfffDO77747I0eOrLt86tSp9O/fnzPOOIOmpiauvPJKxo4dWymOlttw2bJlXHzxxdx4443t+2Da5HjcVudxK0k9nz0RJKkHW7lyJddcc806899444311ps9e/Z6L0QAPv/5z3fahciGruvmm29m/vz5dZetXr2aiRMncsYZZ7Rr3S234U477eSFiDqVx63HrSR1ZyYRJKkHmzRpEk8++SSjR49m//3359BDD+X0009n7733BuD4449nv/32Y6+99mLatGlr6g0bNoznnnuOxYsXs+eee/Kxj32MvfbaiyOPPJJVq1YBcOaZZ645KR82bBif/exnGTNmDHvvvTcLFiwAYPny5RxxxBGMGTOG8847j6FDh/Lcc8+1Gu9ll13GiBEjOPzww3n88cfXzK9d16RJkxg5ciT77LMPl1xyCXfffTezZs3i0ksvZfTo0Tz55JM0NTXxqU99ikMOOYSrrrqKyZMnc+WVV65p79vf/jYHHXQQo0aN4r777gNYp8yoUaNYvHjxWtvw0ksvZfHixYwaNQoobsB31llnsffee/Oud72L//mf/wHg2muv5cQTT2T8+PEMHz6cT3ziE+3cg+qNPG49biWpO3M4gyT1YJdffjmPPPIIDz30EHPmzOGYY47hkUceWfNosunTp/O2t72NVatWsf/++3PSSScxcODAtdr4zW9+w3e/+12+9rWv8YEPfIDvf//7fOhDH1pnXdtvvz0PPPAA11xzDVdeeSVf//rX+dznPsf73/9+/uEf/oEf//jHa13wtHT//fczY8YMHnzwQVavXs2YMWPYb7/91irz/PPPM3PmTBYsWEBEsHLlSrbddluOO+44jj32WE4++eQ1ZVeuXMntt98OFBcatV599VXuvvtu7rjjDs4++2weeeSRStsQYPHixWuWTZkyBYCHH36YBQsWcOSRR/LEE08A8NBDD/Hggw+yxRZbMGLECC666CKGDBnS6nqkZh63HreS1J3ZE0GSepEDDjhgrWebX3311ey7774ceOCBLFmyhN/85jfr1Nl1110ZPXo0APvtt99aJ+O1TjzxxHXK3HXXXZx66qkAjB8/nu22267V2O68805OOOEE+vfvzzbbbMNxxx23TpltttmGfv36cc4553DTTTfRv3//Vts75ZRTWl122mmnATBu3DheeuklVq5c2WrZ9bnrrrv48Ic/DMAee+zB0KFD11yMHHbYYQwYMIB+/foxcuRIfvvb37ZrHZLHbcHjVpK6B5MI2qQ0NTXR1NTU6DCkTdaWW2655v2cOXP42c9+xj333MOvfvUr3vWud9V99vkWW2yx5n2fPn1YvXp13baby9WWycwNiq+tR6f17duX++67j5NOOombb76Z8ePHt1q29rO2tZ6IoG/fvrz55ptr5lV5Dvz6Pl/V7Sa1xeO2/no8biVtDK8r2s8kgiT1YFtvvTUvv/xy3WUvvvgi2223Hf3792fBggXce++9Hb7+9773vdxwww0A/OQnP+GFF15otey4ceOYOXMmq1at4uWXX+YHP/jBOmVeeeUVXnzxRY4++mi+8pWvrOmqvL7PWc/1118PFL9IDhgwgAEDBjBs2DAeeOABAB544AGeeuqpNtseN24c3/nOdwB44oknePrppxkxYkTlOKR6PG7r87iVpO7BeyJIUhdq69FuHW3gwIEcfPDBjBo1ire+9a28/e1vX7Ns/PjxTJ06lX322YcRI0Zw4IEHdvj6P/vZz3Laaadx/fXXc8ghh/COd7yDrbfeum7ZMWPGcMoppzB69GiGDh3K+973vnXKvPzyy0yYMIHXXnuNzOTLX/4yAKeeeiof+9jHuPrqqyvdgX277bbjoIMO4qWXXmL69OkAnHTSSXzrW99aczO73XffHVh7Gx511FFccMEFa9o5//zzmThxInvvvTd9+/bl2muvXeuXTPUMHrcet5LUEZp7PsyZM6ehcWys2NAuax1l7NixOW/evIasW5uunnLgqfd47LHH2HPPPRsdRsP86U9/ok+fPvTt25d77rmHv/3bv13zK6QK9b4jEXF/Zo5tUEi9Sr3zEY9bj9u29PbviNQTNOK6YlO7lmntfMSeCJKkTvP000/zgQ98gDfffJPNN9+cr33ta40OSVIbPG4lSetjEkGS1GmGDx/Ogw8+uNa8FStWcNhhh61T9rbbblvnMXWSup7HrSRpfUwiSJK61MCBA+0aLW1iPG4lSc18OoMkSZIkSarEJIIkSZIkSarEJIIkSZIkSarEJEIP0tTUtOaxIZIkSZIkdTRvrKiNM3lA165v8atdv97JL3bdutTzdfR3t4u+n8OGDWPevHlsv/32bZadPHkyW221FZdccgmf+cxnGDduHIcffnjdsjfffDO77747I0eOrLt86tSp9O/fnzPOOIOmpiauvPJKxo5d53HFda1cuZLrrruO888/H4Bly5Zx8cUXc+ONN1aqL62xiR634LErSep49kSQJHWaz3/+861ehEBxITJ//vy6y1avXs3EiRM544wz2rXulStXcs0116yZ3mmnnbwIkSry2JUktcYkgiT1cN/+9rc54IADGD16NOeddx5TpkzhE5/4xJrl1157LRdddBEAxx9/PPvttx977bUX06ZNq7yOyy67jBEjRnD44Yfz+OOPr5l/5plnrjn5nzRpEiNHjmSfffbhkksu4e6772bWrFlceumljB49mieffJKmpiY+9alPccghh3DVVVcxefJkrrzyyrU+y0EHHcSoUaO47777ANYpM2rUKBYvXsykSZN48sknGT16NJdeeimLFy9m1KhRALz22mucddZZ7L333rzrXe/if/7nf9ZsixNPPJHx48czfPjwtbaTukZEjI+IxyNiYURMWk+5/SPijYg4eUPrbio8dj12Jak7cjiDJPVgjz32GNdffz2/+MUv2GyzzTj//PPZaqutuOmmm/jSl74EwPXXX8+nP/1pAKZPn87b3vY2Vq1axf77789JJ53EwIED17uO+++/nxkzZvDggw+yevVqxowZw3777bdWmeeff56ZM2eyYMECIoKVK1ey7bbbctxxx3Hsscdy8slrrgNZuXIlt99+O1BcZNR69dVXufvuu7njjjs4++yzeeSRR1qN6/LLL+eRRx5Z82z7xYsXr1k2ZcoUAB5++GEWLFjAkUceyRNPPAHAQw89xIMPPsgWW2zBiBEjuOiiixgyZMh6t4E6RkT0AaYARwBLgbkRMSsz59cpdwVw64bW3VR47HrsSqpu2KRbNrjOs4tWtLsuwOLLj2lXvZ7AJIIk9WC33XYb999/P/vvvz8Aq1atYocdduCv/uqvuPfeexk+fDiPP/44Bx98MABXX301M2fOBGDJkiX85je/afNC5M477+SEE06gf//+ABx33HHrlNlmm23o168f55xzDscccwzHHntsq+2dcsoprS477bTTABg3bhwvvfQSK1euXG9srbnrrrvW/IK7xx57MHTo0DUXIocddhgDBhRj4EeOHMlvf/tbL0S6zgHAwsxcBBARM4AJQMtEwEXA94H921F3k+CxW5/HriQ1nkkESerBMpOPfOQjfPGLX1xr/je+8Q1uuOEG9thjD0444QQigjlz5vCzn/2Me+65h/79+9PU1MRrr71WaT0Rsd7lffv25b777uO2225jxowZfPWrX+XnP/953bJbbrll5fVEBH379uXNN99cM69KzJnZ6rIttthizfs+ffqwevXqNttTh9kZWFIzvRR4d22BiNgZOAF4P2snEdqsuynx2K3PY1eSGs8kgiT1YIcddhgTJkzg7//+79lhhx14/vnnefnllznxxBO57LLLGDp0KFdccQUAL774Ittttx39+/dnwYIF3HvvvZXWMW7cOM4880wmTZrE6tWr+cEPfsB55523VplXXnmFP/7xjxx99NEceOCB7LbbbgBsvfXWvPzyy5U/z/XXX8+hhx7KXXfdxYABAxgwYADDhg3jhz/8IQAPPPAATz31VJttjxs3ju985zu8//3v54knnuDpp59mxIgRPPDAA5VjUaeod0Xb8qrxK8AnM/ONFhemVeoWBSPOBc4F2GWXXTY8yi7gseuxK6mba8+TezbmSXPd6IlxJhEkqSt18X8AI0eO5Atf+AJHHnkkb775JpttthlTpkxh6NChjBw5kvnz53PAAQcAMH78eKZOnco+++zDiBEjOPDAAyutY8yYMZxyyimMHj2aoUOH8r73vW+dMi+//DITJkzgtddeIzP58pe/DMCpp57Kxz72Ma6++upKd1/fbrvtOOigg3jppZeYPn06ACeddBLf+ta3GD16NPvvvz+77747AAMHDuTggw9m1KhRHHXUUVxwwQVr2jn//POZOHEie++9N3379uXaa69d61dMNcxSoLb/+WBgWYsyY4EZZQJhe+DoiFhdsS4AmTkNmAYwduzY1n/abtaAEzePXY9dSequYn3dwjrT2LFjc968eQ1Zd0/V1NQEwJw5c7pupR397Ow2NF1bZO/mnNl6l8kO142yftr0PPbYY+y5556NDkPdWL3vSETcn5ljGxRSw0REX+AJ4DDgd8Bc4PTMfLSV8tcCP8zMGze0brN65yMet2qL3xGpe2nXjRWvKx7is+Ppl7drnYv7nb7BdTbqWqYB1yStnY/YE0GSJHULmbk6Ii6keOpCH2B6Zj4aERPL5VM3tG5XxC1JUm9iEqETtfdxIe21sY8paY/F/bpsVZIabMWKFRx22GHrzL/tttvavAu8VFVmzgZmt5hXN3mQmWe2VVceu5KkjmUSQZuULh3GIGktAwcOXPPcdkmbDo9dSVJHekujA5Cknq5R955R9+d3o/ty36g1fjck9XYmESSpE/Xr148VK1Z40ql1ZCYrVqygXz/HhXU3HrdqjcetJDmcQZI61eDBg1m6dCnLly9vdCjqhvr168fgwYMbHYZa8LjV+njcSurtTCJIUifabLPN2HXXXRsdhqQN4HErSVLrHM4gSZIkSZIqMYkgSZIkSZIqcTiDJEmSJKlX2fH0yxsdwibLngiSJEmSJKkSeyJIkiRJktTJ5py5ZaND6BCVkggRMR64CugDfD0zL2+xvAn4b+CpctZNmfn5jgtTVdglR5IkSZLUmdpMIkREH2AKcASwFJgbEbMyc36Londm5rGdEKMkSZIkSeoGqtwT4QBgYWYuyszXgRnAhM4NS5IkSZIkdTdVkgg7A0tqppeW81p6T0T8KiJ+FBF71WsoIs6NiHkRMW/58uXtCFeSJEmSJDVKlSRC1JmXLaYfAIZm5r7A/wNurtdQZk7LzLGZOXbQoEEbFKgkSZIkSWqsKkmEpcCQmunBwLLaApn5Uma+Ur6fDWwWEdt3WJSSJEmSJKnhqiQR5gLDI2LXiNgcOBWYVVsgInaMiCjfH1C2u6Kjg5UkSZIkSY3T5tMZMnN1RFwI3ErxiMfpmfloREwsl08FTgb+NiJWA6uAUzOz5ZAHSeo1mpqaAJgzZ05D45AkSZI6UptJBFgzRGF2i3lTa95/Ffhqx4YmSZIkSZK6kyrDGSRJkiRJkkwiSJIkSZKkakwiSJIkSZKkSkwiSJIkSZKkSkwiSJIkSZKkSkwiSJIkSZKkSkwiSJIkSZKkSkwiSJIkSZKkSkwiSJLapampiaampkaHIUmSpC7Ut9EBSFJXGTbpli5b17OLVnT5OgEWX35Ml65P6mgRMR64CugDfD0zL2+xfALwz8CbwGrg45l5V7lsMfAy8AawOjPHdmHokiT1CiYRJElStxARfYApwBHAUmBuRMzKzPk1xW4DZmVmRsQ+wA3AHjXLD83M57osaEmSehmHM0iSpO7iAGBhZi7KzNeBGcCE2gKZ+UpmZjm5JZBIkqQuYxJBkiR1FzsDS2qml5bz1hIRJ0TEAuAW4OyaRQn8JCLuj4hzW1tJRJwbEfMiYt7y5cs7KHRJknoHkwiSJKm7iDrz1ulpkJkzM3MP4HiK+yM0OzgzxwBHARdExLh6K8nMaZk5NjPHDho0qAPCliSp9zCJIEmSuoulwJCa6cHAstYKZ+YdwDsjYvtyeln57x+AmRTDIyRJUgcyiSBJkrqLucDwiNg1IjYHTgVm1RaIiN0iIsr3Y4DNgRURsWVEbF3O3xI4EnikS6OXJKkX8OkMkiSpW8jM1RFxIXArxSMep2fmoxExsVw+FTgJOCMi/gysAk4pn9TwdmBmmV/oC1yXmT9uyAeRJKkHM4kgSZK6jcycDcxuMW9qzfsrgCvq1FsE7NvpAUqS1Ms5nEGSJEmSJFViTwRJ6gQ7nn55Y1Y8eUDXrWvxq12/ToDJL3bt+iSpgzQ1NQEwZ86chsYhSRvDngiSJElSD9XU1LQmeSFJHcEkgiRJkiRJqsQkgiRJkiRJqsQkgiRJkiRJqsQkgiRJkiRJqsQkgiRJkiRJqsQkgiRJkiRJqsQkgiRJkiRJqsQkgiRJkiRJqqRvowOQJG2a5py5ZaNDkCRJUhezJ4IkSZIkSarEJIIkSZIkSarE4QySJEnSBho26ZYNrvPsohXtrrv48mM2uI4kdQZ7IkiSJEmSpErsiSBJkiR1d5MHtK/e4lfbX3/yi+1bp6QezZ4IkiRJkiSpEpMIkiRJkiSpEpMIkiRJkiSpEpMIkiRJkiSpEpMIkiRJkiSpEpMIkiRJkiSpEpMIkiRJkiSpEpMIkiRJkiSpEpMIkiRJkiSpEpMIkiRJkiSpEpMIkiRJkiSpkkpJhIgYHxGPR8TCiJi0nnL7R8QbEXFyx4UoSZJ6i7bOOSJiQkT8OiIeioh5EfHeqnWlRtvx9MvZ8fTLGx2GJG2Uvm0ViIg+wBTgCGApMDciZmXm/DrlrgBu7YxAJUlSz1bxnOM2YFZmZkTsA9wA7FH1fEXqbeacuWWjQ5DUw1TpiXAAsDAzF2Xm68AMYEKdchcB3wf+0IHxSZKk3qPNc47MfCUzs5zcEsiqdSVJ0sarkkTYGVhSM720nLdGROwMnABMXV9DEXFu2fVw3vLlyzc0VkmS1LO1ec4BEBEnRMQC4Bbg7A2pW9b3fESSpHaqkkSIOvOyxfRXgE9m5hvraygzp2Xm2MwcO2jQoIohSpKkXqLKOQeZOTMz9wCOB/55Q+qW9T0fkSSpndq8JwJFJn9IzfRgYFmLMmOBGREBsD1wdESszsybOyJISZLUK1Q551gjM++IiHdGxPYbWleSJLVPlZ4Ic4HhEbFrRGwOnArMqi2Qmbtm5rDMHAbcCJxvAkGSJG2gNs85ImK3KH+1iIgxwObAiip1JUnSxmuzJ0Jmro6ICymeutAHmJ6Zj0bExHL5eu+DIEmSVEXFc46TgDMi4s/AKuCU8kaLdes25INIktSDVRnOQGbOBma3mFc3eZCZZ258WJIkqTdq65wjM6+geKR0pbqSJKljVRnOIEmSJEmSZBJBkiRJkiRVYxJBkiRJkiRVYhJBkiRJkiRVYhJBkiRJkiRVYhJBkiRJkiRVYhJBkiRJkiRVYhJBkiRJkiRVYhJBkiRJkiRVYhJBkiRJkiRVYhJBkiRJkiRVYhJBkiRJkiRVYhJBkiRJkiRVYhJBkiRJkiRVYhJBkiRJkiRVYhJBkiRJkiRVYhJBkiRJkiRVYhJBkiRJkiRVYhJBkiRJkiRVYhJBkiRJkiRVYhJBkiRJkiRVYhJBkiRJkiRVYhJBkiRJkiRVYhJBkiRJkiRVYhJBkiRJkiRVYhJBkiRJkiRVYhJBkiRJkiRVYhJBkiRJkiRVYhJBkiR1GxExPiIej4iFETGpzvIPRsSvy9fdEbFvzbLFEfFwRDwUEfO6NnJJknqHvo0OQJIkCSAi+gBTgCOApcDciJiVmfNrij0FHJKZL0TEUcA04N01yw/NzOe6LGhJknoZeyJIkqTu4gBgYWYuyszXgRnAhNoCmXl3Zr5QTt4LDO7iGCVJ6tVMIkiSpO5iZ2BJzfTScl5rPgr8qGY6gZ9ExP0RcW5rlSLi3IiYFxHzli9fvlEBS5LU2zicQZIkdRdRZ17WLRhxKEUS4b01sw/OzGURsQPw04hYkJl3rNNg5jSKYRCMHTu2bvuSJKk+eyJIkqTuYikwpGZ6MLCsZaGI2Af4OjAhM1c0z8/MZeW/fwBmUgyPkCRJHcgkgiRJ6i7mAsMjYteI2Bw4FZhVWyAidgFuAj6cmU/UzN8yIrZufg8cCTzSZZF3sqamJpqamnrs+iRJmw6HM0iSpG4hM1dHxIXArUAfYHpmPhoRE8vlU4HPAAOBayICYHVmjgXeDsws5/UFrsvMHzfgY0iS1KOZRJAkSd1GZs4GZreYN7Xm/TnAOXXqLQL27fQAJUnq5RzOIEmSJEmSKjGJIEmSJEmSKjGJIEmSJEmSKjGJIEmSJEmSKjGJIEmSJEmSKjGJIEmSJEmSKjGJIEmSJEmSKjGJIEmSJEmSKjGJIEmSJEmSKulbpVBEjAeuAvoAX8/My1ssnwD8M/AmsBr4eGbe1cGxSpIkbfKGTbplg+s8u2hFu+su7nf6Btdh8avFv5MHbHhdgMkvtq+eJKnbazOJEBF9gCnAEcBSYG5EzMrM+TXFbgNmZWZGxD7ADcAenRGwJEmSJElqjCrDGQ4AFmbmosx8HZgBTKgtkJmvZGaWk1sCiSRJkiRJ6lGqJBF2BpbUTC8t560lIk6IiAXALcDZHROeJEmSJEnqLqokEaLOvHV6GmTmzMzcAzie4v4I6zYUcW5EzIuIecuXL9+gQCVJkiRJUmNVSSIsBYbUTA8GlrVWODPvAN4ZEdvXWTYtM8dm5thBgwZtcLCSJEmSJKlxqiQR5gLDI2LXiNgcOBWYVVsgInaLiCjfjwE2B1Z0dLCSJEmSJKlx2nw6Q2aujogLgVspHvE4PTMfjYiJ5fKpwEnAGRHxZ2AVcErNjRYlSZIkSVIP0GYSASAzZwOzW8ybWvP+CuCKjg1NkiRJkiR1J1WGM0iSJEmSJJlEkCRJkiRJ1ZhEkCRJkiRJlVS6J4IkSZIaZ8fTL290CJIkASYRJEmS1MKcM7dsdAiSpG7K4QySJEmSJKkSkwiSJEmSJKkSkwiSJEmSJKkSkwiSJEmSJKkSkwiSJKnbiIjxEfF4RCyMiEl1ln8wIn5dvu6OiH2r1pUkSRvPJIIkSeoWIqIPMAU4ChgJnBYRI1sUewo4JDP3Af4ZmLYBdSVJ0kYyiSBJkrqLA4CFmbkoM18HZgATagtk5t2Z+UI5eS8wuGpdSZK08UwiSJKk7mJnYEnN9NJyXms+CvyonXUlSVI79G10AJIkSaWoMy/rFow4lCKJ8N521D0XOBdgl1122fAoJUnqxeyJIEmSuoulwJCa6cHAspaFImIf4OvAhMxcsSF1ATJzWmaOzcyxgwYN6pDAJUnqLUwiSJKk7mIuMDwido2IzYFTgVm1BSJiF+Am4MOZ+cSG1JUkSRvP4QySJKlbyMzVEXEhcCvQB5iemY9GxMRy+VTgM8BA4JqIAFhd9iqoW7chH0SSpB7MJIIkSeo2MnM2MLvFvKk1788BzqlaV5IkdSyHM0iSJEmSpEpMIkiSJEmSpEpMIkiSJEmSpEpMIkiSJEmSpEpMIkiSJEmSpEpMIkiSJEmSpEpMIkiSJEmSpEpMIkiSJEmSpEpMIkiSJEmSpEpMIkiSJEmSpEpMIkiSJEmSpEpMIkiSJEmSpEpMIkiSJEmSpEpMIkiSJEmSpEpMIkiSJEmSpEpMIkiSJEmSpEpMIkiSJEmSpEpMIkiSJEmSpEpMIkiSJEmSpEpMIkiSJEmSpEpMIkiSJEmSpEpMIkiSJEmSpEpMIkiSJEmSpEpMIkiSJEmSpEpMIkiSJEmSpEpMIkiSJEmSpEpMIkiSJEmSpEpMIkiSJEmSpEoqJREiYnxEPB4RCyNiUp3lH4yIX5evuyNi344PVZIk9XQVzjn2iIh7IuJPEXFJi2WLI+LhiHgoIuZ1XdSSJPUefdsqEBF9gCnAEcBSYG5EzMrM+TXFngIOycwXIuIoYBrw7s4IWJIk9UwVzzmeBy4Gjm+lmUMz87lODVSSpF6sSk+EA4CFmbkoM18HZgATagtk5t2Z+UI5eS8wuGPDlCRJvUCVc44/ZOZc4M+NCFCSpN6uShJhZ2BJzfTScl5rPgr8aGOCkiRJvdKGnnO0lMBPIuL+iDi3QyOTJElAheEMQNSZl3ULRhxKkUR4byvLzwXOBdhll10qhihJknqJyuccrTg4M5dFxA7ATyNiQWbesc5KPB+RJKndqvREWAoMqZkeDCxrWSgi9gG+DkzIzBX1GsrMaZk5NjPHDho0qD3xSpKknqvSOUdrMnNZ+e8fgJkUwyPqlfN8RJKkdqqSRJgLDI+IXSNic+BUYFZtgYjYBbgJ+HBmPtHxYUqSpF6gzXOO1kTElhGxdfN74EjgkU6LVJKkXqrN4QyZuToiLgRuBfoA0zPz0YiYWC6fCnwGGAhcExEAqzNzbOeFLUmSepoq5xwRsSMwD9gGeDMiPg6MBLYHZpbnIX2B6zLzxw34GJIk9WhV7olAZs4GZreYN7Xm/TnAOR0bmiRJ6m0qnHM8S/2nQL0E7Nu50UmSpCrDGSRJkiRJkkwiSJIkSZKkakwiSJIkSZKkSkwiSJIkSZKkSkwiSJIkSZKkSkwiSJIkSZKkSkwiSJIkSZKkSkwiSJIkSZKkSkwiSJIkSZKkSkwiSJIkSZKkSkwiSJIkSZKkSkwiSJIkSZKkSkwiSJIkSZKkSkwiSJIkSZKkSkwiSJIkSZKkSkwiSJIkSZKkSkwiSJIkSZKkSkwiSJIkSZKkSkwiSJIkSZKkSkwiSJIkSZKkSkwiSJIkSZKkSkwiSJIkSZKkSkwiSJIkSZKkSkwiSJIkSZKkSkwiSJIkSZKkSkwiSJIkSZKkSkwiSJIkSZKkSkwiSJIkSZKkSkwiSJKkbiMixkfE4xGxMCIm1Vm+R0TcExF/iohLNqSuJEnaeCYRJElStxARfYApwFHASOC0iBjZotjzwMXAle2oK0mSNpJJBEmS1F0cACzMzEWZ+TowA5hQWyAz/5CZc4E/b2hdSZK08UwiSJKk7mJnYEnN9NJyXofWjYhzI2JeRMxbvnx5uwKVJKm3MokgSZK6i6gzLzu6bmZOy8yxmTl20KBBlYOTJEkmESRJUvexFBhSMz0YWNYFdSVJUkUmESRJUncxFxgeEbtGxObAqcCsLqgrSZIq6tvoACRJkgAyc3VEXAjcCvQBpmfmoxExsVw+NSJ2BOYB2wBvRsTHgZGZ+VK9ug35IJIk9WAmESRJUreRmbOB2S3mTa15/yzFUIVKdSVJUsdyOIMkSZIkSarEJIIkSZIkSarEJIIkSZIkSarEJIIkSZIkSarEJIIkSZIkSarEJIIkSZIkSarEJIIkSZIkSarEJIIkSZIkSarEJIIkSZIkSaqkUhIhIsZHxOMRsTAiJtVZvkdE3BMRf4qISzo+TEmSJEmS1Gh92yoQEX2AKcARwFJgbkTMysz5NcWeBy4Gju+MICVJkiRJUuNV6YlwALAwMxdl5uvADGBCbYHM/ENmzgX+3AkxSpIkSZKkbqBKEmFnYEnN9NJyniRJkiRJ6kWqJBGizrxsz8oi4tyImBcR85YvX96eJiRJkiRJUoNUSSIsBYbUTA8GlrVnZZk5LTPHZubYQYMGtacJSZIkSZLUIFWSCHOB4RGxa0RsDpwKzOrcsCRJkiRJUnfT5tMZMnN1RFwI3Ar0AaZn5qMRMbFcPjUidgTmAdsAb0bEx4GRmflS54UuSZIkSZK6UptJBIDMnA3MbjFvas37ZymGOUiSJEmSpB6qynAGSZIkSZIkkwiSJEmSJKkakwiSJEmSJKkSkwiSJEmSJKkSkwiSJEmSJKkSkwiSJEmSJKkSkwiSJEmSJKkSkwiSJEmS1I01NTXR1NTU6DAkwCSCJEmSJEmqyCSCJEmSJEmqxCSCJEnqNiJifEQ8HhELI2JSneUREVeXy38dEWNqli2OiIcj4qGImNe1kUuS1Dv0bXQAkiRJABHRB5gCHAEsBeZGxKzMnF9T7ChgePl6N/Dv5b/NDs3M57ooZEmSeh17IkiSpO7iAGBhZi7KzNeBGcCEFmUmAN/Kwr3AthHxjq4OVFLv5U0O1dvZE0GSJHUXOwNLaqaXsnYvg9bK7Aw8AyTwk4hI4D8yc1q9lUTEucC5ALvsskvHRC5JVUwe0L56i19tf/3JL7ZvnVIr7IkgSZK6i6gzLzegzMGZOYZiyMMFETGu3koyc1pmjs3MsYMGDWp/tJIk9UImESRJUnexFBhSMz0YWFa1TGY2//sHYCbF8AhJktSBTCJIkqTuYi4wPCJ2jYjNgVOBWS3KzALOKJ/ScCDwYmY+ExFbRsTWABGxJXAk8EhXBi9JUm/gPREkSVK3kJmrI+JC4FagDzA9Mx+NiInl8qnAbOBoYCHwR+CssvrbgZkRAcX5zXWZ+eMu/giSJPV4JhEkSVK3kZmzKRIFtfOm1rxP4II69RYB+3Z6gJJ6lGGTbtngOs8uWtHuuov7bXAVqdsxiSBJkiRJ3dicM7dsdAjSGt4TQZIkSZIkVWISQZIkSZIkVWISQZIkSZIkVeI9ESRJkiSpoh1Pv7zRIUgNZU8ESZIkSZJUiUkESZIkSZJUiUkESZIkSZJUiUkESZIkSZJUiUkESZIkSZJUiUkESZIkSZJUiUkESZIkSZJUiUkESZIkSZJUiUkESZIkSZJUiUkESZIkSZJUiUkESZIkSZJUiUkESZIkSZJUiUkESZIkSZJUiUkESZIkSZJUiUkESZIkSZJUiUkESZIkSZJUiUkESZIkSZJUiUkESZIkSZJUiUkESZIkSZJUiUkESZIkSZJUiUkESZIkSZJUiUkESZIkSZJUiUkESZIkSZJUSaUkQkSMj4jHI2JhREyqszwi4upy+a8jYkzHhypJknq6jTnnaKuuJEnaeG0mESKiDzAFOAoYCZwWESNbFDsKGF6+zgX+vYPjlCRJPdzGnHNUrCtJkjZSlZ4IBwALM3NRZr4OzAAmtCgzAfhWFu4Fto2Id3RwrJIkqWfbmHOOKnUlSdJG6luhzM7AkprppcC7K5TZGXimtlBEnEvxqwHAKxHx+AZFq24nYHvguUbH0ak+F42OQKrMY7LHGNroABpkY845qtQFet/5SEP+LvSO47RLuR97Bvdjz9Hl+7Ix+7Hu+UiVJEK9aLMdZcjMacC0CuvUJiIi5mXm2EbHIangMalN3Macc1Q6F4Hedz7i34Wewf3YM7gfe47evC+rJBGWAkNqpgcDy9pRRpIkaX025pxj8wp1JUnSRqpyT4S5wPCI2DUiNgdOBWa1KDMLOKO8Y/KBwIuZ+UzLhiRJktZjY845qtSVJEkbqc2eCJm5OiIuBG4F+gDTM/PRiJhYLp8KzAaOBhYCfwTO6ryQ1c30mu6g0ibCY1KbrI0552itbgM+Rnfk34Wewf3YM7gfe45euy8js+5wQUmSJEmSpLVUGc4gSZIkSZJkEkGSJEmSJFVjEkEbJSKujYiTO6CdyRHxu4h4qHxd3hHxSb1FBx+LGRG71cz7+3Jer3yMkbQpiogPRsSvy9fdEbFvzbJtI+LGiFgQEY9FxHvq1O8XEfdFxK8i4tGI+FzNsn0j4p6IeDgifhAR23TV5+rNImL/iHij9m99RIyPiMcjYmFETFpP3fXu84i4pPw7v31nfgZtnIj4Trm/H4mI6RGxWTm/KSJerDmP/kyjY1XryhsDXxYRT5TH48Xl/E1mP1Z5xKPUYSKib2aubmXxlzPzyi4NSOql2jgWH6a4s/0XyumTgfldEpikjvIUcEhmvhARR1HcAOzd5bKrgB9n5snlkyz616n/J+D9mflKeaFyV0T8KDPvBb4OXJKZt0fE2cClwD91+ifqxSKiD3AFxY1Da+dNAY6gePTp3IiYlZn1/l63us8jYkjZxtOd+BHUioh4W2Y+X7H4d4APle+vA84B/r2cvjMzj+3o+LS2iBgAvJyZb25EM2dSPJJ4j8x8MyJ2qFm2SexHeyL0IhHxT2UG+qcR8d0y6/zOiPhxRNwfEXdGxB5l2Wsj4ury14tFzVnvMnP21YiYHxG3ADvUtL9fRNxetnVrRLyjnD8nIv4lIm4H/q4Rn13qTjaBY/FmYEJZ56+AF4HlnbIxpF4uIm4uj9VHI+Lcct5Hy1+o5kTE1yLiq+X8QRHx/YiYW74Obq3dzLw7M18oJ+8FBpdtbAOMA75Rlns9M1fWqZ+Z+Uo5uVn5ar4b9wjgjvL9T4GT2r8Feo7O2peli4DvA3+omXcAsDAzF2Xm68AMyr/dLeJqa59/GfgEf9m/vVon78fmdfSNiOMiYhYws2psmTm7PDYTuI/yuNa6OnE/vhd4PIqem7u0M7y/BT7fnIjIzD+0Ub77yUxfveAFjAUeAt4KbA38BrgEuA0YXpZ5N/Dz8v21wPcoEk0jKf6TAjiR4oShD7ATsJLiV8rNgLuBQWW5UygerwUwB7imjfgmA78rY3wI+OtGbzNfvjrjtYkci5cANwGjgE8DHynrjm309vPlq6e9gLeV/74VeATYGVgMvK08nu8EvlqWuQ54b/l+F+Cxiuu4BPh6+X40xcXHtcCDFL0KtmylXp/y79UrwBU18+8GJpTv/zfFr3IN35aNfnXWvizbub3cH9cCJ5fzT27er+X0h5vbb1G/1X0OHAdcVb5fDGzf6O3Y6FdnHpPAbsAXKf7v/yZFb6HmZVvzl/Pglq+RLdrZDHgAeF853QSsAH4F/AjYq9HbsdGvTt6P2wMfL4+nW4H/BWxedT+W++rTwLxyfzWf/20y+9HhDL3He4H/zsxVABHxA6AfcBDwvYhoLrdFTZ2bs8iQzY+It5fzxgHfzcw3gGUR8fNy/giKC46flm31AZ6paev6CjF+OR3OoJ5vUzgWofhF61Tgr4HDgLMqf0JJG+LiiDihfD+E4kLw9iy7N0fE94Ddy+WHAyNr/k5sExFbZ+bLrTUeEYcCH6X42wPFUNYxwEWZ+cuIuAqYRJ3hCOXfl9ERsS0wMyJGZeYjwNnA1VGM150FvN6+j97jdNa+/Arwycx8o6Y8QNQpW683Qd19HhFfpLiQObLqB+wlOmU/RsRJFP8HXwaMaVmmnB5dMcZrgDsy885y+gFgaBbDj46m6FE4vGJbPVWn/W3NzOcojsuvRHF/kekUf0P3qbgftwBey8yxEXFiWf99bEL70SRC71HvP5q3ACszc3Qrdf7USv16/0EF8GhmrnNzptKrbUYo9Q6byrH4A+BfgXmZ+VKLE1dJHSAimihOXt+TmX+MiDnA48CerVR5S1l2VcX296H41fmozFxRzl4KLM3MX5bTN1JcUA6hOO4Bpmbm1OZ2MnNlGdt44JHMXEB54RkRuwPHVImnJ+vkfTkWmFH+Hd4eODoiVlPsyyE15QZTJJXX2pcUFyLr7HPgncCuwK/KtgcDD0TEAZn5bIW4epxO3o8/pRhKeBbwnoj4T2BmZr5Wrntril/H6zk9y3tdRMRngUHAec0LM/OlmvezI+KaiNi+vNjtdTr7b2u5jpEU+/IEip5C08r5VfbjUorhSVAMZ/lP2LT2o/dE6D3uAv4mirstb0XxH/4fgaci4n/BmjHW+66vEYoxkKdGRJ8oxlkfWs5/HBhUZuOIiM0iYq9O+STSpm2TOBbL/0g/SfGLiaTOMQB4oTzJ3QM4kOKGd4dExHYR0Ze17zfwE+DC5omIGN1aw+VY3ZuAD2fmE83zy4vDJRExopx1GDA/M5dk5ujyNbUcI7xt2dZbKU7IF5TTO5T/vgX4R4oL1d6u0/ZlZu6amcMycxhFAuD8zLwZmAsMj4hdo7hZ4qnArJb7cj37/OHM3KGm7aUUv5D3ygRCqTP340uZOSUzx1L8//pe4LGI+FK5/OWa/dby1ZxAOIeih+BpWXNjv4jYMcpMUEQcQHGNt4LeqzP/to6JiOYbzC4ARmfmR5uTdFX2I0Vi7/3l+0OAJ8q2N5n9aE+EXiIz50Zx85ZfAb+lGIPzIvBB4N8j4h8pxgfNKMu0ZibFl/5hii/87WX7r0dxw7ero7hraV+Kbj6PdsoHkjZRm9KxmJkzNrSOpA3yY2BiRPyaIgF4L8X9gf4F+CWwjOLJKC+W5S8GppTl+1IkEye20vZngIHANeU56ery4gWKm/R9p7zwXET94UrvAL4ZxRMA3gLckJk/LJedFhEXlO9vovwVrZfrzH1ZV2aujogLKcZk96G4/01rf+ur7HN10X7MzAeBCyKiH3+5mKxiKsW5wz3lcX1TZn6e4v4Yf1v2UFkFnJqZvflGmZ25H1cBZ2XmYxsR3+UUx+PfU9xz5pxy/iazH6ObxqVOEBFblWNs+lMcHOdm5gONjkvqbTwWJa1Pzd+IvhQJw+mZWfkO7uo+3Jc9g/uxZ3A/dhyHM/Qu0yLiIYqbdnzfixapYTwWJa3P5PJvxCPAUxRdX7Vpcl/2DO7HnsH92EHsiaAuFRGfpngMSq3vZabjrqUu5LEo9QwRcRbFzdpq/SIzL6hXXt2X+7JncD/2DO7H9TOJIEmSJEmSKnE4gyRJkiRJqsQkgiRJkiRJqsQkgiRJkiRJqsQkgiRJkiRJqsQkgiRJkiRJquT/A6nua4WE+aOeAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# Data distribution Shift Test\n", "\n", "shift_test = DataShift(\n", " protected_attr = ['gender','age'],\n", " method = 'chi2',\n", " threshold = 0.05\n", ")\n", "\n", "shift_test.run(x_train = x_train, x_test = x_test)\n", "shift_test.plot(alpha=0.05) # default alpha argument shows 95% C.I bands" ] }, { "cell_type": "markdown", "id": "0aabf479", "metadata": {}, "source": [ "## Bootstrap model card from tally form and scaffold assets\n", "We can add the quantitative analysis, explainability analysis and fairness analysis sections to a bootstrap model card for convenience. In this example, we use an existing model card which we created from the tally form response. This is meant only as an example - the dataset and risk evaluation in the model card is a fictional use case." ] }, { "cell_type": "code", "execution_count": 10, "id": "ab202762", "metadata": {}, "outputs": [], "source": [ "# Convert form response to model card protobuf\n", "pb = tally_form_to_mc(\"sample-form-response.json\")\n", "\n", "# Initialize the mct and scaffold using the existing protobuf\n", "mct = mctlib.ModelCardToolkit(output_dir = \"model_card_output\", file_name=\"credit_card_fraud_example\")\n", "mc = mct.scaffold_assets(proto=pb)" ] }, { "cell_type": "markdown", "id": "b34b9aac", "metadata": {}, "source": [ "## Convert test objects to a model-card-compatible format" ] }, { "cell_type": "code", "execution_count": 11, "id": "35ba8454", "metadata": {}, "outputs": [], "source": [ "# init model card test objects\n", "mc_smt_test = mctlib.Test()\n", "mc_smt_test2 = mctlib.Test()\n", "mc_sgd_test = mctlib.Test()\n", "mc_sgd_test2 = mctlib.Test()\n", "mc_pmt_test = mctlib.Test()\n", "mc_shap_test = mctlib.Test()\n", "mc_imp_test = mctlib.Test()\n", "mc_shift_test = mctlib.Test()\n", "\n", "# assign tests to them\n", "mc_smt_test.read_model_test(smt_test)\n", "mc_smt_test2.read_model_test(smt_test2)\n", "mc_sgd_test.read_model_test(sgd_test)\n", "mc_sgd_test2.read_model_test(sgd_test2)\n", "mc_pmt_test.read_model_test(pmt)\n", "mc_imp_test.read_model_test(imp_test)\n", "mc_shap_test.read_model_test(shap_test)\n", "mc_shift_test.read_model_test(shift_test)" ] }, { "cell_type": "code", "execution_count": 12, "id": "c1598bcb", "metadata": { "scrolled": true, "tags": [] }, "outputs": [], "source": [ "# Add quantitative analysis\n", "\n", "# Create 4 PerformanceMetric to store our results\n", "mc.quantitative_analysis.performance_metrics = [mctlib.PerformanceMetric() for i in range(0, 4)]\n", "mc.quantitative_analysis.performance_metrics[0].type = \"Recall\"\n", "mc.quantitative_analysis.performance_metrics[0].value = str(recall_train)\n", "mc.quantitative_analysis.performance_metrics[0].slice = \"Training Set\"\n", "\n", "mc.quantitative_analysis.performance_metrics[1].type = \"Precision\"\n", "mc.quantitative_analysis.performance_metrics[1].value = str(precision_train)\n", "mc.quantitative_analysis.performance_metrics[1].slice = \"Training Set\"\n", "mc.quantitative_analysis.performance_metrics[1].graphics.description = (\n", " 'Confusion matrix and ROC Curve')\n", "mc.quantitative_analysis.performance_metrics[1].graphics.collection = [\n", " mctlib.Graphic(image=confusion_matrix_train), mctlib.Graphic(image=roc_curve_train)\n", "]\n", "\n", "mc.quantitative_analysis.performance_metrics[2].type = \"Recall\"\n", "mc.quantitative_analysis.performance_metrics[2].value = str(recall_test)\n", "mc.quantitative_analysis.performance_metrics[2].slice = \"Test Set\"\n", "\n", "mc.quantitative_analysis.performance_metrics[3].type = \"Precision\"\n", "mc.quantitative_analysis.performance_metrics[3].value = str(precision_test)\n", "mc.quantitative_analysis.performance_metrics[3].slice = \"Test Set\"\n", "mc.quantitative_analysis.performance_metrics[3].graphics.description = (\n", " 'Confusion matrix and ROC Curve')\n", "mc.quantitative_analysis.performance_metrics[3].graphics.collection = [\n", " mctlib.Graphic(image=confusion_matrix_test), mctlib.Graphic(image=roc_curve_test)\n", "]\n" ] }, { "cell_type": "code", "execution_count": 13, "id": "6d37ae07", "metadata": {}, "outputs": [], "source": [ "# You can add the components of a test (e.g. on explainability) in a report\n", "mc.explainability_analysis.explainability_reports = [\n", " mctlib.ExplainabilityReport(\n", " type=\"Top 10 most important features\", graphics=mctlib.GraphicsCollection(\n", " collection = [mctlib.Graphic(name=n, image=i) for n, i in imp_test.plots.items()]\n", " )\n", " )\n", "]\n", "\n", "# Or you can add it as a test directly\n", "mc.explainability_analysis.explainability_reports.append(\n", " mctlib.ExplainabilityReport(type=\"Protected Attributes should not be model's top important features\", tests=[mc_shap_test])\n", ")" ] }, { "cell_type": "code", "execution_count": 14, "id": "5c520f29", "metadata": {}, "outputs": [], "source": [ "# The bootstrap template comes with two requirements on fairness analysis:\n", "# Minimum acceptable service and Equal false positive rate\n", "# We add the relevant tests associated with it\n", "mc.fairness_analysis.fairness_reports[0].tests = [mc_smt_test,mc_smt_test2]\n", "mc.fairness_analysis.fairness_reports[1].tests = [mc_sgd_test,mc_sgd_test2]\n", "\n", "# We also add a test for attribute shift between the training and testing dataset for additional reliablity check\n", "mc.fairness_analysis.fairness_reports.append(\n", " mctlib.FairnessReport(type=\"Distribution of attribute subgroups should be silimiar across different datasets\", tests=[mc_shift_test])\n", ")\n", "mc.fairness_analysis.fairness_reports.append(\n", " mctlib.FairnessReport(type='Fairness metric for subgroups in original data and perturbed data should be similar', tests=[mc_pmt_test])\n", ")\n", "\n", "mct.update_model_card(mc)" ] }, { "cell_type": "markdown", "id": "428a52aa", "metadata": {}, "source": [ "## Model Card Display" ] }, { "cell_type": "code", "execution_count": 15, "id": "8103e504", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<!DOCTYPE html>\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", " Model Card for Credit Card Fraud Model\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "

\n", "\n", " Model Card for Credit Card Fraud Model\n", "\n", "

\n", "\n", "
\n", "\n", "
\n", "\n", "

Model Details

\n", "\n", "

Overview

\n", "\n", " Sample example of a risk assessment of a credit card fraud model. Binary prediction problem (fraud or no fraud). Customers flagged as potentially fraudulent will be passed to internal investigation team for follow-up.\n", "\n", "

Version

\n", "\n", " \n", "\n", " \n", "\n", "
name: v1
\n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", "

Owners

\n", "\n", " \n", "\n", " \n", "\n", "
  • Timothy, Product Owner(s)
  • \n", "\n", " \n", "\n", "
  • Swan, Model Developer(s)
  • \n", "\n", " \n", "\n", "
  • Jason, Reviewer(s)
  • \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "

    Regulatory requirements

    \n", "\n", " MAS Fairness, Ethics, Accountability and Transparency (FEAT) principles\n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "

    Considerations

    \n", "\n", " \n", "\n", "

    Intended Users

    \n", "\n", " \n", "\n", " \n", "\n", "
      \n", "\n", " \n", "\n", "
    • Credit card fraud team and credit card holders
    • \n", "\n", " \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", "

    Use Cases

    \n", "\n", " \n", "\n", " \n", "\n", "
      \n", "\n", " \n", "\n", "
    • Increase accuracy of predicting credit card fraud over the existing rule-based model, saving the bank time and energy for each false positive case and avoiding reputation harm from false negative cases.
    • \n", "\n", " \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "

    Fairness Considerations

    \n", "\n", "
      \n", "\n", "
    • \n", "\n", "
      Group at risk: race, age, gender
      \n", "\n", "
      Benefits: A more precise model will reduce the number of customers being mistakenly labelled as fraudulent in the existing rules based model, which takes 7 man-days to resolve before a credit card could be unfrozen.
      \n", "\n", "
      Harms: Customers who are in the false-positive category will have their credit card frozen and may be excluded from the financial services of the bank for up to 7 days.
      \n", "\n", "
      Mitigation Strategy: Because there is less data for certain demographic groups (e.g. youth, elderly), the model can have much higher/lower false-positive rates for that segment than that of others. We will prioritize such cases after the initial model score to add a 2nd level of check and minimise disruption to the customer.
      \n", "\n", "
    \n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "

    Datasets

    \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", "

    Credit Card Dataset

    \n", "\n", "

    Standard credit card dataset

    \n", "\n", " \n", "\n", "

    Sensitive data

    \n", "\n", "
      \n", "\n", " \n", "\n", "
    • age
    • \n", "\n", " \n", "\n", "
    • gender
    • \n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", "

    Sensitive data used in model

    \n", "\n", "
      \n", "\n", " \n", "\n", "
    • age
    • \n", "\n", " \n", "\n", "
    • gender
    • \n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "

    Justification

    \n", "\n", "

    Age and gender is an important predictor of credit card fraud

    \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", "

    CRM

    \n", "\n", "

    Customer information database

    \n", "\n", " \n", "\n", "

    Sensitive data

    \n", "\n", "
      \n", "\n", " \n", "\n", "
    • age
    • \n", "\n", " \n", "\n", "
    • gender
    • \n", "\n", " \n", "\n", "
    • race
    • \n", "\n", " \n", "\n", "
    • religion
    • \n", "\n", " \n", "\n", "
    • id
    • \n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", "

    Sensitive data used in model

    \n", "\n", "
      \n", "\n", " \n", "\n", "
    • age
    • \n", "\n", " \n", "\n", "
    • gender
    • \n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "

    Justification

    \n", "\n", "

    Age and gender is an important predictor of credit card fraud

    \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", " \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "

    Quantitative Analysis

    \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "

    Recall - 0.936 (Training Set)

    \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "

    Precision - 0.998 (Training Set)

    \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", " \n", "\n", "
    Confusion matrix and ROC Curve
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " None\n", "\n", "
    \n", "\n", " \n", "\n", "
    \n", "\n", " None\n", "\n", "
    \n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "

    Recall - 0.77 (Test Set)

    \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "

    Precision - 0.955 (Test Set)

    \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", " \n", "\n", "
    Confusion matrix and ROC Curve
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " None\n", "\n", "
    \n", "\n", " \n", "\n", "
    \n", "\n", " None\n", "\n", "
    \n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "

    Explainability Analysis

    \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "

    Top 10 most important features

    \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " Feature Importance Plot\n", "\n", "
    \n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "

    Protected Attributes should not be model's top important features

    \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", "

    Shapely Feature Importance Test

    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " Description: \n", "\n", " Test if the subgroups of the protected attributes are the top ranking\n", "influential variables under shapely feature importance value. To\n", "pass, subgroups should not be ranked in the top 10\n", "features. \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " Threshold: \n", "\n", " 10 \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " Result: \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "\n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    feature_rankpassed\r", "
    age_>=6510.0False\r", "
    gender_F13.0True\r", "
    gender_M16.0True\r", "
    age_40-6418.0True\r", "
    age_26-3921.0True\r", "
    age_<=2526.0True\r", "
    \n", "\n", "\n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    Failed
    \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " SHAP Summary Plot\n", "\n", "
    \n", "\n", " \n", "\n", "
    \n", "\n", " SHAP Dependence Plot: age_>=65\n", "\n", "
    \n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "

    Fairness Analysis

    \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "

    Minimum acceptable service

    \n", "\n", " \n", "\n", "
    \n", "\n", " Segment: \n", "\n", " Age and gender \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " Description: \n", "\n", " False positive rate for the credit scoring model should be below 2.5% which is the existing average false positive rate of the rule based model \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", "

    ROC/Min Max Threshold Test

    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " Description: \n", "\n", " Test if the fpr of the subgroups within gender \n", "is lower than the threshold of 0.025.\n", " \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " Threshold: \n", "\n", " 0.025 \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " Result: \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "\n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    fpr at current probability thresholdpassed\r", "
    gender_M0.009True\r", "
    gender_F0.024True\r", "
    \n", "\n", "\n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    Passed
    \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " ROC Curve of gender groups\n", "\n", "
    \n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", "

    ROC/Min Max Threshold Test

    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " Description: \n", "\n", " Test if the fpr of the subgroups within age \n", "is lower than the threshold of 0.025.\n", " \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " Threshold: \n", "\n", " 0.025 \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " Result: \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "\n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    fpr at current probability thresholdpassed\r", "
    age_>=650.011True\r", "
    age_26-390.021True\r", "
    age_40-640.024True\r", "
    age_<=250.012True\r", "
    \n", "\n", "\n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    Passed
    \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " ROC Curve of age groups\n", "\n", "
    \n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "

    Equal false positive rate

    \n", "\n", " \n", "\n", "
    \n", "\n", " Segment: \n", "\n", " Age and gender \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " Description: \n", "\n", " Disparity ratio of false positive rates of any 2 bins in the respective attribute should not be more than a factor of 1.5 \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", "

    Subgroup Disparity Test

    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " Description: \n", "\n", " Test if the maximum ratio of the false postive rate of any 2\n", "groups within age attribute exceeds 1.5. To\n", "pass, this value cannot exceed the threshold. \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " Threshold: \n", "\n", " 1.5 \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " Result: \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "\n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    age_fpr_max_ratio\r", "
    02.094\r", "
    \n", "\n", "\n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    Failed
    \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " False Positive Rates across age subgroups\n", "\n", "
    \n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", "

    Subgroup Disparity Test

    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " Description: \n", "\n", " Test if the maximum ratio of the false postive rate of any 2\n", "groups within gender attribute exceeds 1.5. To\n", "pass, this value cannot exceed the threshold. \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " Threshold: \n", "\n", " 1.5 \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " Result: \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "\n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    gender_fpr_max_ratio\r", "
    02.574\r", "
    \n", "\n", "\n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    Failed
    \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " False Positive Rates across gender subgroups\n", "\n", "
    \n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "

    Distribution of attribute subgroups should be silimiar across different datasets

    \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", "

    Data Shift Test

    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " Description: \n", "\n", " Test if there is any shift in the distribution of the attribute\n", "subgroups across the different datasets. \n", " To pass, the p-value calculated from a chi-square test\n", " of independence between the datasets should be greater\n", " than 5.0% significance level.\n", " \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " Threshold: \n", "\n", " 0.05 \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " Result: \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "\n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    training_distributioneval_distributionp-valuepassed\r", "
    gender_F0.5260.5440.234True\r", "
    gender_M0.4740.4560.234True\r", "
    age_26-390.230.2290.798True\r", "
    age_40-640.3230.3210.798True\r", "
    age_<=250.0440.050.798True\r", "
    age_>=650.4030.40.798True\r", "
    \n", "\n", "\n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    Passed
    \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " Probability Distribution of protected attributes\n", "\n", "
    \n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "

    Fairness metric for subgroups in original data and perturbed data should be similar

    \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", "

    Subgroup Perturbation Test

    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " Description: \n", "\n", " Test if the ratio of the false postive rate of the age\n", "subgroups of the original dataset and the perturbed dataset exceeds\n", "the threshold. The metric for perturbed dataset will be the\n", "denominator. To\n", "pass, this computed value cannot exceed 1.5. \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " Threshold: \n", "\n", " 1.5 \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " Result: \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "\n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    fpr of original datafpr of perturbed dataratiopassed\r", "
    age_26-390.0210.0191.14True\r", "
    age_40-640.0240.0191.268True\r", "
    age_<=250.0120.0240.482True\r", "
    age_>=650.0110.0120.959True\r", "
    \n", "\n", "\n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    Passed
    \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " False Positive Rates across age subgroups\n", "\n", "
    \n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", "\n", "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Export to html\n", "html = mct.export_format(output_file=\"credit_card_fraud_example.html\")\n", "display.display(display.HTML(html))" ] }, { "cell_type": "code", "execution_count": 16, "id": "62fd506d", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAATgAAAEGCAYAAADxD4m3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAZu0lEQVR4nO3deZhdVZnv8e8vE5lDQgYSSAhgQGkw0Q5zX2VqSGj7An2hL2B78yg24BWwbzuh9z440ALaItpBsMMgsZGxlQYFCRhFpBskJJAYwkwwBIpMjAmZquq9f+xdyUlRdWrvyjl1ztn1+zzPfmrvdfawTuWpN2vvtdd6FRGYmRVRn1pXwMysWhzgzKywHODMrLAc4MyssBzgzKyw+tW6AqVGj+obkyf2r3U1LIdnlwyudRUsh01sYEts1s6c44Sjh8S611sy7btwyeZ5ETFjZ663M+oqwE2e2J9H502sdTUshxMmTKt1FSyHP8T8nT7HutdbeHTepEz79h3/3OidvuBOqKsAZ2b1L4BWWmtdjUwc4MwslyDYGtluUWvNAc7McnMLzswKKQhaGmSIpwOcmeXWigOcmRVQAC0OcGZWVG7BmVkhBbDVz+DMrIiC8C2qmRVUQEtjxDcHODPLJxnJ0Bgc4MwsJ9HCTo3X7zGeLsnMckk6GZRpyUJSX0mPS/pluj1K0v2Snkt/jizZ9yuSnpf0jKQTujq3A5yZ5ZK8B6dMS0afA54q2b4QmB8RU4D56TaSDgBOB/4MmAFcJalvuRM7wJlZbq2hTEtXJO0J/BVwbUnxScDcdH0ucHJJ+S0RsTkilgPPA4eUO7+fwZlZLm0tuIxGS3qsZHtORMwp2f4+8CVgWEnZuIhoAoiIJklj0/I9gEdK9luZlnXKAc7McglES/abv7URMb2jDyR9DFgdEQslHZXhXB1F1bIvrDjAmVluWW4/MzgS+O+STgQGAsMl3QiskjQ+bb2NB1an+68ESqf83hN4tdwF/AzOzHIJxJbom2kpe56Ir0TEnhExmaTz4DcR8XfAXcCsdLdZwJ3p+l3A6ZJ2kbQ3MAV4tNw13IIzs1ySF32r2ja6DLhN0lnACuA0gIh4UtJtwDKgGfhsRPmphR3gzCy3Sr/oGxEPAA+k6+uAYzvZ71vAt7Ke1wHOzHKJEC3RGE+3HODMLLfWBhmq5QBnZrkknQyNEToao5ZmVjd6oJOhYhzgzCy3lsq8B1d1DnBmlkvOkQw15QBnZrm1uhfVzIooGWzvAGdmBRSIrV0Mw6oXDnBmlksEftHXzIpKftHXzIopcAvOzArMnQxmVkhBtnwL9cABzsxySdIGNkboaIxamlkdceJnMyuoIBnJkGUpR9JASY9KWizpSUnfSMu/LukVSU+ky4klx+RK/OwWnJnlVqEW3GbgmIhYL6k/8JCkX6WfXRER3y3duV3i5wnAryXtV27acrfgzCyXCFWkBReJ9elm/3QplwYwd+JnBzgzyyXpZOibaSFN/FyynF16Lkl9JT1Bkhrw/oj4Q/rReZKWSLpe0si0bA/g5ZLDnfjZzCotV06GThM/A6S3l9Mk7QrcIelA4GrgYpJYejFwOfApupH42S04M8sl6WRQpiXzOSPeJMmqNSMiVkVES0S0Atew/TbUiZ/NrPpa6JNpKUfSmLTlhqRBwHHA02k2+zanAEvTdSd+NrPqquBIhvHAXEl9SRpbt0XELyX9m6RpJI3Fl4BzwImfzayHVCLpTEQsAT7UQfknyhzjxM9mVj0RsLW1MZ5uOcCZWS7JLaoDnJkVVKOMRXWAq5CWFjh/xn7sNn4rF/9kOXO/szsPzxuBBLuO3soXvr+C3XZv5unHB/ODLyY93QF84vOvceTMt2pbedtBnz7B7HufZV1Tfy6atU+tq1N32l4TaQRVDXCSZgA/APoC10bEZdW8Xi39x7VjmDhlM++uT5rup35mNbO+9Fr62WhuvGJ3PvftlUzefyNX3vsMffvBulX9+Mxx+3PYX75FX/9XUzdO/vRaXn5uIIOHlu2g68Ua5xa1arVMu35/CMwEDgDOSAfLFs6aV/vz6PzhzDxz3bayIcNat61v2tgHpf/hDRwc24LZ1s3by60+jB6/hUOOfZtf3TSq1lWpa61pXoaullqrZrvhEOD5iHgRQNItJINll1XxmjXxo6/twaf/36u8u37HVGo/vmx3fn37KIYMb+E7//78tvKnFw3m8n+cyOqVA/jS7BVuvdWRc7/xKtf+03gGD23teudeKulFbYy0gdVsZ2YaGCvp7LaBuGvWNd4twSP3D2fX0c1M+eDG93z2yQtf46cLl3HM37zBXdeP2Vb+/g+/yzUPPMPsXz3LLbPHsmVT7f+nMzj0uLd5c20/nv/j4FpXpa61vehbyaFa1VLNAJdpYGxEzImI6RExfcxujfG/QqllC4bwyH3D+V+HHMCln9mLxQ8N49vnTdphn6NPeYOH7hnxnmMnTdnMwMGtvPTMwJ6qrpVxwMEbOOz4t5n7h2V85eo/MfUv1vOl2X+qdbXqkm9RuzEwthF96qtNfOqrTQAs/q+h/PuPxvDlK1fwyosD2GOfLQA8Mm8EE9+3GYDXVgxgzIQt9O0Hq1b2Z+ULAxm355aa1d+2+/Gl4/nxpckwyA8evp5Tz13Nd87fq8a1qj/uRU0sAKakg2JfIZmJ88wqXq+uXHfJBFa+sAt9+sDYPbZwwbdXArD00SHceuXe9OuXvI5w/iUrGbFb492aW+/WKL2oVQtwEdEs6TxgHslrItdHxJPVul49mHrEeqYekUxQetG1L3W4z3GnvsFxp77Rg7Wy7ljy8FCWPDy01tWoSxGiubcHOICIuAe4p5rXMLOe51tUMyskP4Mzs0JzgDOzQqrghJdV5wBnZrnVwztuWTRGV4iZ1Y0IaG7tk2kpp0xm+1GS7pf0XPpzZMkxuTLbO8CZWW4VGqrVltl+KjANmCHpMOBCYH5ETAHmp9vtM9vPAK5KJ/XolAOcmeVSqbGoZTLbnwTMTcvnAien685sb2bVF6FMC93LbD8uIpqS60QTMDbd3Zntzaz6cnQydCezfWdyZ7Z3gDOzXCIq/x5cRLwp6QGSZ2urJI2PiKY0CfTqdDdntjezahMtrX0yLWXP0klme5IM9rPS3WYBd6brzmxvZtUX1c1s/zBwm6SzgBXAack1ndnezKqsUmNRy2S2Xwcc28kxzmxvZlUUyXO4RuAAZ2a5NcpQLQc4M8sl0k6GRuAAZ2a5+RbVzAqrQr2oVecAZ2a5RDjAmVmBecJLMyssP4Mzs0IKRKt7Uc2sqBqkAecAZ2Y5uZPBzAqtQZpwDnBmllvDt+AkzaZMnI6IC6pSIzOrawG0tjZ4gAMe67FamFnjCKDRW3ARMbd0W9KQiNhQ/SqZWb1rlPfgunyZRdLhkpYBT6XbUyVdVfWamVn9ioxLGZImSvqtpKfSxM+fS8u/LukVSU+ky4klx+RK/Jylk+H7wAkk86ETEYslfSTDcWZWSKpUJ0Mz8PmIWCRpGLBQ0v3pZ1dExHd3uOqOiZ8nAL+WtF+5acszvY4cES+3Kyo7D7qZFVwFWnAR0RQRi9L1d0juEsvlOa1K4ueXJR0BhKQBkr6QVsTMeqOAaFWmhS4SP7eRNJkkP8Mf0qLzJC2RdL2kkWlZ7sTPWQLcucBn0xO9AkxLt82s11LGJUn8XLLMec+ZpKHAz4B/iIi3gauBfUliTRNweclF29u5xM8RsRb4eFf7mVkvUqFeVEn9SYLbTyPi5wARsark82uAX6ablU/8LGkfSb+QtEbSakl3Ston5/cwsyKpTC+qgOuApyLieyXl40t2OwVYmq5XJfHzTcAP0wtB0otxM3BohmPNrGgq96LvkcAngD9KeiIt+ypwhqRp6ZVeAs6B6iV+VkT8W8n2jZLOy/ElzKxgKvGib0Q8RMfP1e4pc0xlEj9LGpWu/lbShcAtJBH1fwJ3Z72AmRVQAcaiLiQJaG3f5JySzwK4uFqVMrP6pgYZqlVuLOrePVkRM2sQGToQ6kWm+eAkHQgcAAxsK4uIn1SrUmZWz9T4s4m0kfQ14CiSAHcPMBN4CHCAM+utGqQFl2Ukw6nAscBrEfFJYCqwS1VrZWb1rTXjUmNZblE3RkSrpGZJw4HVgF/0NeutijDhZYnHJO0KXEPSs7qeLt4eNrNia/he1DYR8b/T1R9JuhcYHhFLqlstM6trjR7gJH243Gdt8ziZmdWrci24y8t8FsAxFa4Lzy4ZzAl7/nmlT2tVtPzSsvMNWp3ZMvuRipyn4W9RI+LonqyImTWIoBBDtczMOtboLTgzs840/C2qmVmnGiTAZZnRV5L+TtJF6fYkSX6ybNabVWBG356QZajWVcDhwBnp9jskM/yaWS+kyL6UPU/niZ9HSbpf0nPpz5Elx+RK/JwlwB0aEZ8FNgFExBvAgAzHmVlRtSrbUl5b4ucPAIcBn02TO18IzI+IKcD8dLt94ucZwFWS+pa7QJYAtzU9SaQXGUNdDKM1s1qpRAuuTOLnk4C56W5zgZPT9aokfv4X4A5grKRvkUyVdEmG48ysqLI/g+tO4udxEdEESRAExqa75U78nGUs6k8lLSSZMknAyRHhzPZmvVWG1lmJtRExvdwO7RM/J9kEO96149p0LsuEl5OAd4FflJZFxIqujjWzgqpi4mdglaTxEdGU5khdnZbnTvyc5T24u9mefGYgsDfwDMmDPjPrhVSBp/CdJX4mSfA8C7gs/XlnSflNkr4HTKASiZ8j4qB2lfowO2bYMjPrjs4SP18G3CbpLGAFcBpUL/HzDiJikaSD8x5nZgVS3cTPkDzz7+iYyiR+biPpH0s2+wAfBtZkvYCZFUy+ToaaytKCG1ay3kzyTO5n1amOmTWEIgS49AXfoRHxxR6qj5k1gkYPcJL6RURzuanLzaz3EZXpRe0J5Vpwj5I8b3tC0l3A7cCGtg9L3lkxs96kYM/gRgHrSHIwtL0PF4ADnFlvVYAANzbtQV3K9sDWpkG+nplVRYNEgHIBri8wlG6M/zKzYivCLWpTRHyzx2piZo2jAAGuMfKCmVnPimL0onY4VMLMrOFbcBHxek9WxMwaRxGewZmZdcwBzswKqU5SAmbhAGdmuQjfoppZgTnAmVlxNUiAy5I20MxsR9nTBpYl6XpJqyUtLSn7uqRXJD2RLieWfFbxzPZmZttlTPqc8Tb2BpIs9e1dERHT0uUeqF5mezOzHVWoBRcRDwJZ37mtSmZ7M7MdqDXbQsbM9h04T9KS9BZ2ZFqWO7O9A5yZ5ZbjFnVtREwvWeZkOP3VwL7ANKAJuLztsh3sW7ad6ABnZvlkvT3tZk9rRKyKiJaIaAWuYfttaO7M9g5wZpZfFQOcpPElm6eQTLoLSWb70yXtImlvKpHZ3sysVCVHMki6GTiK5FndSuBrwFGSppGEyJeAc6CHMtubmam1MhEuIs7ooPi6MvtXNrO9mdkOPNjezIrMY1HNrLgc4MysqNyCM7PicoAzs0IqSFYtM7P38Iy+ZlZs0RgRzgHOzHJzC844+azVzDxjLRL86qbR3HHd2FpXyYDdB6/nO3/xG8YMepdWxK3PfoCfPPVBRgzYxPc/ej97DH2HV9YP43O/O563t+yy7bjxQ97hnpNuZfbi6Vz/5LTafYFaa6AXfas22L6jqYh7k73238jMM9Zywcfez7nHf4BDj3uLCXtvqnW1DGgJcdljhzPzztP527tP4eP7P8m+I17n7IMe5+GmPTn+jjN5uGlPzj7w8R2O++rB/8WDr0yqUa3rS4754GqqmrOJ3EDHUxH3CpPet4mnHh/C5k19aG0RSx4ZypEz3qx1tQxYs3EIy14fA8CG5gG88NZIxg3ewLETX+KOF/YD4I4X9uO4Scu3HXPcxOW8/M5wnn9zZIfn7G16fYDLORVx4bz0zEAOOnQ9w3ZtZpeBrRx8zNuMmbC11tWydvYY8jYHjFrL4rXjGD1oI2s2DgGSILjbwI0ADOq3lb8/8AmuXDy9llWtH0HSyZBlqbGaP4NLpzA+G2Agg2tcm8p5+flB3HbVOC69+Tk2bejL8mWDaGnuaEJSq5XB/bYy++j7uGTBEWzYOqDT/S6Y9hg3LDuId5v792Dt6ps7GTJKpzCeAzBcoxrk15bNvFtGM++W0QB88suvsKap8z8i61n91MLso+bxixencN+KfQBYu3EQYwZtYM3GIYwZtIF1mwYBMHX0Kk7Y6wW+OP0Rhg/YQmuILS39uPHpA2v5FWqrQf5Sax7gimzEblt5a11/xkzYwpEz3+QfTtq/1lUyAIJLjvwdL7w1kh8vm7qt9DcvT+aUfZ9lztIPccq+zzL/5ckAnHnvydv2OX/qAjY09+/Vwc0v+hoAF815kWEjW2hpFlf+34msf8u/7nrw52Nf4+R9n+Xp10dx51/fDsD3Fh3CnKUf4gcfvZ9TpzxF04ZhXPDAX9a4pnUqomITXkq6HvgYsDoiDkzLRgG3ApNJZvT924h4I/3sK8BZQAtwQUTMK3f+qv3FdTQVcUR0OlNnEX3+f7jFVo8Wrh7PfnPP7fCzWff9ddljZy8+uBpVajyVa8HdAFwJ/KSk7EJgfkRcJunCdPvL7RI/TwB+LWm/ctOWVy3AdTIVsZkVQKVuUSPiQUmT2xWfRNI4ApgLPAB8mZLEz8BySW2Jnx/u7Py+ZzKzfALIfos6WtJjJdtzMuRGHRcRTQAR0SSpbQjQHsAjJft1mfjZAc7M8sveglsbEZV6gdCJn82s+nJktu+OVW25UdOfq9NyJ342s+pTa2RauukuYFa6Pgu4s6TciZ/NrIoqOJtIJ4mfLwNuk3QWsAI4DZz42cx6QPKib1UTPwMc28n+TvxsZlVWBzOFZOEAZ2a5VaoFV20OcGaWTwPN6OsAZ2Y5VW4sarU5wJlZfr5FNbNCcuJnMys0t+DMrLAaI745wJlZfmptjHtUBzgzyyfwi75mVkwi/KKvmRWYA5yZFZYDnJkVkp/BmVmRuRfVzAoqfItqZgUVVCzASXoJeIckkXNzREwvl/g5L+dkMLP8WjMu2RwdEdNKsm+1JX6eAsxPt7vFAc7MclNEpqWbTiJJ+Ez68+TunsgBzszyi8i2pImfS5az258JuE/SwpLPdkj8DIylm/wMzszyiYCWzPefXSV+PjIiXk2z198v6emdr+B2bsGZWX7ZW3BdnCZeTX+uBu4ADqHzxM+5OcCZWX4VCHCShkga1rYOHA8spfPEz7n5FtXM8gmgMjkZxgF3SIIkFt0UEfdKWkAHiZ+7wwHOzHIKiJ0fyRARLwJTOyhfRyeJn/NygDOzfII8nQw15QBnZvl5qJaZFZYDnJkVkwfbm1lRBeDpksyssNyCM7NiyjVUq6Yc4Mwsn4CowHtwPcEBzszyq8xIhqpzgDOz/PwMzswKKcK9qGZWYG7BmVkxBdHSUutKZOIAZ2b5VG66pKpzgDOz/PyaiJkVUQDhFpyZFVJUZsLLnuAAZ2a5NUong6KOunslrQH+VOt6VMFoYG2tK2G5FPXfbK+IGLMzJ5B0L8nvJ4u1ETFjZ663M+oqwBWVpMe6yA1pdcb/ZsXgtIFmVlgOcGZWWA5wPWNOrStgufnfrAD8DM7MCsstODMrLAc4MyssB7gqkjRD0jOSnpd0Ya3rY12TdL2k1ZKW1routvMc4KpEUl/gh8BM4ADgDEkH1LZWlsENQM1eTLXKcoCrnkOA5yPixYjYAtwCnFTjOlkXIuJB4PVa18MqwwGuevYAXi7ZXpmWmVkPcYCrHnVQ5ndyzHqQA1z1rAQmlmzvCbxao7qY9UoOcNWzAJgiaW9JA4DTgbtqXCezXsUBrkoiohk4D5gHPAXcFhFP1rZW1hVJNwMPA/tLWinprFrXybrPQ7XMrLDcgjOzwnKAM7PCcoAzs8JygDOzwnKAM7PCcoBrIJJaJD0haamk2yUN3olz3SDp1HT92nITAUg6StIR3bjGS5Lek32ps/J2+6zPea2vS/pC3jpasTnANZaNETEtIg4EtgDnln6YzmCSW0R8OiKWldnlKCB3gDOrNQe4xvV74H1p6+q3km4C/iipr6R/lrRA0hJJ5wAocaWkZZLuBsa2nUjSA5Kmp+szJC2StFjSfEmTSQLp/0lbj/9N0hhJP0uvsUDSkemxu0m6T9Ljkv6Vjsfj7kDSf0haKOlJSWe3++zytC7zJY1Jy/aVdG96zO8lvb8iv00rJGe2b0CS+pHMM3dvWnQIcGBELE+DxFsRcbCkXYD/lHQf8CFgf+AgYBywDLi+3XnHANcAH0nPNSoiXpf0I2B9RHw33e8m4IqIeEjSJJLRGh8AvgY8FBHflPRXwA4BqxOfSq8xCFgg6WcRsQ4YAiyKiM9Luig993kkyWDOjYjnJB0KXAUc041fo/UCDnCNZZCkJ9L13wPXkdw6PhoRy9Py44EPtj1fA0YAU4CPADdHRAvwqqTfdHD+w4AH284VEZ3Ni3YccIC0rYE2XNKw9Bp/kx57t6Q3MnynCySdkq5PTOu6DmgFbk3LbwR+Lmlo+n1vL7n2LhmuYb2UA1xj2RgR00oL0j/0DaVFwPkRMa/dfifS9XRNyrAPJI82Do+IjR3UJfPYP0lHkQTLwyPiXUkPAAM72T3S677Z/ndg1hk/gyueecBnJPUHkLSfpCHAg8Dp6TO68cDRHRz7MPBRSXunx45Ky98BhpXsdx/J7SLpftPS1QeBj6dlM4GRXdR1BPBGGtzeT9KCbNMHaGuFnkly6/s2sFzSaek1JGlqF9ewXswBrniuJXm+tihNnPKvJC31O4DngD8CVwO/a39gRKwheW72c0mL2X6L+AvglLZOBuACYHraibGM7b253wA+ImkRya3yii7qei/QT9IS4GLgkZLPNgB/JmkhyTO2b6blHwfOSuv3JJ4G3srwbCJmVlhuwZlZYTnAmVlhOcCZWWE5wJlZYTnAmVlhOcCZWWE5wJlZYf1/r0BHXoVkANYAAAAASUVORK5CYII=\n", "text/plain": [ "
    " ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEGCAYAAABo25JHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAApq0lEQVR4nO3de5wWZf3/8ddbzoKgKaaACCoeABV1Rc00D5nHMn6aef6Vmlqa9rDyUHnIr9+yUH9qanjIyOQLmmmSefr2LbU0vwiKuIAKKsKCKKKhgIALn98fM7vee++9e8/Czr0u+34+HvvYe2aumflcc+/ONddcM9eliMDMzDquDdo6ADMza1suCMzMOjgXBGZmHZwLAjOzDs4FgZlZB9e5rQNoqc022ywGDRrU1mGYmbUrU6ZMeTci+pZa1u4KgkGDBjF58uS2DsPMrF2R9GZTy3xryMysg3NBYGbWwbkgMDPr4FwQmJl1cC4IzMw6uNwKAkl3SnpHUnUTyyXpRkmzJU2TtHtesZiZWdPyrBGMBQ5rZvnhwJD050zg1znGYmZmTcjtPYKIeErSoGaSHA3cFUk/2M9K2ljSlhHxVl4xmbW1iCACou4zpNORLqf+d1A6bZKg6eVBOhMazGuQtmA/Sbqm9vXJ/EZxFXwuXvbJvktvK1k/GsVIlI6Zgm3RKIaCZU3tqyh/FKRtclslj01RXEX7bfg9FOSx5LEpPn4N91O8byLYc/Bn2G9IyXfC1klbvlDWH5hXMF2TzmtUEEg6k6TWwMCBAysSXCWt+Hg1ryz8kOoFS5j9zlI+Xr2m0R8EDf5YG/9hNvzHb/zHWPgPRN2yEttq/I9f/g+79B9t6ZMLBduiwbYb/jPS1L6K8lM6z0VxlTjhZM5zg2NXKh/Z82y2rr59wLbrXUGgEvNK/rtExG3AbQBVVVXt+l9q6cpaZiz4gOr5S5i+4AOmL1jCrHeWsnpNkq0Nu3aie5dOCJCg7jBJ1M8TKpj+ZDlNLK/bTIPporQULJM+WVa4bwqXF6VPdqFP9rMBiA0abKsuXaN9NdpWM3lW0X7q8l9iWxQdi0bHJ01UvB+KtlX6uDbMR/G+Gh3bRsevKG3BwSm5vOh7KpnnEt9T3ffSKI9N/T009zdR4ntpePyK9tvEvkofmxJ/t0X7Kf5eSh+bojyX/N4a7ru5bTU+1oXHudTfV9HxUuOYi7/j0t958ffyyd9HHtqyIKgBtiqYHgAsaKNYcvHeslVMX7CE6vnJCX/6gg94491l9cs369WN4f17c/BOmzO8Xx+G9+/DgE165P6lm5kVasuCYCJwrqQJwF7AkvbaPhARvP3Byvqr/OoFS5g+fwkLlqyoT9N/4x4M79+bUbv1Z3j/3gzv14fNe3dvw6jNzBK5FQSSxgMHAJtJqgEuB7oARMQY4GHgCGA2sBz4Zl6xtKaIYO57y+uv8qsXfMCMBUt4d+kqIKnGDd6sJ1WDPsOwfr0Z3r8Pw/r1ZuMNu7Zx5GZmpeX51NAJZZYHcE5e+28NtavX8Pq7y+pv71TPX8KMtz7gwxW1AHTeQAz57EYcuMPm9Sf9nbbsTc9u7a5TVzPrwHzGSq2sXc2rC5emV/nJif/lhR+w4uM1AHTvsgE7btGbo0f0Y1i/Pgzv14ftt+hFt86d2jhyM7N10yELgtVrgqnz3q+/yp++4ANefftDatMndzbq1pmh/Xpz0l5b11/pb7NZTzp3co8cZrb+6ZAFwa+fmM01j78KwKY9uzKsfx8O2KFvcqXfvzdbbbIhG2zgJ3fMrGPokAXBgiUr2GTDLjxy/v58tnc3P65pZh1ahywIlq2spU+PLmzRx49vmpl1yJvey1bW+skeM7NUprOhpA2AXYF+wEfA9Ih4O8/A8rTUBYGZWb1mz4aStgUuAr4IzAIWAd2B7SUtB24FfhcRa/IOtDUtW7mavht1a+swzMw+FcpdFl9FMk7AWREN+0+UtDlwInAK8Lt8wsvHspW1DNqsZ1uHYWb2qdBsQdDc28ER8Q5wfWsHVAlLV9bSq5tfBDMzg3VoLJZ0SGsGUklLV9bSs6vbCMzMYN2eGvpNq0VRQWvWBMtXrXZjsZlZqlxj8cSmFgGbtn44+Vu2KukwrpcLAjMzoHxj8X7AycDSovkCRuYSUc6WrVwN4BqBmVmq3NnwWWB5RDxZvEDSK/mElK+lK5MaQU83FpuZAeWfGjq8mWX7t344+Vu20reGzMwKdbguJpbV1whcEJiZQQcsCJa6RmBm1kCHKwjqnhpyjcDMLNHhCoKl9U8NubHYzAxaUBBIuqK56fbCjcVmZg21pEYwpcx0u7BsZS0bCHp0cY3AzAxaUBBExJ+bm24v6voZ8vCUZmaJcl1M/AqIppZHxHmtHlHOPDqZmVlD5c6IkysSRQUtW7naDcVmZgXKvVncYMAZST0jYlm+IeUrGYvANQIzszqZ2ggk7SNpBjAznd5V0i25RpYT3xoyM2soa2Px9cChwGKAiHgRaJd9DXngejOzhlry1NC8olmrWzmWili2yreGzMwKZT0jzpP0OSAkdQXOI71N1N64sdjMrKGsNYKzgXOA/sB8YEQ63e741pCZWUOZCoKIeDciToqIz0ZE34g4OSIWl1tP0mGSXpE0W9LFJZb3kfRnSS9Kmi7pm2uTiaw+Xr2GVbVr6OWB683M6mV9amib9IS9SNI7kh6UtE2ZdToBNwOHA0OBEyQNLUp2DjAjInYFDgCuTW895cJjEZiZNZb11tB/AfcCWwL9gD8A48usMxKYHRGvR8QqYAJwdFGaADZS0t9DL+A9oDZjTC3msQjMzBrLWhAoIn4fEbXpz9000/VEqj9Q+KRRTTqv0E3ATsAC4CXg/IhY02jn0pmSJkuavGjRoowhN+aB683MGmu2IJD0GUmfAf4u6WJJgyRtLelC4C9ltl2qV7fiwuNQYCpJLWMEcJOk3o1WirgtIqoioqpv375ldts0D1xvZtZYuUvjKSQn77qT+lkFywL4j2bWrQG2KpgeQHLlX+ibwNUREcBsSW8AOwKTysS1VjwWgZlZY+X6Ghq8Dtt+DhgiaTDJI6fHAycWpZkLHAz8Q9JngR2A19dhn81yY7GZWWOZz4iShpM8/dO9bl5E3NVU+oiolXQu8BjQCbgzIqZLOjtdPoakRjFW0ksktY6LIuLdtcpJBm4sNjNrLNMZUdLlJI93DgUeJnkk9J9AkwUBQEQ8nKYvnDem4PMC4EstingdLHWNwMyskaxPDR1LcgtnYUR8E9gV6JZbVDlZ5sZiM7NGshYEH6WPddamT/W8AzT7Qtmn0dKVq+nSSXTr7ILAzKxO1nskkyVtDNxO8iTRUnJ6sidPHovAzKyxTGfFiPhO+nGMpEeB3hExLb+w8rEsHbjezMw+UW7w+t2bWxYRz7d+SPnxMJVmZo2VOyte28yyAA5qxVhyt2xVrRuKzcyKlHuh7MBKBVIJS1eupnd31wjMzAplHqpyfbDMt4bMzBpxQWBm1sF1qILAw1SamTWWdYQySTpZ0mXp9EBJI/MNrXVFhGsEZmYlZK0R3ALsA5yQTn9IMgxlu7Hi4zWsCfczZGZWLOtZca+I2F3SCwAR8X6eYwvn4ZOeR/34qJlZoaw1go/TwegDQFJfoNGQkp9mHovAzKy0rAXBjcADwOaS/pOkC+qf5RZVDtwFtZlZaVn7GhonaQpJV9QCvhoRM3ONrJV5mEozs9KyDkxzA3BPRLSrBuJCy1a5RmBmVkrWW0PPAz+RNFvSaElVeQaVh49WJU0aPbq4sdjMrFCmgiAifhcRRwAjgVeBX0ialWtkOZHaOgIzs0+Xlr5ZvB2wIzAIeLnVozEzs4rL+mZxXQ3gSmA6sEdEfDnXyMzMrCKytpy+AewTEe/mGYyZmVVeuRHKdoyIl0nGJx4oaWDh8vY2QpmZmTVWrkZwAXAmpUcqa3cjlJmZWWPlRig7M/14eESsKFwmqXtuUZmZWcVkfWromYzzzMysnSnXRrAF0B/oIWk3ku4lAHoDG+Ycm5mZVUC5NoJDgW8AA4DrCuZ/CPwop5jMzKyCyrUR/A74naRjIuKPFYrJzMwqqNytoZMj4m5gkKQLipdHxHUlVjMzs3akXGNxz/R3L2CjEj/NknSYpFfSzuoubiLNAZKmSpou6ckWxG5mZq2g3K2hW9PfP23phtMRzW4GDgFqgOckTYyIGQVpNiYZD/mwiJgrafOW7sfMzNZN1r6Gfimpt6Qukv5H0ruSTi6z2khgdkS8HhGrgAnA0UVpTgTuj4i5ABHxTkszYGZm6ybrewRfiogPgKNIru63B35YZp3+wLyC6Zp0XqHtgU0kPSFpiqRTS21I0pmSJkuavGjRoowhm5lZFlkLgi7p7yOA8RHxXoZ1SvX8H0XTnYE9gCNJHlW9VNL2jVaKuC0iqiKiqm/fvhlDNjOzLLL2PvpnSS8DHwHfkdQXWFFmnRpgq4LpAcCCEmnejYhlwDJJTwG7kgx+Y2ZmFZB1hLKLgX2Aqoj4GFhG4/v9xZ4DhkgaLKkrcDwwsSjNg8B+kjpL2hDYC5jZkgyYmdm6yTp4fRfgFGB/JWM9PgmMaW6diKiVdC7wGNAJuDMipks6O10+JiJmSnoUmAasAe6IiOq1zo2ZmbVY1ltDvyZpJ7glnT4lnXdGcytFxMPAw0XzxhRNjwZGZ4zDzMxaWdaCYM+I2LVg+m+SXswjIDMzq6ysTw2tlrRt3YSkbYDV+YRkZmaVlLVG8EPg75JeJ3ksdGvgm7lFZWZmFVO2IEgfFV1C8qbw5iQFwcsRsTLn2MzMrAKavTUk6QxgOvArYCowKCJedCFgZrb+KFcj+B4wLCIWpe0C42j8LoCZmbVj5RqLV0XEIoCIeB3oln9IZmZWSeVqBAMk3djUdEScl09YZmZWKeUKguIeRqfkFYiZmbWNLGMWm5nZeqzcU0O3SRrexLKekk6TdFI+oZmZWSWUuzV0C3CZpJ2BamAR0B0YAvQG7iR5ksjMzNqpcreGpgLHSeoFVAFbkoxJMDMiXsk/PDMzy1umLiYiYinwRL6hmJlZW8ja6ZyZma2nXBCYmXVwLSoIJPXMKxAzM2sbmQoCSZ+TNIN0PGFJu0q6pcxqZmbWDmStEfw/4FBgMUBEvAjsn1dQZmZWOZlvDUXEvKJZHqHMzGw9kHWEsnmSPgeEpK7AeaS3iczMrH3LWiM4GzgH6A/UACOA7+QUk5mZVVDWGsEOEdGgTyFJ+wJPt35IZmZWSVlrBL/KOM/MzNqZZmsEkvYBPgf0lXRBwaLeQKc8AzMzs8ood2uoK9ArTbdRwfwPgGPzCsrMzCqnXO+jTwJPShobEW9WKCYzM6ugrI3FyyWNBoaRjEcAQEQclEtUZmZWMVkbi8cBLwODgZ8Cc4DncorJzMwqKGtBsGlE/Ab4OCKejIjTgL1zjMvMzCok662hj9Pfb0k6ElgADMgnJDMzq6SsNYKrJPUBvg/8ALgD+F65lSQdJukVSbMlXdxMuj0lrZbkJ5HMzCos61CVD6UflwAHQv2bxU2S1Am4GTiEpFuK5yRNjIgZJdL9AnisZaGbmVlraLZGIKmTpBMk/UDS8HTeUZKeAW4qs+2RwOyIeD0iVgETgKNLpPsu8EfgnZaHb2Zm66pcjeA3wFbAJOBGSW8C+wAXR8SfyqzbHyjsuroG2KswgaT+wCjgIGDPpjYk6UzgTICBAweW2a2ZmbVEuYKgCtglItZI6g68C2wXEQszbFsl5kXR9PXARRGxWiqVPF0p4jbgNoCqqqribZiZ2TooVxCsiog1ABGxQtKrGQsBSGoAWxVMDyB52qhQFTAhLQQ2A46QVJuhtmFmZq2kXEGwo6Rp6WcB26bTAiIidmlm3eeAIZIGA/OB44ETCxNExOC6z5LGAg+5EDAzq6xyBcFOa7vhiKiVdC7J00CdgDsjYrqks9PlY9Z222Zm1nrKdTq3Th3NRcTDwMNF80oWABHxjXXZl5mZrZ3Mg9ebmdn6yQWBmVkHl7kgkNRD0g55BmNmZpWXqSCQ9GVgKvBoOj1C0sQc4zIzswrJWiO4gqTLiH8DRMRUYFAeAZmZWWVlLQhqI2JJrpGYmVmbyDoeQbWkE4FOkoYA5wHP5BeWmZlVStYawXdJxiteCfwXSXfU38spJjMzq6CsNYIdIuLHwI/zDMbMzCova43gOkkvS/oPScNyjcjMzCoqU0EQEQcCBwCLgNskvSTpJ3kGZmZmlZH5hbKIWBgRNwJnk7xTcFleQZmZWeVkfaFsJ0lXSKomGaLyGZLxBczMrJ3L2lj8W2A88KWIKB5cxszM2rFMBUFE7J13IGZm1jaaLQgk3RsRx0l6iYbjDWcZoczMzNqBcjWC89PfR+UdiJmZtY1mG4sj4q3043ci4s3CH+A7+YdnZmZ5y/r46CEl5h3emoGYmVnbKNdG8G2SK/9tJE0rWLQR8HSegZmZWWWUayP4L+AR4OfAxQXzP4yI93KLyszMKqZcQRARMUfSOcULJH3GhYGZWfuXpUZwFDCF5PFRFSwLYJuc4jIzswpptiCIiKPS34MrE46ZmVVa1r6G9pXUM/18sqTrJA3MNzQzM6uErI+P/hpYLmlX4ELgTeD3uUVlZmYV05LB6wM4GrghIm4geYTUzMzauay9j34o6RLgFGA/SZ2ALvmFZWZmlZK1RvB1koHrT4uIhUB/YHRuUZmZWcVkHapyITAO6CPpKGBFRNyVa2RmZlYRWZ8aOg6YBHwNOA74X0nHZljvMEmvSJot6eISy0+SNC39eSZtjDYzswrK2kbwY2DPiHgHQFJf4K/AfU2tkLYj3EzSYV0N8JykiRExoyDZG8AXIuJ9SYcDtwF7tTwbZma2trK2EWxQVwikFmdYdyQwOyJej4hVwASSp47qRcQzEfF+OvksHgfZzKzistYIHpX0GMm4xZA0Hj9cZp3+wLyC6Rqav9o/naSDu0YknQmcCTBwoN9jMzNrTVnHLP6hpP8DfJ6kv6HbIuKBMqupxLwoMQ9JB5IUBJ9vYv+3kdw2oqqqquQ2zMxs7ZQbj2AIcA2wLfAS8IOImJ9x2zXAVgXTA4AFJfaxC3AHcHhELM64bTMzayXl7vPfCTwEHEPSA+mvWrDt54AhkgZL6gocD0wsTJD2V3Q/cEpEvNqCbZuZWSspd2too4i4Pf38iqTns244ImolnQs8BnQC7oyI6ZLOTpePAS4DNgVukQRJVxZVLc2EmZmtvXIFQXdJu/HJ/f4ehdMR0WzBEBEPU9SonBYAdZ/PAM5oadBmZtZ6yhUEbwHXFUwvLJgO4KA8gjIzs8opNzDNgZUKxMzM2kbWF8rMzGw95YLAzKyDc0FgZtbBZe19VOlYxZel0wMljcw3NDMzq4SsNYJbgH2AE9LpD0l6FjUzs3Yua6dze0XE7pJeAEi7je6aY1xmZlYhWWsEH6fjCwTUj0ewJreozMysYrIWBDcCDwCbS/pP4J/Az3KLyszMKiZrN9TjJE0BDibpXuKrETEz18jMzKwiMhUEaS+hy4E/F86LiLl5BWZmZpWRtbH4LyTtAwK6A4OBV4BhOcVlZmYVkvXW0M6F05J2B87KJSIzM6uotXqzOO1+es9WjsXMzNpA1jaCCwomNwB2BxblEpGZmVVU1jaCjQo+15K0Gfyx9cMxM7NKK1sQpC+S9YqIH1YgHjMzq7Bm2wgkdY6I1SS3gszMbD1UrkYwiaQQmCppIvAHYFndwoi4P8fYzMysArK2EXwGWEwyRnHd+wQBuCAwM2vnyhUEm6dPDFXzSQFQJ3KLyqyD+/jjj6mpqWHFihVtHYq1M927d2fAgAF06dIl8zrlCoJOQC8aFgB1XBCY5aSmpoaNNtqIQYMGIZX69zNrLCJYvHgxNTU1DB48OPN65QqCtyLiynULzcxaasWKFS4ErMUksemmm7JoUcte8yr3ZrH/Cs3aiAsBWxtr83dTriA4eO1CMTOz9qLZgiAi3qtUIGb26dKpUydGjBjB8OHD+drXvsby5cuZPHky55133lpvs1evXgAsWLCAY489trVC5Xvf+x5PPfVU/fSiRYvo0qULt956a8n91xk7diznnntu/fRdd93F8OHDGTZsGEOHDuWaa65Z59geffRRdthhB7bbbjuuvvrqkmnef/99Ro0axS677MLIkSOprq6uX3bDDTfUx3T99dfXz//BD37A3/72t3WOD9ay0zkzW//16NGDqVOnUl1dTdeuXRkzZgxVVVXceOON67ztfv36cd9997VClPDee+/x7LPPsv/++9fP+8Mf/sDee+/N+PHjM2/nkUce4frrr+fxxx9n+vTpPP/88/Tp02edYlu9ejXnnHMOjzzyCDNmzGD8+PHMmDGjUbqf/exnjBgxgmnTpnHXXXdx/vnnA1BdXc3tt9/OpEmTePHFF3nooYeYNWsWAN/97nebLFhaKut7BGbWRn765+nMWPBBq25zaL/eXP7l7MOJ7LfffkybNo0nnniCa665hoceeogrrriC1157jfnz5zNv3jwuvPBCvvWtbwEwevRo7r33XlauXMmoUaP46U9/2mB7c+bM4aijjqK6upqxY8cyceJEli9fzmuvvcaoUaP45S9/CcDjjz/O5ZdfzsqVK9l222357W9/2+iq/r777uOwww5rMG/8+PFce+21nHjiicyfP5/+/fuXzePPf/5zrrnmGvr16wckj2HW5WdtTZo0ie22245tttkGgOOPP54HH3yQoUOHNkg3Y8YMLrnkEgB23HFH5syZw9tvv83MmTPZe++92XDDDQH4whe+wAMPPMCFF17I1ltvzeLFi1m4cCFbbLHFOsXpGoGZNau2tpZHHnmEnXfeudGyadOm8Ze//IV//etfXHnllSxYsIDHH3+cWbNmMWnSJKZOncqUKVMa3LYpZerUqdxzzz289NJL3HPPPcybN493332Xq666ir/+9a88//zzVFVVcd111zVa9+mnn2aPPfaon543bx4LFy5k5MiRHHfccdxzzz2Z8lldXd1gO00ZN24cI0aMaPRT6lbX/Pnz2WqrreqnBwwYwPz58xul23XXXbn//uT93EmTJvHmm29SU1PD8OHDeeqpp1i8eDHLly/n4YcfZt68efXr7b777jz99NOZ8tcc1wjMPuVacuXemj766CNGjBgBJDWC008/nWeeeaZBmqOPPpoePXrQo0cPDjzwQCZNmsQ///lPHn/8cXbbbTcAli5dyqxZsxrcuil28MEH19+GGTp0KG+++Sb//ve/mTFjBvvuuy8Aq1atYp999mm07ltvvUXfvn3rpydMmMBxxx0HJFfgp59+OhdccEGj9eq09Cmbk046iZNOOilT2ojGr1uV2t/FF1/M+eefz4gRI9h5553Zbbfd6Ny5MzvttBMXXXQRhxxyCL169WLXXXelc+dPTtubb745CxYsaFH8peRaEEg6DLiB5MW0OyLi6qLlSpcfQTIm8jfSQW/MrI3VtRE0p/ikJomI4JJLLuGss7IPYtitW7f6z506daK2tpaI4JBDDil7n79Hjx4N3sAeP348b7/9NuPGjQOShulZs2YxZMgQevTowapVq+jatSuQtC9sttlmAAwbNowpU6Zw0EEHNbu/cePGMXr06Ebzt9tuu0btHgMGDGhwBV9TU1N/66lQ7969+e1vfwskhcfgwYPrXwg7/fTTOf300wH40Y9+xIABA+rXW7FiBT169Gg23ixyuzWUdl99M3A4MBQ4QdLQomSHA0PSnzOBX+cVj5m1vgcffJAVK1awePFinnjiCfbcc08OPfRQ7rzzTpYuXQokt0feeeedFm9777335umnn2b27NkALF++nFdffbVRup122qk+zSuvvMKyZcuYP38+c+bMYc6cOVxyySVMmDABSO6x33333UBS47n33ns58MADAbjkkku48MILWbhwIQArV64s2TB+0kknMXXq1EY/pRq/99xzT2bNmsUbb7zBqlWrmDBhAl/5ylcapfv3v//NqlWrALjjjjvYf//96d27N0D9sZs7dy73338/J5xwQv16r776KsOHD89yOJuVZ41gJDA7Il4HkDQBOBoobDI/GrgrkvrTs5I2lrRlRLyVY1xm1kpGjhzJkUceydy5c7n00kvp168f/fr1Y+bMmfW3cXr16sXdd9/N5ptv3qJt9+3bl7Fjx3LCCSewcuVKAK666iq23377BumOPPJIbr31Vs444wzGjx/PqFGjGiw/5phjOP7447n00ku54YYbOOuss7jxxhuJCE499dT6W1ZHHHEEb7/9Nl/84heJCCRx2mmnre2hAaBz587cdNNNHHrooaxevZrTTjuNYcOSW31jxowB4Oyzz2bmzJmceuqpdOrUiaFDh/Kb3/ymQfyLFy+mS5cu3HzzzWyyySZA0h/V7NmzqaqqWqcYgaQakscPcCzJ7aC66VOAm4rSPAR8vmD6f4CqEts6E5gMTB44cGCsjclz3otv3z055r+/fK3WN6ukGTNmtHUIZV1++eUxevTotg4jIiL23XffeP/999s6jIq6//774yc/+UnJZaX+foDJ0cT5Os8aQZaO6jJ1ZhcRtwG3AVRVVa1VZ3d7bL0Je2xd/okAM2t/rr32WubOncvGG2/c1qFUTG1tLd///vdbZVt5FgQ1wFYF0wOA4ubtLGnM7FPoiiuuaOsQ6u21115tHULFfe1rX2u1beX5HsFzwBBJgyV1BY4HJhalmQicqsTewJJw+4AZUPrRQ7Ny1ubvJrcaQUTUSjoXeIzk8dE7I2K6pLPT5WOAh0keHZ1N8vjoN/OKx6w96d69O4sXL2bTTTd1L6SWWaTjEXTv3r1F66m9XXVUVVXF5MmT2zoMs1x5hDJbW02NUCZpSkSUfMTIbxabfQp16dKlRSNMma0L9zVkZtbBuSAwM+vgXBCYmXVw7a6xWNIi4M21XH0z4N1WDKc9cJ47Bue5Y1iXPG8dEX1LLWh3BcG6kDS5qVbz9ZXz3DE4zx1DXnn2rSEzsw7OBYGZWQfX0QqC29o6gDbgPHcMznPHkEueO1QbgZmZNdbRagRmZlbEBYGZWQe3XhYEkg6T9Iqk2ZIuLrFckm5Ml0+TtHtbxNmaMuT5pDSv0yQ9I2nXtoizNZXLc0G6PSWtlnRsJePLQ5Y8SzpA0lRJ0yU9WekYW1uGv+0+kv4s6cU0z+26F2NJd0p6R1J1E8tb//zV1NBl7fWHpMvr14BtgK7Ai8DQojRHAI+QjJC2N/C/bR13BfL8OWCT9PPhHSHPBen+RtLl+bFtHXcFvueNScYFH5hOb97WcVcgzz8CfpF+7gu8B3Rt69jXIc/7A7sD1U0sb/Xz1/pYIxgJzI6I1yNiFTABOLoozdHAXZF4FthY0paVDrQVlc1zRDwTEe+nk8+SjAbXnmX5ngG+C/wReKeSweUkS55PBO6PiLkAEdHe850lzwFspGTghl4kBUFtZcNsPRHxFEkemtLq56/1sSDoD8wrmK5J57U0TXvS0vycTnJF0Z6VzbOk/sAoYEwF48pTlu95e2ATSU9ImiLp1IpFl48seb4J2IlkmNuXgPMjYk1lwmsTrX7+Wh/HIyg1nFPxM7JZ0rQnmfMj6UCSguDzuUaUvyx5vh64KCJWryejfGXJc2dgD+BgoAfwL0nPRsSreQeXkyx5PhSYChwEbAv8t6R/RMQHOcfWVlr9/LU+FgQ1wFYF0wNIrhRamqY9yZQfSbsAdwCHR8TiCsWWlyx5rgImpIXAZsARkmoj4k8VibD1Zf3bfjcilgHLJD0F7Aq014IgS56/CVwdyQ302ZLeAHYEJlUmxIpr9fPX+nhr6DlgiKTBkroCxwMTi9JMBE5NW9/3BpZExFuVDrQVlc2zpIHA/cAp7fjqsFDZPEfE4IgYFBGDgPuA77TjQgCy/W0/COwnqbOkDYG9gJkVjrM1ZcnzXJIaEJI+C+wAvF7RKCur1c9f612NICJqJZ0LPEbyxMGdETFd0tnp8jEkT5AcAcwGlpNcUbRbGfN8GbApcEt6hVwb7bjnxox5Xq9kyXNEzJT0KDANWAPcERElH0NsDzJ+z/8BjJX0Esltk4siot12Ty1pPHAAsJmkGuByoAvkd/5yFxNmZh3c+nhryMzMWsAFgZlZB+eCwMysg3NBYGbWwbkgMDPr4FwQdABpz5tTC34GNZN2aSvsb6ykN9J9PS9pn7XYxh2Shqaff1S07Jl1jTHdTt1xqU57r9y4TPoRko5Yi/1sKemh9PMBkpZIekHSTEmXr8X2vlLXC6ekr9Ydp3T6SklfbOk2S+xjrMr01pp2Y5H5EeQ07w9lSFey901J10g6KOv+LDsXBB3DRxExouBnTgX2+cOIGAFcDNza0pUj4oyImJFO/qho2efWPTzgk+MynKSTr3PKpB9B8vx2S10A3F4w/Y+I2I3kzeeTJe3Rko1FxMSIuDqd/CowtGDZZRHx17WI8dNkLHBYifm/Ivl7slbmgqADktRL0v+kV+svSWrUa2d6FftUwRXzfun8L0n6V7ruHyT1KrO7p4Dt0nUvSLdVLel76byekv6ipC/5aklfT+c/IalK0tVAjzSOcemypenvewqv0NOr2GMkdZI0WtJzSvprPyvDYfkXacddkkYqGbPhhfT3DulbrVcCX09j+Xoa+53pfl4odRxTxwCPFs9Mu4GYAmyb1jaeTeN9QNImaSznSZqRzp+QzvuGpJskfQ74CjA6jWnbuit5SYdLurfg2Bwg6c/p5xZ9h5IuS/NYLek2qUHHTSenx6ha0sg0fdbjUlJTvW9GxJvAppK2aMn2LINK9bHtn7b7AVaTdMo1FXiA5I3y3umyzUjeUKx7uXBp+vv7wI/Tz52AjdK0TwE90/kXAZeV2N9Y0r7/ga8B/0vSEdpLQE+SroKnA7uRnCRvL1i3T/r7CaCqMKaCNHUxjgJ+l37uStIjYw/gTOAn6fxuwGRgcIk4lxbk7w/AYel0b6Bz+vmLwB/Tz98AbipY/2fAyennjUn68+lZtI/BwJSC6QOAh9LPmwJzgGEkbwJ/IZ1/JXB9+nkB0K1uH8VxFB7rwun0O55b8F39Gjh5Lb/DzxTM/z3w5YLv6Pb08/6k/ec3dVyK8l5F8tZzU3+zgyjRHz9JzeqYtv6fWt9+1rsuJqykjyK5TQOApC7AzyTtT9INQX/gs8DCgnWeA+5M0/4pIqZK+gLJbYin04vCriRX0qWMlvQTYBFJb6cHAw9EchWMpPuB/UiulK+R9AuSk8Q/WpCvR4AbJXUjuZXwVER8JOlLwC4F97j7AEOAN4rW7yFpKslJZwrw3wXpfydpCEmvjl2a2P+XgK9I+kE63R0YSMO+fbZMj0Gh/SS9QHLsrybpRGzjiKgbTex3JAUTJAXEOEl/Av7URByNRNI1w6PAlyXdBxwJXAi05Dusc6CkC4ENgc+QFOJ/TpeNT/f3lKTeStpZmjouhfFNBs7Imp8C7wD91mI9a4YLgo7pJJKRnPaIiI8lzSH5Z62X/mPvT3IC+b2k0cD7wH9HxAkZ9vHDiLivbkJNNGBGxKvpPfIjgJ9LejwirsySiYhYIekJkm6Iv056UiLpb+a7EfFYmU18FBEjJPUBHiJpI7iRpO+av0fEKCUN6080sb5Irk5faW4fFB1bkjaCo+o3kuy/KUeSXG1/BbhU0rBm0ha7hyRP7wHPRcSH6W2drN8hkroDt5DUzuZJuoKG+SnuoyZo4rgo6RBuXXUnOabWitxG0DH1Ad5JC4EDga2LE0jaOk1zO/AbkqHzngX2lVR3z39DSdtn3OdTwFfTdXqS3Nb5h6R+wPKIuBu4Jt1PsY/TmkkpE0g63dqPpGMy0t/frltH0vbpPkuKiCXAecAP0nX6APPTxd8oSPohyS2yOo8B3627Zy5ptxKbf5WkxtGkdP/vK22HAU4BnpS0AbBVRPyd5Gp+Y5LbaoWKYyr0BMnx/BZJoQAt/w7rTvrvpm0JxU8S1bXpfJ6kF8wlZDsua2t7oN12ovdp5YKgYxoHVEmaTFI7eLlEmgOAqektjGOAGyJiEcmJcbykaSQnlR2z7DAinie57zyJpM3gjoh4AdgZmJTeovkxcFWJ1W8DpiltLC7yOMkV818jGcoQkjEXZgDPK3kE8VbK1H7TWF4k6eb4lyS1k6dJ2g/q/B0YWtdYTFJz6JLGVp1OF293GfBa3Ym3Gf+X5HbaNJKnk65M9323kl41XwD+X0T8u2i9CcAP00bZbYv2vZqkpnN4+puWfofp/m4nad/5E8ktw0LvK3mcdwzJLUDIcFyUPAhwR6l9Kul981/ADpJqJJ2ezu9C8uDB5KbitbXj3kfNciZpFMltuJ+0dSztWXocd4+IS9s6lvWN2wjMchYRD0jatK3jWA90Bq5t6yDWR64RmJl1cG4jMDPr4FwQmJl1cC4IzMw6OBcEZmYdnAsCM7MO7v8DDMNXpdAKLUwAAAAASUVORK5CYII=\n", "text/plain": [ "
    " ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAT8AAAEGCAYAAAAT05LOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAdAklEQVR4nO3debxVdb3/8df7ME8yyNBhUKgAQ8sBxCnNIYWsm1ZaeC2t7IGalnW7lda9mvrDvDfN8uacpg1qmppYlgOpqKkIiDIYiKKCIAiIICJwzvn8/tjr4BYO++wFZ7P32ev9fDzW46z1XdN3nfPgw3da36WIwMwsa2rKnQEzs3Jw8DOzTHLwM7NMcvAzs0xy8DOzTGpb7gzk692rTQwe1K7c2bAU5j3XudxZsBTeZS0bYr225xpjDusSK1bWF3XstOfW3xcRY7fnfqVSUcFv8KB2TLlvULmzYSmM6b9XubNgKTwVk7b7GitW1jPlvl2KOrZN7Qu9t/uGJVJRwc/MKl8ADTSUOxvbzcHPzFIJgo1RXLW3kjn4mVlqLvmZWeYEQX0VvBbr4GdmqTXg4GdmGRNAvYOfmWWRS35mljkBbHSbn5llTRCu9ppZBgXUt/7Y5+BnZunk3vBo/Rz8zCwlUc92zY1QERz8zCyVXIeHg5+ZZUxunF/rD36ezNTMUmsIFbUUImmQpIckPS9ptqSzkvSfSHpN0oxkOTrvnHMkzZc0V9KYvPSRkmYm+y6X1Gx0dsnPzFJpwZJfHfC9iJguqRswTdIDyb7LIuKS/IMljQDGAbsD/YEHJQ2LiHrgKmA88CRwLzAW+Fuhm7vkZ2apBKKemqKWgteJWBIR05P1NcDzwIACpxwD3BoR6yNiATAfGC2pFtgpIp6I3IfIfwsc29xzOPiZWWopqr29JU3NW8Y3dT1Jg4G9gaeSpDMlPSfpBkk9k7QBwMK80xYlaQOS9c3TC3K118xSCcSGaFPs4csjYlShAyR1Be4AvhMRqyVdBVxIroZ9IXAp8HVosq4dBdILcvAzs1Ryg5xbptIoqR25wPeHiLgTICKW5u2/DvhLsrkIyP/Iz0BgcZI+sIn0glztNbPU6pOBzs0thSQ9stcDz0fEz/PSa/MO+xwwK1mfCIyT1EHSEGAoMCUilgBrJO2fXPMk4O7mnsElPzNLJULUR4uUmw4CvgLMlDQjSfsRcIKkvcgVMl8GTs3dN2ZLug2YQ66n+IykpxfgdOBGoBO5Xt6CPb3g4Gdm26ChBYa6RMRjNN1ed2+BcyYAE5pInwrskeb+Dn5mlkquw6P1h47W/wRmtkO1ZIdHOTn4mVlq9Z7YwMyypvENj9bOwc/MUmtomd7esnLwM7NUchMbOPiZWcYEYmPxr7dVLAc/M0slgpYa5FxWDn5mlpJaZJBzuTn4mVkqgUt+ZpZR7vAws8wJmv8+R2vg4GdmqeQ+Xdn6Q0frfwIz28H80XIzy6DAb3iYWUa55GdmmRMhl/zMLHtyHR5+vc3MMqfFvuFRVg5+ZpZKrsPDbX5mlkF+w8PMMsdveJhZZvkDRmaWORGwscHBz8wyJlftdfAzswzyGx4Ztey1dvzsrF14c1k7VBMc/eUVfO4by5lw6q4serEjAGtXt6HLTvVc9eBcVq9sw4XjBzNvRmeO/OJKzrzotU3X2rhBXPHjATz3RFck+OrZSzj402+V69Ey4T9+/ir7fXINq5a35dTDhwPwo6tfZuCH1gPQZad61q5uwzePHM4+h6zh6z9aQtt2Qd1Gcd2FtTz7eLdyZr/sPNSlCJLGAr8E2gC/joiLS3m/HaVN22D8uYsZ+rF1vPN2DWeOHcY+h6zhx9e8sumYa87vT5du9QC07xic/P3XeXluR17+V8f3XeuWX/ajR+86bnjsXzQ0wJo3W//I+Up3/x97MfE3vfn+LxduSrvotMGb1sefu5i1a3LVurdWtuHck4ewcmk7dh2+jotufokTR+6+o7NcYaqj2luyJ5DUBrgC+BQwAjhB0ohS3W9H2rlfHUM/tg6Azl0bGPTh9Sxf0m7T/giYPLEHhx37JgAdOzewx35rad8htrjWfbf2Yty3lgFQUwPdd67fAU+QbbOe6sqaN7f2/35wyGdX8dCfewLw4qzOrFya+9u+Mrcj7TsE7do37KCcVq6G5DsezS2VrJQlv9HA/Ih4CUDSrcAxwJwS3nOHe31he16c1Ynd9nlnU9qsp7rQs08dAz64oeC5b7+VK+Xd9L8f4Ll/dqV28AbOmLCInn3qSppn27o99lvLm2+0ZfGCDlvs+/in3+LF2Z3YuKH1l3q2R663t/XXUEr5VxwALMzbXpSkvY+k8ZKmSpr6xorWVepZt7aGC78xmNMueI0u3d4rDTz0554cmpT6Cqmvg+VL2jNi37Vccf88PjJyLddd0L+UWbZmHHbsKh7+c48t0ncd9i6n/HgJv/zBwB2fqQrTOMi5mKWSlTL4NfXkW9T7IuLaiBgVEaP67Nx6/jep2wgXfmMwh3/+TT5+9HsdFPV18Pi93fnEZ1c1e42detXToVM9B30qd/7Bn1nFCzM7lSrL1oyaNsFBR7/FIxN7vC+9d+0Gzr1+AT87axeWvLJliTCLqqHaW8rgtwgYlLc9EFhcwvvtMBHw8+/twqCh6/nCqW+8b9/0R7sx6MPr6dN/Y7PXkWD/I1fz3D+7AjDjsW7sOmx9SfJszdvn4DUsnN+B5Uvab0rrslM9F/52Ab/5aS1znu5SxtxVjsbeXpf8tu5pYKikIZLaA+OAiSW83w4ze0oXJv2pF88+3pXTPzmc0z85nCmTcsMfHrm76SrvSaNHcM35/Xngtl6cOHIEr8zLlSBO+a/F/O7SD3DaEcOZdEdPxp/72hbnWss6+8pXuOyeFxj4oXf5/dQ5jDlhBQCfOGbLKu9nv7ac/kM28O/fXcqVD8zlygfm0n3n5v9jq3YNUVPUUoikQZIekvS8pNmSzkrSe0l6QNILyc+eeeecI2m+pLmSxuSlj5Q0M9l3uaRmI68ituyBbCmSjgZ+QW6oyw0RMaHQ8aP27BhT7htU6BCrMGP671XuLFgKT8UkVsfK7SqS9dytbxx+w3FFHXvnQVdNi4hRTe2TVAvURsR0Sd2AacCxwFeBlRFxsaSzgZ4R8cNktMgt5DpT+wMPAsMiol7SFOAs4EngXuDyiPhbobyVdJxfRNybZMTMqkhLVGkjYgmwJFlfI+l5cp2ixwCHJofdBDwM/DBJvzUi1gMLJM0HRkt6GdgpIp4AkPRbckG0fMHPzKpPKd7wkDQY2Bt4CuiXBEYiYomkvslhA8iV7Bo1jiDZmKxvnl6Qg5+ZpZYi+PWWNDVv+9qIuDb/AEldgTuA70TE6gLNdVsbQVLUyJLNOfiZWSopJzNdvrU2PwBJ7cgFvj9ExJ1J8lJJtUmprxZYlqRvbQTJomR98/SCsj1U3cy2SUuM80t6ZK8Hno+In+ftmgicnKyfDNydlz5OUgdJQ4ChwJSkirxG0v7JNU/KO2erXPIzs1QioK5lJjM9CPgKMFPSjCTtR8DFwG2STgFeBY7P3TdmS7qN3CuydcAZEdH4WtjpwI1AJ3IdHQU7O8DBz8y2QQv19j5G0+11AEds5ZwJwBZD5iJiKrBHmvs7+JlZKv6AkZllVjj4mVkWVfqkBcVw8DOzVCI8jb2ZZZKo96crzSyL3OZnZpnjr7eZWTZFrt2vtXPwM7PU3NtrZpkT7vAws6xytdfMMsm9vWaWOREOfmaWUR7qYmaZ5DY/M8ucQDS4t9fMsqgKCn4OfmaWkjs8zCyzqqDo5+BnZqlVdclP0v9RIL5HxLdLkiMzq2gBNDRUcfADphbYZ2ZZFUA1l/wi4qb8bUldImJt6bNkZpWuGsb5NTtYR9IBkuYAzyfbe0q6suQ5M7PKFUUuFayYkYq/AMYAKwAi4lngkBLmycwqmogobqlkRfX2RsRC6X0PUl+a7JhZq1DhpbpiFBP8Fko6EAhJ7YFvk1SBzSyDAqIKenuLqfaeBpwBDABeA/ZKts0ss1TkUrmaLflFxHLgxB2QFzNrLaqg2ltMb+8HJd0j6Q1JyyTdLemDOyJzZlahMtLbezNwG1AL9AduB24pZabMrII1DnIuZqlgxQQ/RcTvIqIuWX5Pxcd0MyuliOKWSlbo3d5eyepDks4GbiUX9L4E/HUH5M3MKlUV9PYW6vCYRi7YNT7lqXn7AriwVJkys8qmCi/VFWOr1d6IGBIRH0x+br64w8Msq4rt7CgiQEq6IelInZWX9hNJr0makSxH5+07R9J8SXMljclLHylpZrLvcm32VkZTinrDQ9IewAigY2NaRPy2mHPNrNq0aGfGjcCvgM3jyWURccn77iqNAMYBu5PrfH1Q0rCIqAeuAsYDTwL3AmOBvxW6cTFDXc4D/i9ZDgP+F/hss49kZtWrhUp+ETEZWFnkXY8Bbo2I9RGxAJgPjJZUC+wUEU9ERJALpMc2d7FienuPA44AXo+IrwF7Ah2KzKyZVaOGIhfoLWlq3jK+yDucKem5pFrcM0kbACzMO2ZRkjYgWd88vaBigt+6iGgA6iTtBCwD3OZnllXpxvktj4hRecu1RdzhKuBD5F6lXQJcmqQ3VdeOAukFFdPmN1VSD+A6cj3AbwNTijjPzKpUKXt7I2LppvtI1wF/STYXAYPyDh0ILE7SBzaRXlCzJb+I+GZErIqIq4EjgZOT6q+ZZVUJX29L2vAafQ5o7AmeCIyT1EHSEGAoMCUilgBrJO2f9PKeBNzd3H0KDXLep9C+iJhexHOYmW2VpFuAQ8m1DS4CzgMOlbQXufD5MskY44iYLek2YA5QB5yR9PQCnE6u57gTuV7egj29ULjae2mBfQEc3tzF03phbg8+/fFjW/qyVkJvnFbb/EFWMer+9GSLXKelqr0RcUITydcXOH4CMKGJ9KnAHmnuXegDRoeluZCZZURQ9a+3mZk1rQpeb3PwM7PUquHdXgc/M0uvCoJfMa+3SdKXJZ2bbO8iaXTps2ZmFSsjMzlfCRwANPbKrAGuKFmOzKyiKYpfKlkx1d79ImIfSc8ARMSbyScszSyrMtLbu1FSG5JCrKQ+NL6ybGaZVOmlumIUU+29HLgL6CtpAvAYcFFJc2Vmla0K2vyK+W7vHyRNIzetlYBjI+L5kufMzCpTK2jPK0azwU/SLsA7wD35aRHxaikzZmYVLAvBj9yX2hrnzOoIDAHmkptK2swySFXQ6l9Mtfej+dvJbC+nbuVwM7NWIfUbHhExXdK+pciMmbUSWaj2SvqPvM0aYB/gjZLlyMwqW1Y6PIBueet15NoA7yhNdsysVaj24JcMbu4aEd/fQfkxs9agmoOfpLYRUVdoOnszyx5R/b29U8i1782QNBG4HVjbuDMi7ixx3sysEmWoza8XsILcNzsax/sF4OBnllVVHvz6Jj29s9jyw8BV8Ohmts2qIAIUCn5tgK5s49fQzax6VXu1d0lEXLDDcmJmrUeVB7/WP1uhmbW8qP7e3iN2WC7MrHWp5pJfRKzckRkxs9aj2tv8zMya5uBnZpnTCqaoL4aDn5mlIlztNbOMcvAzs2xy8DOzTHLwM7PMydCsLmZm71cFwa+m3Bkws9ZHDcUtzV5HukHSMkmz8tJ6SXpA0gvJz555+86RNF/SXElj8tJHSpqZ7LtcUrOv5zr4mVlqiuKWItwIjN0s7WxgUkQMBSYl20gaAYwj983wscCVyac2AK4CxgNDk2Xza27Bwc/M0okUS3OXipgMbP4q7THATcn6TcCxeem3RsT6iFgAzAdGS6oFdoqIJyIigN/mnbNVbvMzs/SKb/PrLWlq3va1EXFtM+f0i4glABGxRFLfJH0A8GTecYuStI3J+ubpBTn4mVkqKd/wWB4Ro1rw1pvbfJb5/PSCHPzMLDU1lLS7d6mk2qTUVwssS9IXAYPyjhsILE7SBzaRXpDb/MwsnRZs89uKicDJyfrJwN156eMkdZA0hFzHxpSkirxG0v5JL+9JeedslUt+ZpZaSw1ylnQLcCi5tsFFwHnAxcBtkk4BXgWOB4iI2ZJuA+YAdcAZEVGfXOp0cj3HnYC/JUtBDn5mll4LBb+IOGEru5qcST4iJgATmkifCuyR5t4OfmaWml9vM7NscvAzs8zJwNfbzMy24JmczSy7ovVHPwc/M0vNJT/bpKYm+MWvH2HFGx05/4f78/Vvzmb0Qa9Tt7GGJYs784uL9mHt2+0Y9pE3+dYPZuROEtx8w3CemNy/rHnPgvP+7SEOHvYKK9d24otXfwmAnTq+y8XHPUD/7mtY/FY3fvino1jzbgd277+U//rMZCBXxbvmkVE8NHcIAEeNmM8pB0+nRsFj83fhlw8eUK5HKh9/va0wSTcAnwGWRUSq8Tet0WePf5GFr3Slc+c6AJ55ug83XvMRGupr+Nrps/niV+bxm6t255WXunHWNz5BQ30NPXd+l1/d+BBPPf4BGur9sk0p3fPscP749B5ccOw/NqV97ePPMGXBQG58fG++etAzfO2gZ7h80v68uKwXX77uC9RHDb27ruXWU29n8rxd6dpxA2cd+SQnXvcFVr3TifOP+QejhyxiyoKBBe5cnaqhw6OU/+JupIg5tarBzn3Wse8BS7nvnl03pT3zdN9NAe1fs3uyc593AVi/vu2m9Pbt64lods5FawHTX+3PW+s6vC/tE8Ne5i/PDgPgL88O49DhCwB4t64d9ZH8jdq+9zca0HM1r67ozqp3OgEw5aWBHL7bSzvqESpKS01mWk4lK/lFxGRJg0t1/Uoy/tsz+c1Vu9MpKfVt7shPv8qjk96bYWf4iJWcdc4M+vZ7h0v/3z4u9ZXJzl3XsfztLgAsf7sLvbqs27RvjwFLOe/fHqa2xxr++64jqI8aFq7szuDeq6jtvpplq7ty6G4LaNemwv+Fl0LgDo+WIGk8uRlY6di2W5lzk96+B77OW6s6MH9uDz669/It9n/ppLnU14uH7n+vajR3Ti+++ZXDGbTrGr774+lMfbIfGze02eJcK59Zr/Xj+Ku/xJDeb3L+Mf/g8fmDWPNuB35678FcfNyDRIhnF/ZjQM/V5c5qWbjDowUkExteC9C94wda3a90xEdXst9BrzNq/6W0b99Apy51/Od/T+OSC0dyxNhX2ffApfz4rANpasqxha90Y/27bdl1yGrmz+255cWtpFa83YneXdey/O0u9O66lpVrO21xzILlPVm3sR0f6ruS55f0ZfK8wUyeNxiAz+8zh4asNlu0un+pW3J9azvddM0ITv78GL5+/FH8z09G8dy03lxy4UhG7reU4058gQvO3o/169/7P6Zf7VpqkqpSn37vMGCXNSx7vXO5sp9pk+cN5jN7zgPgM3vO45EkqPXvsZo2SYNVbfc1DN55FUtW5WolPTvnqsbdOq7n+FGzuWv6R3Z8xsuscZBzC33Do2zKXvKrVqd9dybt2tUz4bJ/AvCv2b244pI9GfGxlRz/5ReorxMNDeLKS/dk9Vsdmrmaba+LPv8gI3ddTI/O7/K37/yOqx8exW8e35v/Oe4Bjt3reV5f3Y0f3H4kAHsPep2vjnuGuoYaGkL89N6DWbUuVyr8/tjHGdZvBQDXTh7Jqyt7lOuRyiei1JOZ7hCKEjVc5s/TBSwFzouI6wud073jB+LAgV8pSX6sNJYcVVvuLFgK8/50Ge8sW7hddfVuPQbG3oecVdSxj97zg2ktOI19iyplb+/W5ukys1au0qu0xXC118zSCaAKqr0OfmaWXuuPfQ5+Zpaeq71mlknV0Nvr4Gdm6XhWFzPLotwg59Yf/Rz8zCy9KpjPwcHPzFJzyc/MssdtfmaWTdXxbq+Dn5ml52qvmWWOP1puZpnlkp+ZZVLrj30OfmaWnhpaf73Xwc/M0gk8yNnMskeEBzmbWUZVQfDz19vMLL2I4pZmSHpZ0kxJMyRNTdJ6SXpA0gvJz555x58jab6kuZLGbM8jOPiZWTqNbX7FLMU5LCL2yvvQ0dnApIgYCkxKtpE0AhgH7A6MBa6U1GZbH8PBz8xSU0NDUcs2Oga4KVm/CTg2L/3WiFgfEQuA+cDobb2Jg5+ZpVRklTdX7e0taWreMn7Li3G/pGl5+/pFxBKA5GffJH0AsDDv3EVJ2jZxh4eZpROk6fBY3sx3ew+KiMWS+gIPSPpXgWOb+t7wNve8uORnZum1UJtfRCxOfi4D7iJXjV0qqRYg+bksOXwRMCjv9IHA4m19BAc/M0tNEUUtBa8hdZHUrXEdOAqYBUwETk4OOxm4O1mfCIyT1EHSEGAoMGVbn8HVXjNLr2XG+fUD7pIEuVh0c0T8XdLTwG2STgFeBY7P3TJmS7oNmAPUAWdERP223tzBz8zSiYD67X+/LSJeAvZsIn0FcMRWzpkATNjum+PgZ2bbogre8HDwM7P0HPzMLHMC8Dc8zCx7AqL1z2nl4Gdm6QQt0uFRbg5+Zpae2/zMLJMc/Mwse4qbq6/SOfiZWToB+ANGZpZJLvmZWfa0zOtt5ebgZ2bpBITH+ZlZJvkNDzPLJLf5mVnmRLi318wyyiU/M8ueIOq3eQLliuHgZ2bpeEorM8ssD3Uxs6wJIFzyM7PMCU9mamYZVQ0dHooK6rKW9AbwSrnzUQK9geXlzoSlUq1/s10jos/2XEDS38n9foqxPCLGbs/9SqWigl+1kjQ1IkaVOx9WPP/Nql9NuTNgZlYODn5mlkkOfjvGteXOgKXmv1mVc5ufmWWSS35mlkkOfmaWSQ5+JSRprKS5kuZLOrvc+bHmSbpB0jJJs8qdFystB78SkdQGuAL4FDACOEHSiPLmyopwI1CRg3KtZTn4lc5oYH5EvBQRG4BbgWPKnCdrRkRMBlaWOx9Weg5+pTMAWJi3vShJM7MK4OBXOmoizeOKzCqEg1/pLAIG5W0PBBaXKS9mthkHv9J5GhgqaYik9sA4YGKZ82RmCQe/EomIOuBM4D7geeC2iJhd3lxZcyTdAjwBDJe0SNIp5c6TlYZfbzOzTHLJz8wyycHPzDLJwc/MMsnBz8wyycHPzDLJwa8VkVQvaYakWZJul9R5O651o6TjkvVfF5p0QdKhkg7chnu8LGmLr3xtLX2zY95Oea+fSPrPtHm07HLwa13WRcReEbEHsAE4LX9nMpNMahHxjYiYU+CQQ4HUwc+skjn4tV6PAh9OSmUPSboZmCmpjaSfSXpa0nOSTgVQzq8kzZH0V6Bv44UkPSxpVLI+VtJ0Sc9KmiRpMLkg+92k1HmwpD6S7kju8bSkg5Jzd5Z0v6RnJF1D0+83v4+kP0uaJmm2pPGb7bs0ycskSX2StA9J+ntyzqOSdmuR36ZlTttyZ8DSk9SW3DyBf0+SRgN7RMSCJIC8FRH7SuoAPC7pfmBvYDjwUaAfMAe4YbPr9gGuAw5JrtUrIlZKuhp4OyIuSY67GbgsIh6TtAu5t1g+ApwHPBYRF0j6NPC+YLYVX0/u0Ql4WtIdEbEC6AJMj4jvSTo3ufaZ5D4sdFpEvCBpP+BK4PBt+DVaxjn4tS6dJM1I1h8FridXHZ0SEQuS9KOAjzW25wHdgaHAIcAtEVEPLJb0jyauvz8wufFaEbG1ee0+CYyQNhXsdpLULbnH55Nz/yrpzSKe6duSPpesD0ryugJoAP6YpP8euFNS1+R5b8+7d4ci7mG2BQe/1mVdROyVn5AEgbX5ScC3IuK+zY47muan1FIRx0CuueSAiFjXRF6Kfl9S0qHkAukBEfGOpIeBjls5PJL7rtr8d2C2LdzmV33uA06X1A5A0jBJXYDJwLikTbAWOKyJc58APiFpSHJuryR9DdAt77j7yVVBSY7bK1mdDJyYpH0K6NlMXrsDbyaBbzdyJc9GNUBj6fXfyVWnVwMLJB2f3EOS9mzmHmZNcvCrPr8m1543PfkIzzXkSvh3AS8AM4GrgEc2PzEi3iDXTnenpGd5r9p5D/C5xg4P4NvAqKRDZQ7v9TqfDxwiaTq56verzeT170BbSc8BFwJP5u1bC+wuaRq5Nr0LkvQTgVOS/M3GnwawbeRZXcwsk1zyM7NMcvAzs0xy8DOzTHLwM7NMcvAzs0xy8DOzTHLwM7NM+v807/4evMiklQAAAABJRU5ErkJggg==\n", "text/plain": [ "
    " ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEGCAYAAABo25JHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAyIUlEQVR4nO3deXxU1fn48c+TPUDCGpAt7CKbIIZNCm5130rF3fbb1hZttX77U2v1W63Lt9/WFm3VqkXc0EpBq7ZS69ZqAQEpiyICgiSsAVkS1hCSyfL8/rg3YTKZZG5CbiaTed6vV16ZO3eZ507gnHvPOfc5oqoYY4yJXwnRDsAYY0x0WUVgjDFxzioCY4yJc1YRGGNMnLOKwBhj4lxStANoqC5dumjfvn2jHYYxxsSUlStXFqhqVrh1MVcR9O3blxUrVkQ7DGOMiSkisrWuddY0ZIwxcc4qAmOMiXNWERhjTJyzisAYY+KcVQTGGBPnfKsIROR5EdkjImvqWC8i8riI5IrIahEZ7Vcsxhhj6ubnHcEs4Px61l8ADHJ/pgF/9DEWY4wxdfDtOQJVXSgifevZ5DLgJXXyYC8VkQ4i0l1Vv/IrJmOMiQWVlUrhkQB7Dpew51Apew6XsPtQKadkd2DSoLDPhB2XaD5Q1hPYHrSc775XqyIQkWk4dw1kZ2c3S3DGGNPUKiqVwqJSdruF+57Dpew+5PzeU/27lL1FpVRU1p4r5odnDGh1FYGEeS/sLDmqOhOYCZCTk2Mz6RhjWpTyikoKigLHCnX3Cn6v+7vqyr6gqJQw5Tud26aQlZFKt8w0BnfLoGum87prRipZGWl0y0wlKyOV1KREX+KPZkWQD/QOWu4F7IxSLMYYU0tZRSV767hq3x3UbFN4JEDoZI8i0LltKl0zUumWmcqw7u3pmplKV7eAryrou7RLJSUpugM4o1kRzANuEZG5wDjgoPUPGGOaQ2l5hVvA175q3x1U4O87Eqi1b4JAl3apdM1MpXv7NEb2bl991d416HeXdikkJcbGCH3fKgIRmQOcAXQRkXzgPiAZQFVnAG8DFwK5QDHwXb9iMcbEh5Kyiuqr9Jrt78EFfQkHistq7ZuYIGS5BXyvjm0Y3acj3TLSnKv4oCv4zu1SSUwI17Idu/wcNXRNhPUK3OzX5xtjWo/iQLlbmB9rfw8eUbPnkFPoHyopr7VvcqJTwGdlptGncxvG9Asu4I/97tQ2pdUV8F7FXBpqY0zrcaS0PKiD9ViTzO5DNQv5w6W1C/iUxASyMpwr+AFZ7ZgwoDPdMtOc94Ku4Du2SSEhTgt4r6wiMMY0KVWlqLQ8/FV7jQ7XEo4EKmrtn5qU4IyayUhj8AkZTBqUdezqPaiA79AmGREr4JuCVQTGGE9UlUMl5TWv2oNG0OwNGklztKx2AZ+enFhdwA/tkckZg7OqC/Wq310z0shMT7ICvplZRWBMnFNVDhSX1d/+7v4uLa+stX/blMTqIZEn9+pQPVyya0g7fEaqFfAtlVUExrRSlZXK/uJAdfv77kMlx8bEB6Ut2FtUSiBMAZ+RmkSWewU/Ortj0ANOQVfwmWm0S7ViJNbZX9CYGBMuD03NB5yc9ve9RaWUVdR+jDUzLYmumc5497H9OoVtf++amUqbFCse4oWnv7SIJAAjgR7AUWCtqu72MzBj4k1VHppw7e97QtIUlIfJU9ChTXL1sMj+WZ1rtLsHN9WkJfuTpsDErnorAhEZAPwM+DqwEdgLpAEnikgx8DTwoqrWvq80xgDH8tBEan+vKw9Np7Yp1c0wJ3bLqPEEa1bGseYaK+BNY0W6I/glzjwBN7oPgFUTka7AtcC3gBf9Cc+YlqsqD02tDJKHgjtdSyk8UlpHHpqU6qv0od0za7S7V/3OagF5aEzrV29FUN/Twaq6B3i0qQMyJtqq8tCEf8DpWKdrYR15aDq3c0bNnNA+jZN7ta+VZKxrppNoLDlG8tCY1q/RvUEico6q/rMpgzHGTyVlFbUySe4OyUOz53AJ++vIQ9OlXQrdMtPo1TGd0X061mp/75aZSqe2sZNozJgqxzMs4DnAZokxUXc0UFGr/T30Aac9h0s5eLR2AZ+UIG6agjSy3Tw0wSNoqoZKxnMeGtP6ReosnlfXKqBz04djzDFHSsvrmMGppMYMT4frSDTWtXoETVsmDOhcfQXfNegK3vLQGBP5jmAScD1QFPK+AGN9ici0alV5aMI/4FTzvXB5aFKSEqqbYk7s5uShyQppf++WkWZ5aIxpgEgVwVKgWFUXhK4QkQ3+hGRaoz2HSnhu8WZeWb49bC74tOSE6sJ8SPdMTh+cVWv8ezfLQ2OMLyKNGrqgnnWTmz4c09rk7S3imYWbeOOTHZRXVnLesBMY1btDjSv4rplplofGmCiyZ8iNLz7dtp8ZC/J4f91uUhITuHJML34wqT99OreNdmjGmBBWEZgmo6rM37CXPy7IY9nmfWSmJXHzGQP5zsS+dGmXGu3wjDF1sIrAHLeyikr+/tlOnl6wiQ27D9O9fRr3XDSEq8dmW2ZKY2KA/S81jXaktJxXlm/nuUWb2XHgKCd2a8cjV4zkkpE9LC2CMTHEc0UgIver6v11LZv4UVhUyotLtvDS0q0cKC5jbN9OPHjZMM4c3NXG5BsTgxpyR7AywrJp5bYVFvPMR5t4dcV2SssrOWdoN246fQCn9ukY7dCMMcfBc0Wgqn+vb9m0Xmt2HOTphZv4x+qdJCYIU07pybTJAxjYtV20QzPGNIFIKSb+AITJkO5Q1VubPCLTIqgqS/IKmbEgj482FtAuNYnvT+rP9yb244T2adEOzxjThCLdEaxolihMi1FRqbyz5iueXrCJz3ccpEu7VO48fzDXjetD+/TkaIdnjPFBpCeLa0w4IyJtVfWIvyGZaCgpq+C1lfk889EmthYW069LW379zRFMOaWnzXxlTCvndc7iCThpp9sB2SIyEmfWsh/5GZzx38HiMv60dAuzlmyhoCjAyN4duPuCkzhn6AmWdtmYOOG1s/hR4DxgHoCqfiYilmsohu08cJTnFm1mzrJtFAcqOP3ELG46fQDj+3eynD/GxJmGjBraHlJA1M4RbFq8L3cf5ukFm3hz1Q4UuOTk7tx4+gCGdM+MdmjGmCjxWhFsF5HTABWRFOBW4Av/wjJNSVVZsXU/M+bn8cH6PaQnJ3L9+D7c8LV+9O7UJtrhGWOizGtFcBPwGNAT2AG8B9zsV1CmaVRWKv/6YjczFuTxybYDdGyTzP/7+ol8e0IfOrZNiXZ4xpgWwlNFoKoFwHUNPbiInI9TgSQCz6rqQyHr2wMv48x9nAQ8rKovNPRzTE2l5RW8+elOnl6YR97eI/TqmM4Dlw7jypzepKfYCCBjTE1eRw31xynQx+M8YPYx8P9UdVM9+yQCTwLnAPnAchGZp6rrgja7GVinqpeISBawQURmq2qgcacT3w6XlDFn2TaeW7SZ3YdKGdI9k8euHsVFI7qTlGhJ4Iwx4XltGvozTqE+xV2+GpgDjKtnn7FAblVlISJzgcuA4IpAgQxxeqHbAfuA2jORm3rtOVzCC4u38PLSrRwuKee0AZ357dSRTB7UxUYAGWMi8loRiKr+KWj5ZRG5JcI+PYHtQcv51K44nsAZkroTyACuUtXKWh8uMg2YBpCdne0x5NZv094invloE6+v3EFZZSUXDD+BGycPYGTvDtEOzRgTQyLlGurkvvy3iNwFzMW5ir8K+EeEY4e7FA3NW3QesAo4CxgA/FNEPlLVQzV2Up0JzATIycmpM/dRvFi1/QBPL8jj3bW7SE5MYGpOL6ZN6k/fLjYNpDGm4SLdEazEKbyrCvUbg9Yp8L/17JsP9A5a7oVz5R/su8BDqqpArohsBk4ClkWIK+6oKgu+3MuMBXks3eRMA/mjMwbwX6f1pWuGJYEzxjRepFxD/Y7j2MuBQSLSD2fI6dXAtSHbbAPOBj4SkW7AYKDODuh4VF5RyVurv2LGgjzW7zrMCZlp/PzCIVwzzqaBNMY0jYbMUDYcGApUX36q6kt1ba+q5W4/wns4w0efV9W1InKTu34Gzh3FLBH5HOeu42fuUNW4VxxwpoF89iNnGsiBXdsxferJXDaqp00DaYxpUl6Hj94HnIFTEbwNXAAsAuqsCABU9W13++D3ZgS93gmc26CIW7l9RwLONJAfb2F/cRk5fTrywKXDOOskmwbSGOMPr3cEU4GRwKeq+l23GedZ/8KKP9v3FfPsR5t4ZcV2Ssoq+fqQbtx0en9y+naKvLMxxhwHrxXBUVWtFJFyEckE9gD9fYwrbqzbeYinF+bx1uqvSBC4bFRPbpzcn0HdMqIdmjEmTnitCFaISAfgGZyRREXYyJ5GU1U+zitkxsJNLPxyL21TEvnexL5872v96N4+PdrhGWPijNdcQ1UT0MwQkXeBTFVd7V9YrVNFpfLe2l3MWJDH6nxnGsifnjeY68f1oX0bmwbSGBMdkR4oG13fOlX9pOlDan1Kyip4/ZN8nlm4iS2FxfTt3Ib/mzKcy0f3smkgjTFRF+mO4JF61inOE8GmDgePlvHy0q28sHgLBUWlnNyrPU9dN5rzhtk0kMaYliPSA2VnNlcgrcmugyU8t2gTf/7PNo4EKph8YhY3nd6fCf07WxI4Y0yLY4+mNqGNuw/z9EJnGshKhYtP7s60yf0Z1qN9tEMzxpg6WUXQBFZs2ceMBXn864s9pCUncO3YbL4/qb9NA2mMiQlWETRSZaXy4fo9zFiQx4qt++nQJpn/PnsQ357Qh87tUqMdnjHGeOY1xYTgTFXZX1UfFJFs4ARVjctnCf726Q6e/HcuG/cU0bNDOvdfMpQrx/SmTYrVq8aY2OO15HoKqMQZJfQgcBh4HRjjU1wt1oot+/jJK6s46YQMHr1qFBed3J1kmwbSGBPDvFYE41R1tIh8CqCq+0Ukxce4WqwFX+4lMUH4y00TyEizh8CMMbHP66VsmTsZvQK4E83XmlIyHizKLWBkr/ZWCRhjWg2vFcHjwF+BriLyfzgpqH/lW1Qt1KGSMj7bfoCJA7tEOxRjjGkyXnMNzRaRlTiziQnwDVX9wtfIWqD/bNpHpWIVgTGmVfE6augx4BVVfdLneFq0xbkFpCUncEp2h2iHYowxTcZr09AnwD0ikisi00Ukx8+gWqrFuQWM7deZ1CRLFGeMaT08VQSq+qKqXgiMBb4EfiMiG32NrIXZfaiEjXuKmDigc7RDMcaYJtXQAfADgZOAvsD6Jo+mBVuSVwBY/4AxpvXxVBGISNUdwIPAWuBUVb3E18hamEUbC+nYJpmh3TOjHYoxxjQprw+UbQYmqGqBn8G0VKrKkrwCThvQhQSbR8AY08pEmqHsJFVdjzM/cbabY6havMxQtqngCF8dLLFmIWNMqxTpjuA2YBrhZyqLmxnKFudW9Q9YR7ExpvWJNEPZNPflBapaErxORNJ8i6qFWZxbQK+O6WTb/ALGmFbI66ihJR7fa3UqKpWP8wqZOKCLTTNpjGmVIvURnAD0BNJF5BSc9BIAmUBcXB6v2XGQQyXlTBxk/QPGmNYpUh/BecB3gF7A74LePwz8j08xtSiL3P6B0+xBMmNMKxWpj+BF4EURuVxVX2+mmFqUJXkFnHRCBl1s+kljTCsVqWnoelV9GegrIreFrlfV34XZrdUoKatg+Zb9fHt8n2iHYowxvonUWdzW/d0OyAjzUy8ROV9ENrjJ6u6qY5szRGSViKwVkQUNiN13K7fuJ1Beac8PGGNatUhNQ0+7vx9o6IHdGc2eBM4B8oHlIjJPVdcFbdMBZz7k81V1m4h0bejn+GlRbgFJCcLYfp2iHYoxxvjGa66h34pIpogki8gHIlIgItdH2G0skKuqm1Q1AMwFLgvZ5lrgDVXdBqCqexp6An5anFvAKdkdaJvqNROHMcbEHq/PEZyrqoeAi3Gu7k8Efhphn57A9qDlfPe9YCcCHUVkvoisFJFvhzuQiEwTkRUismLv3r0eQz4+B4vL+HzHQWsWMsa0el4rgqqZ2i8E5qjqPg/7hHv6SkOWk4BTgYtwhqreKyIn1tpJdaaq5qhqTlZWlseQj8/HmwpQm5bSGBMHvLZ5/F1E1gNHgR+JSBZQEmGffKB30HIvYGeYbQpU9QhwREQWAiNxJr+JqsW5hbRNSWRU7w7RDsUYY3zldYayu4AJQI6qlgFHqN3eH2o5MEhE+olICnA1MC9kmzeBSSKSJCJtgHHAFw05Ab8401J2IjmxoXP3GGNMbPE6eX0y8C1gsptvZwEwo759VLVcRG4B3gMSgedVda2I3OSun6GqX4jIu8BqoBJ4VlXXNPpsmsjOA0fZVHCEa8dlR97YGGNinNemoT/i9BM85S5/y33v+/XtpKpvA2+HvDcjZHk6MN1jHM3iWNpp6x8wxrR+XiuCMao6Mmj5QxH5zI+AWoIleYV0aZfC4G4Rn5kzxpiY57UBvEJEBlQtiEh/oMKfkKJLVVmUa9NSGmPih9c7gp8C/xaRTTjDQvsA3/UtqijK3VPE3sOlNhuZMSZuRKwI3KGiB3GeFO6KUxGsV9VSn2OLikXWP2CMiTP1Ng2JyPeBtcAfgFVAX1X9rLVWAuB0FPfp3IZeHeNi3h1jjInYR/ATYJiqTgBOA+72PaIoKq+oZOmmfXY3YIyJK5EqgoCq7gVQ1U1Aq56d5bP8gxSVljNxgFUExpj4EamPoJeIPF7Xsqre6k9Y0bEktwARmGDTUhpj4kikiiA0w+hKvwJpCRblFjC0eyad2qZEOxRjjGk2XuYsjgvFgXI+3XaA707sG+1QjDGmWUUaNTRTRIbXsa6tiHxPRK7zJ7TmtXzLfgIVNi2lMSb+RGoaegr4hYiMANYAe4E0YBCQCTwPzPY1wmayJLeAlMQExvS1aSmNMfElUtPQKuBKEWkH5ADdceYk+EJVN/gfXvNZlFvA6D4dSE9JjHYoxhjTrDylmFDVImC+v6FEz74jAdbuPMTt59SaHM0YY1o9m3UF+DivEICJg6x/wBgTf6wiwGkWykhN4uSe7aMdijHGNLsGVQQi0tavQKJpSV4B4/p3JsmmpTTGxCFPJZ+InCYi63DnExaRkSLyVITdYsL2fcVsLSy2tNPGmLjl9RL498B5QCGAqn4GTPYrqOa0JM9JO/01e37AGBOnPLeFqOr2kLdaxQxli3IL6ZqRysCu7aIdijHGRIXXGcq2i8hpgIpICnArbjNRLKusVJbkFjD5xCxEbFpKY0x88npHcBNwM9ATyAdGAT/yKaZms2H3YQqPBCythDEmrnm9IxisqjVyConIRGBx04fUfBZXT0tpHcXGmPjl9Y7gDx7fiymLcwvon9WW7u3Tox2KMcZETb13BCJSNUVllojcFrQqE4jppDyB8kr+s3kfl4/uFe1QjDEmqiI1DaUA7dztMoLePwRM9Suo5vBZ/gGKAxXWP2CMiXuRso8uABaIyCxV3dpMMTWLRRsLSBCY0N/6B4wx8c1rZ3GxiEwHhuHMRwCAqp7lS1TNYEleASN6tqd9m+Roh2KMMVHltbN4NrAe6Ac8AGwBlvsUk++OlDrTUp5mzULGGOO5Iuisqs8BZaq6QFW/B4z3MS5fLdu8j/JKtbQSxhiD96ahMvf3VyJyEbATiNnhNotyC0hNSuDUPh2jHYoxxkSd1zuCX4pIe+B24A7gWeAnkXYSkfNFZIOI5IrIXfVsN0ZEKkSkWUYiLc4tIKdvR9KSY3oErDHGNAlPFYGqvqWqB1V1jaqeqaqnAvvq20dEEoEngQuAocA1IjK0ju1+A7zX4OgboaColPW7DtuwUWOMcdVbEYhIoohcIyJ3iMhw972LRWQJ8ESEY48FclV1k6oGgLnAZWG2+zHwOrCn4eE33OaCIwAM72GzkRljDETuI3gO6A0sAx4Xka3ABOAuVf1bhH17AsGpq/OBccEbiEhPYApwFjCmrgOJyDRgGkB2dnaEj61foLwSwJqFjDHGFakiyAFOVtVKEUkDCoCBqrrLw7HD5XXWkOVHgZ+pakV9aaBVdSYwEyAnJyf0GA1SVREkJ1raaWOMgcgVQUBVKwFUtUREvvRYCYBzB9A7aLkXzmijYDnAXLcS6AJcKCLlHu42Gq3UrQhSkmx+YmOMgcgVwUkistp9LcAAd1kAVdWT69l3OTBIRPoBO4CrgWuDN1DVflWvRWQW8JaflQBAWYVTEaRaRWCMMUDkimBIYw+squUicgvOaKBE4HlVXSsiN7nrZzT22MejqmkoJdH6CIwxBiInnTuuRHOq+jbwdsh7YSsAVf3O8XyWVwH3jiA5yfoIjDEGGjB5fWtx7I4g7k7dGGPCirvSMGCdxcYYU4Pn0lBE0kVksJ/BNIeqpiGrCIwxxuGpNBSRS4BVwLvu8igRmedjXL6pfo4gwSoCY4wB73cE9+OkjDgAoKqrgL5+BOS3QEUlyYlCQoJ1FhtjDHivCMpV9aCvkTSTQHmldRQbY0wQr/MRrBGRa4FEERkE3Aos8S8s/5RVVFr/gDHGBPFaIv4YZ77iUuDPwEE8zEfQEgXKK0m2OwJjjKnm9Y5gsKr+HPi5n8E0h0C53REYY0wwryXi70RkvYj8r4gM8zUin5Va05AxxtTgdYayM4EzgL3ATBH5XETu8TMwv5RZZ7ExxtTguURU1V2q+jhwE84zBb/wKyg/BSoqLfOoMcYE8fpA2RARuV9E1uBMUbkEZ36BmGOdxcYYU5PXzuIXgDnAuaoaOrlMTLHOYmOMqclTRaCq4/0OpLkEKippl+a1/jPGmNav3hJRRF5V1StF5HNqzjfsZYayFsmeLDbGmJoiXRr/t/v7Yr8DaS6BikqSrWnIGGOq1VsiqupX7ssfqerW4B/gR/6H1/QC5ZWk2h2BMcZU81oinhPmvQuaMpDmYp3FxhhTU6Q+gh/iXPn3F5HVQasygMV+BuYXSzpnjDE1Reoj+DPwDvBr4K6g9w+r6j7fovKRPUdgjDE1RaoIVFW3iMjNoStEpFMsVgYBuyMwxpgavNwRXAysxBk+GjytlwL9fYrLF5WVSlmF2vBRY4wJUm9FoKoXu7/7NU84/iqrtInrjTEmlNdcQxNFpK37+noR+Z2IZPsbWtOrmrje7giMMeYYryXiH4FiERkJ3AlsBf7kW1Q+qa4I7I7AGGOqNWTyegUuAx5T1cdwhpDGlECFVQTGGBPKa/a1wyJyN/AtYJKIJALJ/oXlD2saMsaY2ryWiFfhTFz/PVXdBfQEpvsWlU/K7I7AGGNq8TpV5S5gNtBeRC4GSlT1JV8j80Gpe0dgD5QZY8wxXkcNXQksA64ArgT+IyJTPex3vohsEJFcEbkrzPrrRGS1+7PE7Yz2TVXTkE1VaYwxx3jtI/g5MEZV9wCISBbwL+C1unZw+xGexElYlw8sF5F5qrouaLPNwOmqul9ELgBmAuMafhre2KghY4ypzWuJmFBVCbgKPew7FshV1U2qGgDm4ow6qqaqS1R1v7u4FJ/nQS6rcObWsYrAGGOO8XpH8K6IvIczbzE4ncdvR9inJ7A9aDmf+q/2b8BJcFeLiEwDpgFkZzf+ObZARQVgfQTGGBPM65zFPxWRbwJfw8k3NFNV/xphNwnznoZ5DxE5E6ci+Fodnz8Tp9mInJycsMfwwoaPGmNMbZHmIxgEPAwMAD4H7lDVHR6PnQ/0DlruBewM8xknA88CF6hqocdjN0qp9REYY0wtkUrE54G3gMtxMpD+oQHHXg4MEpF+IpICXA3MC97AzVf0BvAtVf2yAcdulKo+Ahs1ZIwxx0RqGspQ1Wfc1xtE5BOvB1bVchG5BXgPSASeV9W1InKTu34G8AugM/CUiICTyiKnoSfhVcCeIzDGmFoiVQRpInIKx9r704OXVbXeikFV3yakU9mtAKpefx/4fkODbqxAudNZbE1DxhhzTKSK4Cvgd0HLu4KWFTjLj6D8YknnjDGmtkgT05zZXIE0Bxs1ZIwxtcVViRhwO4uTE8ONbDXGmPgUXxVBeSUpiQm4HdPGGGOIx4rA+geMMaYGr9lHxZ2r+BfucraIjPU3tKYXqKiwisAYY0J4LRWfAiYA17jLh3Eyi8aUsnK1/gFjjAnhNencOFUdLSKfArhpo1N8jMsXgQprGjLGmFBeS8Uyd34Bher5CCp9i8onVZ3FxhhjjvFaKj4O/BXoKiL/BywCfuVbVD4pLa8kJSkx2mEYY0yL4jUN9WwRWQmcjZNe4huq+oWvkfmgzJqGjDGmFk8VgZsltBj4e/B7qrrNr8D84DQNWWexMcYE89pZ/A+c/gEB0oB+wAZgmE9x+SJQUUlast0RGGNMMK9NQyOCl0VkNHCjLxH5KFBeSWaa17rPGGPiQ6Muj93002OaOBbf2ZPFxhhTm9c+gtuCFhOA0cBeXyLyUVlFpU1KY4wxIby2k2QEvS7H6TN4venD8Vep3REYY0wtESsC90Gydqr602aIx1eBikqbr9gYY0LUWyqKSJKqVuA0BcU8e7LYGGNqi3RHsAynElglIvOAvwBHqlaq6hs+xtbkrI/AGGNq89pH0AkoxJmjuOp5AgViqiKwUUPGGFNbpIqgqztiaA3HKoAq6ltUPqisVMor1SoCExPKysrIz8+npKQk2qGYGJOWlkavXr1ITk72vE+kiiARaEfNCqBKTFUEgQp34nqrCEwMyM/PJyMjg759+9rUqsYzVaWwsJD8/Hz69evneb9IFcFXqvrg8YXWMlRXBNZHYGJASUmJVQKmwUSEzp07s3dvwx7zilQqtpp/hYFyuyMwscUqAdMYjfl3E6lUPLtxobQ81RWB3REYY0wN9ZaKqrqvuQLxm90RGNMwiYmJjBo1iuHDh3PFFVdQXFzMihUruPXWWxt9zHbt2gGwc+dOpk6d2lSh8pOf/ISFCxdWL+/du5fk5GSefvrpsJ9fZdasWdxyyy3Vyy+99BLDhw9n2LBhDB06lIcffvi4Y3v33XcZPHgwAwcO5KGHHgq7zcGDB7nkkksYOXIkw4YN44UXXqhe9/vf/55hw4YxfPhwrrnmmuoBBHfccQcffvjhcccHjUw6F4uss9iYhklPT2fVqlWsWbOGlJQUZsyYQU5ODo8//vhxH7tHjx689tprTRAl7Nu3j6VLlzJ58uTq9/7yl78wfvx45syZ4/k477zzDo8++ijvv/8+a9eu5ZNPPqF9+/bHFVtFRQU333wz77zzDuvWrWPOnDmsW7eu1nZPPvkkQ4cO5bPPPmP+/PncfvvtBAIBduzYweOPP86KFStYs2YNFRUVzJ07F4Af//jHdVYsDRU3OZmr7gjsgTITax74+1rW7TzUpMcc2iOT+y7xPp3IpEmTWL16NfPnz+fhhx/mrbfe4v777ycvL48dO3awfft27rzzTn7wgx8AMH36dF599VVKS0uZMmUKDzzwQI3jbdmyhYsvvpg1a9Ywa9Ys5s2bR3FxMXl5eUyZMoXf/va3ALz//vvcd999lJaWMmDAAF544YVaV/WvvfYa559/fo335syZwyOPPMK1117Ljh076NmzZ8Rz/PWvf83DDz9Mjx49AGcYZtX5NNayZcsYOHAg/fv3B+Dqq6/mzTffZOjQoTW2ExEOHz6MqlJUVESnTp1ISnKK5/Lyco4ePUpycjLFxcXV8fXp04fCwkJ27drFCSeccFxxxk2paHcExjROeXk577zzDiNGjKi1bvXq1fzjH//g448/5sEHH2Tnzp28//77bNy4kWXLlrFq1SpWrlxZo9kmnFWrVvHKK6/w+eef88orr7B9+3YKCgr45S9/yb/+9S8++eQTcnJy+N3vfldr38WLF3PqqadWL2/fvp1du3YxduxYrrzySl555RVP57lmzZoax6nL7NmzGTVqVK2fcE1dO3bsoHfv3tXLvXr1YseOHbW2u+WWW/jiiy/o0aMHI0aM4LHHHiMhIYGePXtyxx13kJ2dTffu3Wnfvj3nnntu9X6jR49m8eLFns6vPnF3R5BqdwQmxjTkyr0pHT16lFGjRgHOHcENN9zAkiVLamxz2WWXkZ6eTnp6OmeeeSbLli1j0aJFvP/++5xyyikAFBUVsXHjxhpNN6HOPvvs6maYoUOHsnXrVg4cOMC6deuYOHEiAIFAgAkTJtTa96uvviIrK6t6ee7cuVx55ZWAcwV+ww03cNttt9Xar0pDR9lcd911XHfddZ62Va39uFW4z3vvvfcYNWoUH374IXl5eZxzzjlMmjSJiooK3nzzTTZv3kyHDh244oorePnll7n++usB6Nq1Kzt37mxQ/OH4WhGIyPnAYzgPpj2rqg+FrBd3/YU4cyJ/x530pslZZ7ExDVPVR1Cf0EJNRFBV7r77bm680fskhqmpqdWvExMTKS8vR1U555xzIrbzp6en13gCe86cOezevZvZs2cDTsf0xo0bGTRoEOnp6QQCAVJSUgCnf6FLly4ADBs2jJUrV3LWWWfV+3mzZ89m+vTptd4fOHBgrX6PXr16sX379url/Pz86qadYC+88AJ33XUXIsLAgQPp168f69evZ+vWrfTr16+6ovvmN7/JkiVLqiuCkpIS0tPT643XC99KRTd99ZPABcBQ4BoRGRqy2QXAIPdnGvBHv+Ipq7A+AmOa2ptvvklJSQmFhYXMnz+fMWPGcN555/H8889TVFQEOM0je/bsafCxx48fz+LFi8nNzQWguLiYL7/8stZ2Q4YMqd5mw4YNHDlyhB07drBlyxa2bNnC3XffXd3Bevrpp/Pyyy8Dzh3Pq6++yplnngnA3XffzZ133smuXbsAKC0tDdsxft1117Fq1apaP+E6v8eMGcPGjRvZvHkzgUCAuXPncumll9baLjs7mw8++ACA3bt3s2HDBvr37092djZLly6luLgYVeWDDz5gyJAh1ft9+eWXDB8+3PuXWgc/S8WxQK6qblLVADAXuCxkm8uAl9SxFOggIt39CMbuCIxpemPHjuWiiy5i/Pjx3HvvvfTo0YNzzz2Xa6+9lgkTJjBixAimTp3K4cOHG3zsrKwsZs2axTXXXMPJJ5/M+PHjWb9+fa3tLrroIubPnw84dwNTpkypsf7yyy+vvqt47LHHeOONNxg1ahTjx4/niiuuqG6yuvDCC7n55pv5+te/zrBhwzj11FMpLy9vcNzBkpKSeOKJJzjvvPMYMmQIV155JcOGOU19M2bMYMaMGQDce++9LFmyhBEjRnD22Wfzm9/8hi5dujBu3DimTp3K6NGjGTFiBJWVlUybNg1w8lHl5uaSk5NzXDECThuWHz/AVJzmoKrlbwFPhGzzFvC1oOUPgJwwx5oGrABWZGdna2Os2FKoP3x5he48UNyo/Y1pTuvWrYt2CBHdd999On369GiHoaqqEydO1P3790c7jGb1xhtv6D333BN2Xbh/P8AKraO89rOPwEuiOk/J7FR1JjATICcnp1HJ7k7t04lT+3RqzK7GmBbukUceYdu2bXTo0CHaoTSb8vJybr/99iY5lp8VQT7QO2i5FxDave1lG2NMC3T//fdHO4Rq48aNi3YIze6KK65osmP52WC+HBgkIv1EJAW4GpgXss084NviGA8cVNWvfIzJmJihYYYeGhNJY/7d+HZHoKrlInIL8B7O8NHnVXWtiNzkrp8BvI0zdDQXZ/jod/2Kx5hYkpaWRmFhIZ07d7YspMYzdecjSEtLa9B+EmtXHTk5ObpixYpoh2GMr2yGMtNYdc1QJiIrVTXsEKO4ebLYmFiSnJzcoBmmjDkeNqjeGGPinFUExhgT56wiMMaYOBdzncUishfY2sjduwAFTRhOLLBzjg92zvHheM65j6pmhVsRcxXB8RCRFXX1mrdWds7xwc45Pvh1ztY0ZIwxcc4qAmOMiXPxVhHMjHYAUWDnHB/snOODL+ccV30Exhhjaou3OwJjjDEhrCIwxpg41yorAhE5X0Q2iEiuiNwVZr2IyOPu+tUiMjoacTYlD+d8nXuuq0VkiYiMjEacTSnSOQdtN0ZEKkRkanPG5wcv5ywiZ4jIKhFZKyILmjvGpubh33Z7Efm7iHzmnnNMZzEWkedFZI+IrKljfdOXX3VNXRarPzgpr/OA/kAK8BkwNGSbC4F3cGZIGw/8J9pxN8M5nwZ0dF9fEA/nHLTdhzgpz6dGO+5m+Dt3ANYB2e5y12jH3Qzn/D/Ab9zXWcA+ICXasR/HOU8GRgNr6ljf5OVXa7wjGAvkquomVQ0Ac4HLQra5DHhJHUuBDiLSvbkDbUIRz1lVl6jqfndxKc5scLHMy98Z4MfA68Ce5gzOJ17O+VrgDVXdBqCqsX7eXs5ZgQxxJm5oh1MRHN+s81GkqgtxzqEuTV5+tcaKoCewPWg5332vodvEkoaezw04VxSxLOI5i0hPYAowoxnj8pOXv/OJQEcRmS8iK0Xk280WnT+8nPMTwBCcaW4/B/5bVSubJ7yoaPLyqzXORxBuOqfQMbJetoklns9HRM7EqQi+5mtE/vNyzo8CP1PVilYyy5eXc04CTgXOBtKBj0Vkqap+6XdwPvFyzucBq4CzgAHAP0XkI1U95HNs0dLk5VdrrAjygd5By71wrhQauk0s8XQ+InIy8CxwgaoWNlNsfvFyzjnAXLcS6AJcKCLlqvq3Zomw6Xn9t12gqkeAIyKyEBgJxGpF4OWcvws8pE4Deq6IbAZOApY1T4jNrsnLr9bYNLQcGCQi/UQkBbgamBeyzTzg227v+3jgoKp+1dyBNqGI5ywi2cAbwLdi+OowWMRzVtV+qtpXVfsCrwE/iuFKALz9234TmCQiSSLSBhgHfNHMcTYlL+e8DecOCBHpBgwGNjVrlM2rycuvVndHoKrlInIL8B7OiIPnVXWtiNzkrp+BM4LkQiAXKMa5oohZHs/5F0Bn4Cn3CrlcYzhzo8dzblW8nLOqfiEi7wKrgUrgWVUNOwwxFnj8O/8vMEtEPsdpNvmZqsZsemoRmQOcAXQRkXzgPiAZ/Cu/LMWEMcbEudbYNGSMMaYBrCIwxpg4ZxWBMcbEOasIjDEmzllFYIwxcc4qgjjgZt5cFfTTt55ti5rg82aJyGb3sz4RkQmNOMazIjLUff0/IeuWHG+M7nGqvpc1bvbKDhG2HyUiFzbic7qLyFvu6zNE5KCIfCoiX4jIfY043qVVWThF5BtV35O7/KCIfL2hxwzzGbMkQrZWN42F5yHI7rm/5WG7sNk3ReRhETnL6+cZ76wiiA9HVXVU0M+WZvjMn6rqKOAu4OmG7qyq31fVde7i/4SsO+34wwOOfS/DcZJ83Rxh+1E447cb6jbgmaDlj1T1FJwnn68XkVMbcjBVnaeqD7mL3wCGBq37har+qxExtiSzgPPDvP8HnH9PpolZRRCHRKSdiHzgXq1/LiK1sna6V7ELg66YJ7nvnysiH7v7/kVE2kX4uIXAQHff29xjrRGRn7jvtRWRf4iTS36NiFzlvj9fRHJE5CEg3Y1jtruuyP39SvAVunsVe7mIJIrIdBFZLk6+9hs9fC0f4ybuEpGx4szZ8Kn7e7D7VOuDwFVuLFe5sT/vfs6n4b5H1+XAu6FvumkgVgID3LuNpW68fxWRjm4st4rIOvf9ue573xGRJ0TkNOBSYLob04CqK3kRuUBEXg36bs4Qkb+7rxv0NxSRX7jnuEZEZorUSNx0vfsdrRGRse72Xr+XsOrKvqmqW4HOInJCQ45nPGiuHNv2E70foAInKdcq4K84T5Rnuuu64DyhWPVwYZH7+3bg5+7rRCDD3XYh0NZ9/2fAL8J83izc3P/AFcB/cBKhfQ60xUkVvBY4BaeQfCZo3/bu7/lATnBMQdtUxTgFeNF9nYKTkTEdmAbc476fCqwA+oWJsyjo/P4CnO8uZwJJ7uuvA6+7r78DPBG0/6+A693XHXDy+bQN+Yx+wMqg5TOAt9zXnYEtwDCcJ4FPd99/EHjUfb0TSK36jNA4gr/r4GX3b7wt6G/1R+D6Rv4NOwW9/yfgkqC/0TPu68m4+fPr+l5Czj0H56nnuv7N9iVMPn6cO6vLo/1/qrX9tLoUEyaso+o00wAgIsnAr0RkMk4agp5AN2BX0D7Lgefdbf+mqqtE5HScZojF7kVhCs6VdDjTReQeYC9OttOzgb+qcxWMiLwBTMK5Un5YRH6DU0h81IDzegd4XERScZoSFqrqURE5Fzg5qI27PTAI2Byyf7qIrMIpdFYC/wza/kURGYST1TG5js8/F7hURO5wl9OAbGrm9unufgfBJonIpzjf/UM4ScQ6qGrVbGIv4lRM4FQQs0Xkb8Df6oijFnVSM7wLXCIirwEXAXcCDfkbVjlTRO4E2gCdcCrxv7vr5rift1BEMsXpZ6nrewmObwXwfa/nE2QP0KMR+5l6WEUQn67DmcnpVFUtE5EtOP9Zq7n/sSfjFCB/EpHpwH7gn6p6jYfP+Kmqvla1IHV0YKrql24b+YXAr0XkfVV90MtJqGqJiMzHSUN8FW6hhJNv5seq+l6EQxxV1VEi0h54C6eP4HGc3DX/VtUp4nSsz69jf8G5Ot1Q32cQ8t3i9BFcXH0Q5/PrchHO1falwL0iMqyebUO9gnNO+4DlqnrYbdbx+jdERNKAp3DuzraLyP3UPJ/QHDVKHd+LOAnhjlcazndqmpD1EcSn9sAetxI4E+gTuoGI9HG3eQZ4DmfqvKXARBGpavNvIyInevzMhcA33H3a4jTrfCQiPYBiVX0ZeNj9nFBl7p1JOHNxkm5NwklMhvv7h1X7iMiJ7meGpaoHgVuBO9x92gM73NXfCdr0ME4TWZX3gB9XtZmLyClhDv8lzh1HndzP3y9uPwzwLWCBiCQAvVX13zhX8x1wmtWChcYUbD7O9/kDnEoBGv43rCr0C9y+hNCRRFV9Ol/DyYJ5EG/fS2OdCMRsEr2WyiqC+DQbyBGRFTh3B+vDbHMGsMptwrgceExV9+IUjHNEZDVOoXKSlw9U1U9w2p2X4fQZPKuqnwIjgGVuE83PgV+G2X0msFrczuIQ7+NcMf9LnakMwZlzYR3wiThDEJ8mwt2vG8tnOGmOf4tzd7IYp/+gyr+BoVWdxTh3DslubGvc5dDjHgHyqgreevwXTnPaapzRSQ+6n/2yOFk1PwV+r6oHQvabC/zU7ZQdEPLZFTh3Ohe4v2no39D9vGdw+nf+htNkGGy/OMN5Z+A0AYKH70WcgQDPhvtMcbJvfgwMFpF8EbnBfT8ZZ+DBirriNY1j2UeN8ZmITMFphrsn2rHEMvd7HK2q90Y7ltbG+giM8Zmq/lVEOkc7jlYgCXgk2kG0RnZHYIwxcc76CIwxJs5ZRWCMMXHOKgJjjIlzVhEYY0ycs4rAGGPi3P8HFrH76YNXGy8AAAAASUVORK5CYII=\n", "text/plain": [ "
    " ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABKcAAAH3CAYAAABuNjwtAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAC0rElEQVR4nOzdeVhU5fsG8PudYRdEQERWUZEdccU9ze2ruaSSaWruu6ZmaVlZZv1KK8vILJfUyBb3JaxMS82lUsxEZRMURUVUUAHZZjm/Pw5j4zjs4Ijen+vikjnLe545TCV37/scIUkSiIiIiIiIiIiITEFh6gKIiIiIiIiIiOjxxXCKiIiIiIiIiIhMhuEUERERERERERGZDMMpIiIiIiIiIiIyGYZTRERERERERERkMgyniIiIiIiIiIjIZBhOERE9xIQQC4QQkt7XVSFElBCiaTHHBwkhNgghrgkh8oUQiUKIhUKIWsUc36zo+KtCiEIhxBUhxDohRGAZanMRQiwVQiQLIQqEEDeFED8LIf5X2ff9sBBCKIQQnwsh0ovu/wJT11QSIcRmIcR+U9dBRERERFQeZqYugIiISnUbQK+i770BLASwRwgRIElSpu4gIcSTAHYB+BfACwCuAmgF4DUAvYUQT0qSlKN3/CAAPwD4A8CLAC4D8AAwDMBhAA7FFSSE8AOwD8AdAB8BiAVQG8BTAHYKIcIkSTpZ2Tf+EBgEYCqAcZDf4yXTlkNERERE9OhhOEVE9PBTS5L0V9H3fwkhUgD8CTmw+g4AhBA2AL4FcBxAV0mSVEXHHxBC7AEQDeBdALOKjncD8DWA7wGMliRJ0rved0KIvqXU9C2ATADtJUnK0tv+oxDiCwC3KvA+7xJCWEuSlFeZMaqIP4CbkiStMXUhD1JV338hhBKAUpKkwqoak4iIiIgeHVzWR0RU8+hmJHnqbRsMwBXA63rBFABAkqQYyGHS+KIQCwDGA7AA8JJBMKU7J6q4iwshngDQEsA8g2Dq7vUkSbpYdOx+IcRmg/O7FC2RCy567V30ergQIlIIcQtyyPW1EOKoketPF0LkCSFsi14rhBCvCiGSipYXJgohRhVXv944NkKIiKIljflCiGNCiJ56+/cDeAeAg96ySu8SxpsuhEgVQtwRQmwXQnQrOqeL3jGl1qq7Z0KIYUXHZRUtl/QwOM5TCPFT0b1IEUKML6auYCHELiFEdtHXJiFEfb39up/H/4QQO4UQOQCWlfA+mwohjhTdszNCiKeEENFCiHV6x6wr2jZACHEGQD6ANnr36WzR+08SQrxoMP46IUS0wTbdZ6Sv3jZJCDFbCPGpECJTCHFLCPGZEMJC75g6QojVQl6umi+EuCiEWFXceyMiIiIi0+DMKSKimser6M/zetuegDzD549iztkOYDSAFgAOAegMIFqSpBsVuH5nABoAeytwbkk+ArAVctCmAWAJ4CchRCNJks7pHfcsgF16SxQ/AzAK8nLHfwD0ALBGCJFRUsgGYBWA/pCXPSYBmABgV9Hyx0OQl/PNBvAM/ltWmWZsICHEwKI6lgPYAaAjgK+MHFrWWtsAcAPwEgBrAJ8CWAl52SSEEKLoOnUhLznMB/A2AEcAZ/Xq8oG8RDMawPMAlJADtx+Lll7qB5NfAVgLYGnReMbepw2A3ZCXjD4HwArAJ5CXgJ42ONwbwAdF7zUdwHkhxISie/Bx0ThPAlgihLCUJGmRsWuW4iUAfwEYDiAIwP8V1T6naP/HANpDXrZ6FXKg+0QFrkNERERE1YjhFBFRDSCE0P37ugHkWS3/Qg4ndNwBXChhiAt6x+n+PFHBctwBXK+GZXd/SZI0Tfei6D1nQA6jFhVtc4cc/Dxb9NoHwBQAYyRJ+rro1L1CCFcAbwEwGk4JIQIghyt3zxNC7AYQA2A+gP9JkhQrhLiEe5dVFuc1AD/p1f+rEKJuUW26a5an1toA+kiSdLPo3PoAPhH/LbfrDaA5gLaSJP1ddMxxAMnQC6eKxr0KoLduSZ0QIgZAPOSga5fesZskSZpfyvscA8AJQCtJki4XjZcM4G8jxzoB6C5J0r9FxykALACwTpKkl/Tukz2AeUKIpZIkGQ3FSpANYLAkSVoAPwshLAG8LoR4v6gfWxiAzyVJ2qB3zvpyXoOIiIiIqhmX9RERPfycAKiKvpIghxKDJEkqqOS49y3ne0DnFkc/KIEkSWrIM6mG6G0eDLkJu+7YbgC0ALYJIcx0XwB+A9BMyL2OjGkNQADYpHc9bdHrjuUpuugazQDsNNhl+Lo8tR7TBVNFYov+1IWLYQDSdcFUUf0XIPcc09cdwDYAWr3rnQeQArlZvr5dKF1rAMd1wVTRdY9Cnhll6LIumCriAXk22CaD4zZADuNCynB9QzuKfm46WyHPNAsuev0vgDlCiKlCCN8KjE9EREREDwDDKSKih99tyKFAWwCTIPeK+q5oJorOZcizqorTQO843Z9exRxbmssAnIUQVhU8vzjGAo4fIAc3umBhCICderO26kJeqnYb/wV4KgDrIM8Odi3mWq4AciRJyjVSg03RDJyyci661nWD7Yavy1PrLYNzdY3Edfe8PoBrRmox3FYXwCsG11MBaIR7e5YBxu+/ofq4/32hmG2G47kWs1332rEM1zdk+H51r3XXmg55SeubABKKel0NrcB1iIiIiKgacVkfEdHDTy1Jkq5B9N9CiDwAkZBnEemWK/0BYKwQomNRvyRD/SHPONLNrNkPefmTY9Hyp/LYD7mPUDeUPtsmH3KYpq+4EMLYbKz9kJelDRFCRELuxfS+3v5MAGoAHSDPSjJkLMAB5N5RtkIIG4OAygVAbjlnpV0vqsHZYLvh64rWasxVAPWMbK8HQH+5ZSbkmVOrjRxr2G+sLLPhrgLwM7Ld8L0aG0/Xr8uwbpeiP3Wfw/J8ZgzH0r1OAwBJkm4BmAFghhCiKYC5AL4VQsRIkhQLIiIiInoocOYUEVHNsx7AGcgzYnQ2Qf6F/P/0+lMBkJ/WBrkZ9iq9GUdfQZ5B85GxCwgh+hR3cUmSDkIOud4TQtgZOTdECKGblXMJgL/BIT2KG9vItbQANkOeMfUsgCwAv+gd8jvk2Uj2kiRFG/kqvH9UAMAxyOHJM3p1i6LXxsK9kmrUQF4+9rTBrv4Grytaa3H1uwgh2ujV7wW54b2+3yAvcTtu5Hop5bie/nVbFfX+0l03DP8FTCW5BOAK5FBVn+7nekrvOG+DmXnFfWaeNphBOAhyOGfYnF331Mo5kP/uY/iZJCIiIiIT4swpIqIaRpIkSQjxHuQZIN0kSfpNkqRcIcRwyDOZ9gshIiAvl2oJuVn3SciNvnVjXBFCjAbwvRDCA8AayMv13CEHQZ1R8jKr4QD2AYgWQnwCuSdSbQD/g/zUuzYAUiHP2hlXdMwuyE9n+1853/IGyMuzXgSwTT/EkSQpQQjxJYAfhBAfQH4qnRXkJ7f5SpI03tiAkiTFCSG+B7BMCFEb/z2tzx96TczL4T0AW4UQyyD3muoAQBfwaStTazF+gvwz3SSEeAXybKOFuH/21QIARyE/hXAN5NlS7pDDnnWSJO0v5/tcC+ANAFFCiLch93d6G/LsMWOzwe6SJEkrhFgAYIUQIgPAHsifsykAXtNrhr696L2sFkKsg9xjbUwxw9pBvgerIN/HNwEs080GFEIcgvwZPA05jJwAeQbh0XK+byIiIiKqRpw5RURUM22A/FS2uboNkiTtg9wo+wqAzwH8CmAygOUAukiSlKM/gCRJWyCHSLcAfAp5Zs/HkH95717SxSVJSoA8S+eXohr2APgGgC+AYZIknSw6bhfkcOwZyCFBAwCzyvleD0MOulwh96AyNA3AOwBGQg5t1kEOhv4oZdwJAL6GHNrtKKqtbzHLIkskSdI2yMvHBkAOV1oDeLlod1YV1Gp4PQnyzKxYyMHiUshPcfzT4LhEyL3KcgGsBPAz5DCpAHIgVy5FSyB7QZ6dtAFy+DUX8mcoq9gT/zt/FeT7NBDy0wmfA/CSJEmL9I45DWAsgHaQg77ORa+NWQJ5xuD3kIOp1ZA/bzp/AhgNefbdRsg9uHpLknSp9HdLRERERA+KkP9+S0RERFVJCPEGgNcBOOotp3zkCCEaAkgEMFGSpLUP8LoSgBckSVr2oK5JRERERNWDy/qIiIgqSQjhDGAe5KWOuQA6Qe4J9tWjFkwJIeZBnp13AfITH+dBXta3xZR1EREREVHNxXCKiIio8goh96saCcAe8lKzT6HX5+sRIgF4C4Ab5OWBBwG8LElSqcv6iIiIiIiM4bI+IiIiIiIiIiIyGTZEJyIiIiIiIiIik2E4RUREREREREREJvNI9JyqW7eu5O3tbeoyqs358+cBAA0bNjRxJURERERE9DA6fvz4DUmSnE1dBxFRRTwS4ZS3tzeio6NNXUa16dKlCwBg//79Jq2DiIiIiIgeTkKIC6augYioorisj4iIiIiIiIiITIbhFBERERERERERmQzDKSIiIiIiIiIiMplHoufUo65du3amLoGIiIiIiKhaHD9+vJ6ZmdlqAMHgBAqiR5UWwGm1Wj2+ZcuW1wx3MpyqAd5//31Tl0BERERERFQtzMzMVtevXz/A2dn5pkKhkExdDxFVPa1WK65fvx549erV1QD6G+5nKk1ERERERESmFOzs7JzFYIro0aVQKCRnZ+fbkGdI3r//AddDFRAeHo7w8HBTl0FERERERFQdFAymiB59Rf+cG82huKyvBsjIyDB1CURERERERERE1YIzp4iIiIiIiOixplQqW/r7+wc2adIkqGvXrj43btxQ6vZFR0dbtW3b1tfb2zu4QYMGwXPmzHHVarV3z924cWPt4ODggEaNGgU1bNgwaOLEiR5lvW5eXp5o3769r7+/f+CqVascqvhtGRUVFWX35JNP+lR2nISEBAshRMuZM2e66balpaWZmZmZtRg5cqRXZcenxwvDKSIiIiIiInqsWVpaauPj42PPnj17pk6dOuoPP/zQGQBycnLEwIEDfebOnXs1JSXl9OnTp2P//vtv28WLFzsDwLFjx6xeeuklr2+++eb8uXPnziQmJp5p1KhRQVmve+TIERuVSiXi4+NjJ0yYcLO63l9lqFSqYvd5eHgU/Prrr3V0ryMjIx18fHzyH0Rd9Gjhsj4iIiIiIiJ6OIwd64nTp22qdMzg4FysWZNa1sPbtm17JyYmxhoAVq1a5dSqVaucQYMGZQGAnZ2d9osvvrjYrVs3v3nz5l1/77336r/00ktpzZs3zwcAc3NzvPrqq9cNx0xPT1cOHz7c++LFi5bW1tbalStXXvDw8FCNGTOm4c2bN838/f0Dt2zZkhwUFHQ32Dpw4IDNhAkTvG1sbLRt2rTJ+f333+3Pnj17Rq1WY9q0aR6HDx+2KywsFBMmTLg2Z86cG1FRUXYLFy50c3R0VCUkJFiHhITkbt++/bxCocDmzZtrz5kzx9PR0VEdEhKSq7tGVlaWYty4cV5xcXHWGo1GvP7661dGjBhxKyIiwunnn3+2LygoUOTm5ir++uuvRGP3ysrKSvLx8cn7448/bJ544oncLVu2OA4YMCDzypUrFmX/ARFx5lSN0K1bN3Tr1s3UZRARERERET3S1Go19u3bZzdgwIBbAHDmzBmrFi1a5OofExQUVJCbm6vIzMxUJCQkWLdp0ybX6GB65s6d6xYaGpqbmJgY+84771weNWpUQ3d3d/Xy5csvtGrVKic+Pj5WP5gCgPHjxzf8/PPPL/z777/xSqXybsP4pUuX1rW3t9ecPn067uTJk3Fff/21c3x8vAUAxMXFWX/++eepSUlJZy5evGi5Z88e29zcXDF9+nTvnTt3Jh07dizh2rVr5rqxXnvtNdcnn3wy6/Tp03EHDx5MeOONNzyysrIUAPDPP//Yfv/99+eLC6Z0hg4dmrl+/XrH5ORkc6VSKbm5uRU/1YqoGJw5VQPMnz/f1CUQERERERFVv3LMcKpKBQUFCn9//8DLly9bBAcH5w4YMCALACRJEkIIo+cUt92Yo0eP2m3ZsiUJAPr37589ceJEs4yMDGVxx9+4cUN5584dRY8ePe4AwKhRozL37NlTBwD27t1bOz4+3mbnzp0OAJCdna2MjY21srCwkEJCQu40btxYBQBBQUG5ycnJFnZ2dhoPD4+CkJCQAgAYPnx4xurVq50BYP/+/bV3795dJyIion7RfRBJSUkWANCpU6csFxcXTWnvLTw8PGvhwoXuLi4uqvDw8Mwy3xQiPZw5RURERERERI81Xc+plJSUU4WFhWLRokX1ACAoKCjv+PHj9ywzjI2NtbCxsdE6ODhofX198//+++9SlyFKknTfNiHE/RtLOF5vn1iyZMnF+Pj42Pj4+NjLly+f0i07tLS0vHuiUqmEWq0WRdcq9jqbN29O0o2VlpZ2qkWLFvkAYGNjozV6kgErKyupadOmuV988UX9ESNGPJR9s+jh90DDKSHEGiHENSHE6WL2CyFEhBAiSQgRI4Ro8SDre1j17t0bvXv3NnUZREREREREjzQnJydNRETExc8//9yloKBATJw4MePYsWN227dvtwPkBunTpk3zeuGFF64CwLx5865+/PHHrjExMZYAoNFosGDBAhfDcdu2bZu9du1aJ0B+Wp6Dg4Pa0dGx2PDH2dlZU6tWLe1vv/1WCwC++eYbR92+Hj163P7iiy+cCwoKBADExMRY6pbiGdOsWbP8S5cuWZw5c8YSAH744Ye7Yz355JNZS5YscdE9ffDw4cPW5bhdd73yyitX33rrrUv169cvdaYVkTEPelnfOgDLAEQWs783gCZFX20AfFH052MtLy/P1CUQERERERE9Fjp06JAXEBCQt3r1aodp06Zlbt26NWn69Oles2bNMtdqtRg8eHDGvHnzrgFAmzZt8hYvXpz63HPPNcrLy1MIIdC9e/fbhmMuXrz4yrBhw7x9fX0Dra2ttevWrTtfWh0rVqxImTx5cgMbGxtthw4dsu3s7DQA8OKLL95ISUmxDAkJCZAkSTg6Oqp++umn5OLGsbGxkT777LMLffv29XF0dFS3adMmJy4uzhoAFi1adGXixIle/v7+gZIkCQ8Pj4J9+/YllfeetWrVKr9Vq1Z8Sh9VmChpumC1XFAIbwBRkiQFG9m3AsB+SZK+L3qdAKCLJElpJY3ZqlUrKTo6ujrKfSh06dIFALB//36T1kFERERE9DhT5+Tj1pVc1PV1LP3gB0wIcVySpFamrqMiTp48mRIaGnrD1HU8bG7fvq2wt7fXAsBrr71WPy0tzXzt2rUm6clFVFVOnjxZNzQ01Ntw+8PWEN0dgP4/bJeKtpUYThERERERERVLkoD8fOD2baNf6swspF/RIO2qwJVrZkjLtMSVWzZIy7HFlVwHXCl0QpraGelwgZviJi5x4RI9ABs3brRfsmSJq0ajEe7u7gXfffddiqlrIqouD1s4ZaxLm9GpXUKIiQAmAoCXl1d11kRERERERKYiSUBeXrHBUklf6ls5SL9pgbSsWriiqYcrcEMaXPX+bIQ0uCIdLpAM2vEKaFHP4hbcat2Ga90ctKyTCjenJHh6AoCrSW4FPV4mTJhwc8KECSZvMH706FHrkSNHNtTfZmFhoY2JiYk3VU306HnYwqlLADz1XnsAuGLsQEmSVgJYCcjL+qq/NNPp27evqUsgIiIiIio/SQJycysULN3zpVbfM6waSqTDRS9kckeapTeumLXFFYU70rT1cUXljGuF9veHTkJCPfsCuDmr4VZfi5buAm5ehXBtYAE3DwXc3ABXV8DFRQEzM0cAD98SPqIHKSwsLC8+Pj7W1HXQo+1hC6d2ApguhPgBciP026X1m3ocvPzyy6YugYiIiIgeN5IE3LlTuVApK+u+YOk+CgVQuzZgbw91bUekW3vjSq3mSKvtgSserriicUFaoROu5NVBWo4drtyqhWu3LSBJ9y66EIWAi4McLLm5AS2L/tSFTf+FTgJmZlbVeOOIiKi8Hmg4JYT4HkAXAHWFEJcAvAXAHAAkSfoSwE8AngKQBCAXwJgHWR8RERER0SNBkoCcnMoHS5pSmispFIC9/b1fnp5AcPA929S2deSZTipnXMl3QNode1zJskXaLStcuW6OK1cE0tKAaxfl0vUJAbi4FAVNQUArg7BJF0DVqweYPWz/652IiMrkgf7rW5Kk50rZLwGY9oDKqTH4tD4iIiKix4hWWzXBklZb8nWUyvuDpQYN7t9WwpfKohbSr8nB0pUruPvnlStA2vn/tl27dn/opFDIgZKbG+DuDrRufW/YpPueoRMR0aOP/5onIiIiIqoqWi2QnV35YMkwyTFkZnZ/WNSwYbmCJdjYyNOSjFCpgPT0ewOntDP3B1DXr5ccOnl4yKGT4dI6hk5ERKSP/zkgIiIiIgLkJWyVDZays0sPlszN7w+KGjcuX7BkbV1ssFSSu6HTGYNZTgYzn4oLnVxc5HBJP3QyDJ4YOlFNpFQqWzZp0iRPo9EIT0/Pgo0bN56vW7euBgCio6Otpk+f7nX16lULSZLw7LPPZixevDhNoZCb7W/cuLH2woUL3XNzcxWSJKFHjx63V65ceaks183LyxPdunVrkpmZafbSSy+lPYin80VFRdktWbLEZd++fUmVGSchIcEiNDQ02NvbO1+37d9//42zsrJ6pB9YRtWD/9kgIiIioppPo5FnHFU2WCqNhcX9QVGTJuULlqysKhQslUR/ppOxsKk8oVNYmPGeTs7ODJ3o0WVpaanVPZFu0KBB3h9++KHz4sWLr+bk5IiBAwf6fPrppxcHDRqUlZ2drejTp0/jxYsXO8+bN+/6sWPHrF566SWvnTt3JjVv3jxfpVJhyZIlzmW97pEjR2xUKpV4mJ+Gp1KpYG5ubnSfp6dnwcNcO9Uc/M8LEREREZmWWl35YCknp/TrWFreHxTVr1/+YOkBUqmAq1eLD5t035cUOumW1+mHTobL65TKB/q2iIo1diw8T5+GTVWOGRyM3DVrkFrW49u2bXsnJibGGgBWrVrl1KpVq5xBgwZlAYCdnZ32iy++uNitWze/efPmXX/vvffqv/TSS2nNmzfPBwBzc3O8+uqr1w3HTE9PVw4fPtz74sWLltbW1tqVK1de8PDwUI0ZM6bhzZs3zfz9/QO3bNmSHBQUVKA758CBAzYTJkzwtrGx0bZp0ybn999/tz979uwZtVqNadOmeRw+fNiusLBQTJgw4dqcOXNuREVF2S1cuNDN0dFRlZCQYB0SEpK7ffv28wqFAps3b649Z84cT0dHR3VISEiu7hpZWVmKcePGecXFxVlrNBrx+uuvXxkxYsStiIgIp59//tm+oKBAkZubq/jrr78SK/MzICoNw6ka4NlnnzV1CURERETGqVTl66VkbPudO6Vfx8rq/qDIza18wZKlZfXfjzIyDJ2Km+1UWujk6Qm0aVN8TyeGTkTlo1arsW/fPrtx48bdAIAzZ85YtWjRIlf/mKCgoILc3FxFZmamIiEhwXru3LnppY07d+5ct9DQ0Ny9e/cm79y5027UqFEN4+PjY5cvX36huCV248ePb7h8+fKUHj163Jk6daq7bvvSpUvr2tvba06fPh2Xl5cnWrdu7d+vX78sAIiLi7P+999/z3l7e6tatmzpv2fPHttOnTrdmT59uveePXsSgoKCCvr27dtIN9Zrr73m+uSTT2Zt2rQp5caNG8pWrVoF9O/fPwsA/vnnH9uYmJgzLi4uxT62MzU11dLf3z8QAFq3bp3zzTffXCz9LhPdj+FUDTB16lRTl0BERESPosLCys1Wun0byMsr/TrW1vcHRR4e5QuWLCyq/35UAV3oVNIsJ93yOkMKhTyRy9UV8PK6P3TS7+nE0IkeVeWZ4VSVCgoKFP7+/oGXL1+2CA4Ozh0wYEAWAEiSJEQxy3CL227M0aNH7bZs2ZIEAP3798+eOHGiWUZGRrH/JN+4cUN5584dRY8ePe4AwKhRozL37NlTBwD27t1bOz4+3mbnzp0OAJCdna2MjY21srCwkEJCQu40btxYBQBBQUG5ycnJFnZ2dhoPD4+CkJCQAgAYPnx4xurVq50BYP/+/bV3795dJyIion7RfRBJSUkWANCpU6eskoIpgMv6qOownKoBcnPloN7GpkpntxIREVFNVlBQ+WApP7/069SqdW9I5OAAeHvL39euXbZgqZheJTWJsdCpuJ5OhgxDp7Zt75/lxNCJyLR0PacyMjKUPXv29Fm0aFG9N95441pQUFDewYMHbfWPjY2NtbCxsdE6ODhofX198//++2+bdu3alZjUS0YelCCEKLZxuLHj9faJJUuWXAwPD8/S3x4VFWVnaWl590SlUgm1Wi2KrlXsdTZv3pwUGhpaoL/90KFDtWxsbLTFFkFUxRhO1QBPPfUUAGD//v2mLYSIiIiqRn5+5YOlgoLSr2Nre29I5OQENGpU9tlKtWs/8h2w9UOn0no6GdKFTm5uxYdOukbiDJ2IagYnJydNRETExWeeecZnzpw51ydOnJjx8ccfu27fvt1uwIAB2Tk5OWLatGleL7zwwlUAmDdv3tXBgwc37tq1a07Tpk0LNBoN3nnnHZcFCxbcs9Svbdu22WvXrnX68MMP06KiouwcHBzUjo6OxYY/zs7Omlq1aml/++23Wt26dbvzzTffOOr29ejR4/YXX3zh3Ldv32xLS0spJibG0tvbW1XcWM2aNcu/dOmSxZkzZyyDgoIKfvjhh7tjPfnkk1lLlixxWbdu3UWFQoHDhw9bd+jQoQxTYomq1qP9tw0iIiKiqiRJVRMsFRaWfi07u3uDImdnwMenfMHSY5yIFBYabyRurKeTIaXyv55ODRoA7doZbyTO0Ino0dShQ4e8gICAvNWrVztMmzYtc+vWrUnTp0/3mjVrlrlWq8XgwYMz5s2bdw0A2rRpk7d48eLU5557rlFeXp5CCIHu3bvfNhxz8eLFV4YNG+bt6+sbaG1trV23bt350upYsWJFyuTJkxvY2NhoO3TokG1nZ6cBgBdffPFGSkqKZUhISIAkScLR0VH1008/JRc3jo2NjfTZZ59d6Nu3r4+jo6O6TZs2OXFxcdYAsGjRoisTJ0708vf3D5QkSXh4eBQY639FVN1ESdMFa4pWrVpJ0dHRpi6j2nTp0gUAZ04RERFViiTJ/ZEqGyypiv2f0/8p63K34r7s7Jh6FEMXOhXXQFwXQN24cf+5+qGTsQbiDJ2oJhNCHJckqZWp66iIkydPpoSGhhr5p/bxdvv2bYW9vb0WAF577bX6aWlp5mvXrjVJTy6iqnLy5Mm6oaGh3obbOXOKiIiIHn6SBOTmVj5YUqtLvo4Q9wdLrq6Av3/5giWF4sHcl0eIsdDJWPBUXOik6+nk7S3PdDIWQDF0IqKaZOPGjfZLlixx1Wg0wt3dveC7775LMXVNRNWF4RQRERFVL0kC7typfLCkKfGBQXIgZBgsubsDgYFlD5ZsbRksVTH90Kmk2U5lCZ3atzfe06luXYZORPTomTBhws0JEybcNHUdR48etR45cmRD/W0WFhbamJiYeFPVRI8ehlM1wOjRo01dAhERPa4kCcjJqVyolJVVtmDJMCjy9ASCg8sXLJXjsd5UOQUFZevpVFLo5OZ2f+ikHzwxdCIiMr2wsLC8+Pj4WFPXQY82hlM1AMMpIiKqEK22aoIlbSlPklYq7w+KGjQoX4+lWrUYLD0kDEOn4no6ZWTcf65+6NSoEdChg/GeTgydiIiISB/DqRrgRtH/cqxbt66JKyEiogdGqwWysysfLJX24BMzs/uDooYNyxcs2dgwWKoBdKFTcWGT7vviQidXV/nLWOik+56hExEREVUEw6ka4JlnngHAp/UREdUYGk3lg6Xs7NKDJXPz+4Oixo3LFyxZWzNYquGMhU7GAqiyhE4dOxp/gp2zM1txERERUfVhOEVERKRPrZZnHJVndpKxYKk0lpb3B0UuLve+NmzubfhlZcVg6RFWUCAHS8U1ENd9byx0MjO7d3mdsdBJt7yOoRMRESCEaPn0009nbt++/TwAqFQq1KtXL7RZs2Z39u3bl1Te8b799lv7M2fOWL/33ntXq77a0oWFhfldu3bN3MrKSgsAr7zyStqYMWNuKpXKlk2aNMnTaDTCx8cnb+PGjSl2dnZa/e2enp4FGzduPF+3bt27DSOvXr2q7NKlix8A3Lhxw1yhUEiOjo5qANi4cWNyeHi4z9mzZ89U5XuYPXu2m62trWbhwoXpZT3HxsameW5u7gnD7eHh4d59+/a9PWbMmEo1mP/ss8+cPvroI1cAePnll9NeeOGF+/4rnJeXJ5555pmGp06dsqlTp45606ZN5/z8/AqPHDliPXXq1AY5OTlKhUIhzZkzJ03X8D48PNz7r7/+srOzs9MAwJo1a863b98+rzK11jQMp4iI6NGhVlf+iXB37pR+HSur+4MiV9fyzViytKz++0EPJcPQqbgn2JUWOjVuDHTqVHxPJ4ZORERlZ21trU1ISLDOyckRtra20rZt22q7uLioKjre8OHDbwO4XYUllltkZOS5J554Ild/m6WlpVbX3Lx///4NlyxZ4rxgwYJ0/e2DBg3y/vDDD50XL158N1irX7++RrffMDRKSEiwKEs9KpUK5ubmVfX2Hrj09HTl4sWL3Y4fPx6rUCjQvHnzwKFDh95ydna+56kvn376aV17e3v1xYsXT69cudJh9uzZHrt27Tpna2ur/eabb86HhIQUpKSkmLdu3Tpg4MCBWboQ8N13371U2fCsJmM4RUREDweVqvLBUm5u6dextr4/KPLwKF+wZFGmv4PRY0YXOhUXNumCqMzM+8/VD518fO4PnfR7OjF0IiKqHt26dbu9adOmOmPGjLn5/fffO4aHh2ceOXLEFgD27dtnM3v2bK/8/HyFlZWVdt26dedDQ0MLFixY4HLmzBnrTZs2pRw9etR6+PDhjf7555+4tWvXOkRHR9eKjIy8GB4e7m1lZaVNSkqyunz5suWKFSvOr1u3ru7x48drNW/e/M6WLVtSgHtn/axdu9YhKirKfsuWLSllPb+8OnbsmBMTE2NtuL1t27Z3jG0viUajwdChQxtER0fburi4FO7evTvJ1tZWCgsL8wsLC8v5+++/bZ966qlb3bt3z549e7Znbm6uwsHBQf3tt9+mNGjQQPXuu+/WW7t2rbNSqZR8fX3zo6KizgFAXFycdVhYmN+VK1csJk+enP7GG29cA4AFCxa4fPvtt3UB4Pnnn7/+5ptvXtOvR6vVYvTo0V6HDx+28/T0LJBKa5VQBtu3b7d/4oknslxcXDQA8MQTT2Rt3brVftKkSff8lz0qKqrOggULrgDAmDFjbr7yyiteWq0WTZs2LdAd4+3trXJ0dFSnpaWZ6c9Qe5wxnCIiosorLKx8sJRXhpnLNjb3B0VeXmUPlWrXZrBE5WYsdDIWPBUXOul6OumHToaznRg6ERH9JywszM9w26BBgzJfffXV69nZ2Ypu3bo1Mdw/YsSIGzNmzMhIS0sze/rppxvr7zt69GhCWa77/PPPZ7711luuQ4YMuRUXF2czbty4DF04FRoamn/06NF4c3NzbN++3W7u3Lkeu3fvTp4/f356mzZt/CIjI+t88MEHrp9//nmKnZ3dfY+5vX37ttmff/6Z+N1339UZMmRIk99//z2+ZcuWeU2bNg04cuSIdWlLuCpy/siRIxvplvXt378/oX79+ndDEJVKhd27d9fu2bNnlv45arUa+/btsxs3btyNstwznYsXL1qtX7/+XPv27S889dRTjSIjIx2mTp2aCQC3bt1SHjt2LKGgoEC0bdvWb9euXUlubm7qVatWObz88svumzZtSomIiKh/4cKFU9bW1tKNGzfuPlojKSnJ6siRIwm3bt1SBgQEBM+ZM+f60aNHrb/77jun48ePx0mShJYtWwZ069Ytu0OHDnfvwTfffFMnKSnJMiEh4cylS5fMQ0JCgkaPHn3fnOT58+e7bNq0yclwe9u2bbPXrVuXqr/t8uXL5h4eHoW61+7u7oWXL1++bypYenq6RcOGDQsBwNzcHLa2tpr09HQzV1dXte6Yffv22ahUKhEYGHg3sHr77bfd33//fddOnTplL1u27JK1tXXlE7UahOFUDTBlyhRTl0BEj7KCgsoHS/n5pV+nVq17gyIHB8Dbu3zBUg2eCk4Pn/z8/xqJlzTbqaTQSTfT6YknjPd0cnJi6EREVFO0adMm79KlS5arVq1y7N69+z1L8jIzM5VDhgxpmJKSYiWEkFQqlQAApVKJyMjI861atQoaPnz49Z49exrtD9CnT59bCoUCLVq0yHVyclKFhYXlAYCvr29ecnKyZWnhVEXON7asr6CgQOHv7x9Y9H6zZ86ceUN/++XLly2Cg4NzBwwYkGU4Xknc3d0LdDU0b948NyUl5W7/gueeey4TAGJiYizPnj1r3bVrV19Ant3k7OysAgA/P7+8gQMHNuzfv/+t4cOH39Kd27Nnz1vW1taStbW12tHRUXXp0iWz/fv32z711FO3ateurS26Nzf37dtnpx9OHThwwO7ZZ5/NNDMzg7e3t6pdu3ZGG4K+88476e+8806ZeloZm30ljPT+LOa4uxsvXLhgPmbMmEZfffXVeWXRI24//vjjy56enqqCggIxfPjwBvPnz6//0UcfpZWlrkcFw6kaYMiQIaYugYgeVvn5lQ+WCgpKv46t7b1BkZOT3GW5PMGSGf+TQw9Gfr7xRuKGwZOx0Mnc/N7ldfqhk37wxNCJiKj6lDTTyc7OTlvSfldXV3VZZ0oZ06tXr1tvvfWW56+//ppw7dq1u395eeWVV9w7d+6cvWfPnuSEhASLrl273p3dFRcXZ2VjY6O9evVqsf8XzcrKSgLkMMvCwuJuUKFQKKBWqwVwb9CRl5cnynt+Wej3ljK2PSMjQ9mzZ0+fRYsW1dMtoSsL/ZqUSqWUl5d397+SuplkkiQJHx+fvH///Tfe8Px9+/ad/fnnn+22b99e54MPPnA7e/bs6aK69MeFWq0WZV2iZyw4MlSemVMeHh6qAwcO2OleX7582aJz5873hV7169cvPH/+vEXjxo1VKpUKOTk5ynr16mkAIDMzU9G7d2+fN99883K3bt3uBpkNGjRQAYC1tbU0duzYjCVLlriU6U0+QvibQg2Qmir/M+Hp6WniSoioykhS1QRLhYWlX8vO7t6gyNlZ/q27PMGSUln6dYiqmWHoVFxPp5tGWonqh06+vkDnzsYbiTN0IiJ6vE2ZMuWGvb29JiwsLC8qKupuEJGVlaXULelasWJFXd32jIwM5csvv+z5+++/x0+ZMsVr7dq1DhVtau3k5KT6559/rEJDQ/N37NjhYGtr+8B7ETk5OWkiIiIuPvPMMz5z5sy5rh8OVVbTpk3zMzMzzfbu3Vure/fudwoKCsSpU6csmzdvnp+cnGzRr1+/7J49e+a4ubk53r59u9i/fHbt2jVn7Nix3u+8885VSZLw008/Oaxbt+6c/jGdO3fOXrVqlfO0adMyLl++bP7XX3/Z6WZw6SvPzKkBAwbcXrhwofv169eVAHDgwIHan3zyySXD4/r06XNrzZo1Tt27d7+zdu1ah3bt2mUrFArk5+eLPn36+AwdOjRj7Nix93xGLly4YN6gQQOVVqvF1q1b6wQEBDxWT+oDGE7VCM8//zwAYP/+/aYthIhkkiT3R6pssKQq5QEwQtwfLLm4yL9ZlzVYsrNjsEQPPV3oVFzYpPu+uNBJ19PJWOik+56hExERlUXjxo1V8+fPv2/G0CuvvHJ1/PjxDSMiIup36tTp7pK3yZMne44bN+5606ZNC77++uuUrl27+vXs2dPoErLSvP3225effvppH1dXV5W/v3/enTt3TPJfrg4dOuQFBATkrV692mHatGlG5hlXjJWVlfTDDz8kz5gxwys7O1up0WjElClT0kNCQgqGDRvWMDs7WylJkpg0aVJ6SU3CO3bsmDts2LCMFi1aBAByQ3T9JX1F22799ttvtf38/IIaNmyYHxYWVqGfiT4XFxfNnDlzrrRs2TIAAObOnXtF1xx91qxZbq1bt74zfPjw2zNnzrwRHh7e0MvLK9je3l6zYcOGZABYs2aNw7Fjx2xv3rxp9t1339Ut2na+ffv2eUOGDGmYmZlpJkmSCAwMzI2MjLxQ2XprmjJPiXuYtWrVSoqOjjZ1GdWmS5cuABhOEVW7rCzgp5+AM2dKD5bU6pLHEkKecVSeJ8AZC5b42zTVYPqhU0k9nUoLnYw1ENdtc3TkPyZERAAghDguSVIrU9dRESdPnkwJDQ0tVwNuIqqZTp48WTc0NNTbcDtnThHR4y09Hdi5E9i2Ddi7V57NpFDcHyy5uwOBgWUPlmxt+RszPbLy8oz3dDIMokoKnXTL67p0MR5AMXQiIiIienwwnCKix8/583IYtW0bcPiwvEyvUSNgxgxg4ECgbVsuhaPHkmHoVNxsp9JCJz8/4Mknjc92YuhERERERIYYThHRo0+SgFOn/gukTp6Ut4eGAm+9JQdSISHyUjyiR5AudCppad2VK8CtW/efa27+X7jk739/6KT7nqETEREREVUUw6ka4KWXXjJ1CUQ1j1YL/Pnnf4HUuXNy+NShA7BkCTBggDxbiqgGMxY6GQueyhI6de16/ywnXSNx5rZEREREVJ0YTtUA/fr1M3UJRDVDYSHw++9yGLVjh9xPytwc6N4dePVVoH9/+Wl3RA85/dCppJ5OxkInC4v/wqXiQifd8jqGTkRERET0MGA4VQMkJCQAAPz8/ExcCdFDKCcH+PlnOZDatUt+4p6tLfDUU/JyvaeekpubEz0EcnONNxI3DKBKC50CAoBu3YpvJM7QiYiIiIhqEoZTNcCkSZMAAPv37zdtIUQPixs3/nvC3p49QEEBULcu8MwzciDVvTtgZWXqKukxYhg6FTfb6fbt+8/VD50CA+XQqbhG4gydiIiIiOhRxHCKiGqGixeB7dvlQOqPP+SeUl5ewOTJciDVoQNgxn+lUdXShU4lLa0rKXTShUv6oZNh8MTQiYiIyPSSk5PNJ06c6JWUlGSt1WrRvXv321988cUlKysrqbhzbty4oVy9erXjq6++eh0AUlJSzCdPnuz5yy+/nKtsPbNnz3aztbXVLFy4MN1w+/r16+s6OjqqNRqNWLBgwaXhw4cb+ZuIce7u7iHR0dFxrq6uamP7P/30U6cvvvjCBQCSk5OtGjZsmK9QKNC1a9fbVlZWkrGaKqu0mgxFREQ4RUdH14qMjLxouM/GxqZ5bm7uicrUk5eXJ5555pmGp06dsqlTp45606ZN5/z8/AoNj+vUqVOTa9eumWs0GhEWFpYdGRl50czMDB988IHz6tWrnRUKBWrVqqVZuXLlhZYtW+YnJiZaDBw4sLFGoxFqtVpMnDjx2ty5c69XptaKSkhIsOjbt2+Ts2fPnqnsWEKIlk8//XTm9u3bzwOASqVCvXr1Qps1a3Zn3759SWUdh7/JEdHDSZKAuLj/GpofPy5vDwoCXntNDqSaN+dv9VQh+qFTSU+wK0vo1L278Z5ODg78eBIREVWbgwdtEBdniYCAAnTqlFuZobRaLQYMGOAzfvz4azNnzkxWq9UYNmxYg5kzZ7qvWLHiUnHnZWRkKL/66qt6unDK29tbVRXBVGkmT56cvnDhwvR//vnHqlu3bn5Dhw49qVQq7+5XqVQwNzev0NgzZ87MmDlzZgYgh0YHDhxI1IVGs2fPdivtfK1WC0mSoF9PTfPpp5/Wtbe3V1+8ePH0ypUrHWbPnu2xa9eu+36uO3bsSHZ0dNRqtVr07t278Zo1axwmTpx4c/z48Rm60Onbb7+1nzVrlufBgwfPenl5qaKjo+Otra2l27dvKwIDA4OeffbZW97e3qoH/y7LR61Ww6yYiQDW1tbahIQE65ycHGFraytt27attouLS7nfE8MpInp4aLXAsWP/BVKJifL2tm2BxYvlQKpJE9PWSA+13NySwybd98ZCJ0vLe5fX6YdO+sETQyciIiITmzLFHevW1YNSCWg0wJgx17B8+eWKDvfjjz/aWVpaanWhjJmZGb788svURo0aNf3oo4+urF271mHHjh11CgsLFampqZbh4eEZS5YsSXvppZc8UlNTLf39/QM7d+6cNXv27Gu62SgRERFOO3furKPVakVCQoL1tGnTrhYWFio2bNjgZGFhof3111/Puri4aJYsWVJ37dq1ziqVSnh7exds3rz5vJ2dnbYsdbdo0SJfqVTi6tWrZgMHDmwcFhaW8/fff9s+9dRTt1q0aJH76quvemo0GoSGhuZGRkZesLa2lgBg4cKFLocOHaoNAN9///254ODggrLeq7i4OOuwsDC/K1euWEyePDn9jTfeuJaQkGDRu3fvJu3bt88+fvy47Y4dO5K++eYbh23btjkWFhaKPn363Prkk0+uZGVlKfr3798oLS3NQqvVirlz516ZMGHCTQD44IMP6u3evdterVaLDRs2nGvevHl+enq6cvjw4d4XL160tLa21q5cufJCmzZt8vTriY+Ptxg6dGgjtVotunXrVuYZZCWJioqqs2DBgisAMGbMmJuvvPKKl1arhUKhuOc4R0dHLQCoVCqhUqmEKPoLom47AOTk5Ch12/Vn4eXl5QmttvQf85kzZyyHDRvWUKPRiO7du99euXKli25m2Pz5810M77HuZxEWFpYTHR1t6+LiUrh79+4kW1tb6eDBgzbjx4/3tra21rZp0yZHdw21Wo1p06Z5HD582K6wsFBMmDDh2pw5c25ERUXZvfPOO6716tVTxcbG2iQnJxc7y6pbt263N23aVGfMmDE3v//+e8fw8PDMI0eO2JblfuswnCIi01KpgAMH5DBq+3Y5PTAzA558Epg1C3j6aTkRoMfanTul93QqS+gUHAz06GG8pxNDJyIiohrg4EEbrFtXD/n5/yUFa9fWw3PP3azoDKpTp05Zh4aG3nOuo6Oj1tXVtTA2NtYSAGJiYmqdOnXqjK2trbZ58+aBTz/99O0lS5Zc6tu3r3V8fHwsIC+V0h8jMTHR+uTJk7F5eXkKPz+/4Pnz51+Oi4uLHTdunOeKFSuc3nzzzWvDhw+/+dJLL90AgBkzZrhFRETUff3116+Vpe7ff/+9lkKhkHQzm27duqU8duxYQm5urmjUqFHIr7/+mtC0adOCgQMHen/44YfOb7755jUAqF27tubUqVNxy5Ytc3rhhRc8y7P0KikpyerIkSMJt27dUgYEBATPmTNHt6TRatWqVSnr16+/uHXr1tpJSUlWMTExcZIkoXv37j4///yzbXp6uln9+vVV+/fvTwLkmWe6cevWrauOjY2NW7RokfOiRYtcNmzYcGHu3LluoaGhuXv37k3euXOn3ahRoxrq7rXO1KlTvcaPH399+vTpGe+//75zcXW3bNnS786dO/dN51q0aFHqgAEDsvW3paenWzRs2LAQAMzNzWFra6tJT083M7bssGPHjk1iYmJqde7c+faYMWNu6ra///77zsuXL3dRqVSKPXv2JOjdP/OnnnqqSWpqquWbb755qbRZU9OnT/ecOnXqtUmTJmV+8MEHd99fcfe4UaNGhRcvXrRav379ufbt21946qmnGkVGRjpMnTo1c9y4cd6ffPLJxT59+uRMmjTJQzfW0qVL69rb22tOnz4dl5eXJ1q3bu3fr1+/LED+3J84ceKMv7//fcsa9T3//POZb731luuQIUNuxcXF2YwbNy6D4dQj6I033jB1CURVKzcX2L1bDqSiooCbNwEbG6BXL3l2VJ8+clJAjzxd6FTabKesrPvPtbT8L1wyFjrpvmfoRERE9AiJi7OE4ZIxpVLeXsFwSpIkCCHu6y1VtB0A0LFjx6z69etrAKBPnz439+/fbztkyJBbJY3bvn37bAcHB62Dg4PW1tZWM3jw4FsAEBISkhsTE2MDAMePH7d+88033bOzs5V37txRdu7cudTZP19++aXLxo0bnWrVqqWJjIw8p5vR89xzz2UCwMmTJ608PDwKmjZtWgAAo0ePzvj888/rAbgGAKNGjcoEgAkTJmS+8cYbnmW6SUV69ux5y9raWrK2tlY7OjqqLl26ZAYArq6uhd26dbsDAL/88kvtP/74o3ZgYGAgAOTm5iri4+OtunXrlv366697Tpkyxf3pp5++3atXr7uzd4YNG3YTAMLCwnJ37tzpAABHjx6127JlSxIA9O/fP3vixIlm+oEWAPzzzz+2P//8czIATJo0KeOdd97xgBHHjx9PMLbdGEm6v82Ysc8HABw6dOhsbm6uGDhwYKMff/yx9sCBA7MAYN68edfnzZt3/csvv3R86623XLdu3ZoCAD4+PqrExMTYlJQU8379+vmMGDHipqenZ7G9tk6cOGH766+/JgHA+PHjMxYsWOABFH+PGzVqVOju7l7Qvn37PABo3rx5bkpKimVGRoYyOztb2adPnxwAGDt2bMbvv/9uDwB79+6tHR8fb6O779nZ2crY2FgrCwsLqWnTpndKC6YAoE2bNnmXLl2yXLVqlWP37t0rNION4VQN0L17d1OXQFR5mZlyELVtmxxM5eXJnaD795cDqR495ICKHgnGQidjwVNZQqeePe+f5cTQiYiI6DEVEFAAjebebRqNvL2CQkJC8nbs2HHP/xnNzMxUXL161SIgIKDgr7/+shEGf+kwfG2MhYXF3UBDoVDcXdalUCigVqsFAEycOLHh5s2bk9q1a5cXERHhdODAAbvSxtX1nDLcrlsOaCxc0ae/PK240KU4lpaWd49XKpV334eNjc3dNWqSJGHWrFlpc+bMuWF4/j///BO7ZcsW+9dff9197969WR999FEa8N+SNzMzM0k3ZllDIoVCUep7KM/Mqfr16xeeP3/eonHjxiqVSoWcnBxlvXr1NIbn6tjY2Eh9+/a9tW3btjq6cEpnwoQJmXPmzPEyPMfb21vl5+eXt3fvXjv9GVdlVdw9TkhIsND/3CmVSikvL0+hH7QaGUssWbLkYnh4+D21R0VF2en/XEvTq1evW2+99Zbnr7/+mnDt2rVyZ00Mp2qAf//9FwDQrFkzk9ZBVG6XL//3hL39++W/OLi7A+PGyYFUp05ABZs1kmnoh04l9XQqKXTSLa8zFjq5uQF16jB0IiIiomJ06pSLMWOuYe3ae3tOVaIpev/+/bPfeOMNxbJly5ymT5+eoVarMXXqVM/Bgwff0AU+hw4dqp2enq6sVauW9qeffqqzevXqFHt7e82dO3cUpY1fktzcXIWXl5eqoKBA/PDDD46urq6Vbo7drFmz/MuXL1ucPn3aMjg4uCAyMtKpU6dOdwOYyMhIx/fee+/qV1995dC8efM7lb2eod69e2ctWLDAbeLEiZn29vba8+fPm1tYWEgqlUrUq1dPPXXq1Ew7Ozvt119/7VTSOG3bts1eu3at04cffpgWFRVl5+DgoNbv5wQALVq0yFm1apXj1KlTM1etWlXseOWZOdWnT59ba9ascerevfudtWvXOrRr1y7bsN/U7du3Fbdu3VI2aNBApVKp8Msvv9h36NAhGwBOnTplGRISUgAAGzZssG/QoEEBID8R0sXFRW1raytdv35dGR0dbTt37tx0AJg2bZp7mzZt7owcOfKW/nWaNWuWs27dOocJEybcXLNmjaNue3H3uLj3VLduXY2tra1m9+7dtv/73/9y1q1bd3esHj163P7iiy+c+/btm21paSnFxMRYVqRJ+5QpU27Y29trwsLC8qKiokoNWQ0xnKoBZs2aBQDYv3+/SesgKpPERDmM2roVOHpU3ubnB8yZAwwaBLRqxeThIXTnTslhU0mhk5XVf+FSSAjwv/8Z7+nE0ImIiIiqxPLll/Hcczer6ml9CoUC27dvT5o4cWKDDz/80FWr1aJr1663IyIi7jZZb9WqVc6QIUMapqSkWIWHh2c88cQTuQDQsmXLnCZNmgR17dr19uzZs8vUK0rfq6++eiUsLCzA3d29MCAgIDcnJ6fSj7mzsbGRvvzyy5TBgwc31jVEf/nll6/r9hcUFIimTZv6a7Va8cMPP1T50wUHDRqUdebMGavWrVv7F9Wj/fbbb8/Hx8dbzps3z0OhUMDMzExavnz5hZLGWbx48ZVhw4Z5+/r6BlpbW2vXrVt33vCY5cuXXxw6dGij5cuXu/Tv37/cM5CMmTlz5o3w8PCGXl5ewfb29poNGzYk6/b5+/sHxsfHx2ZlZSn69OnjU1hYKLRarejQoUOWrv/Wxx9/XO/gwYO1zczMJHt7e7Wu7piYGOtXXnnFQwgBSZIwffr0q2FhYXkAEBsbaz1w4MBbhrV89tlnqcOHD28YERFRv2fPnrdsbW01QPH32MzMrNiA6quvvkrRNUTv2rXr3b/Vv/jiizdSUlIsQ0JCAiRJEo6OjqqffvopubhxitO4cWPV/Pnzy/3PgI4obcpfTdCqVSspOjra1GVUmy5dugBgOEUPKUkC/vnnvyfsxRb1KGzVSp4dNXAgEBBg2hofYzk5ZevplJ19/7n6oZOxsEn3PUMnIiIi0xNCHJckqZWp66iIkydPpoSGht63BOxhERER4RQdHV0rMjLyoqlroUdTx44dmxw6dOis4fbs7GxFrVq1tAqFAitXrnTYsGGD42+//Vbu4OhhcvLkybqhoaHehts5c4qIyk+tBg4d+u8Jexcvyo0on3gCmDwZGDAA8CxXb0UqJ2Ohk7HgqbjQSRcsNW3630wnwwCKoRMRERERUfUzFkwBwOHDh21mzpzpJUkSateurVm3bl3KAy7tgWE4RURlk58P7NkjB1I7dwIZGXLK0bMn8PbbQL9+gFOJy8apDPRDp5JmO5UUOrm5yaFTr17GZzvZ2zN0IiIiIiqrGTNmZADIMHUd9Pjp1atXTkJCQqyp67h69aqyS5cufobb9+/fn6B7imVlMZwiouLdvg3s2iUHUj//LDcmsrcH+vaVl+v973+Ara2pq6wRcnJKX1qXllb+0Ek/eGLoREREREREVa1+/fqa+Pj4ag3JGE7VAO+9956pS6DHydWrwI4dciD1+++ASgXUrw88/7wcSHXpAlhYmLrKh4Zh6FRcAGUsdLK2/i9YatYM6N3beG8nhk5ERERERPQoYzhVA7Rv397UJdCjLjn5v4bmf/4pNzlv3BiYOVMOpNq2BRSVekpujafRyJPINm0CLl36L4jKybn/WGvr/8IlY6GT7nuGTkRERERERAynaoQjR44AYEhFVUiSgJMn/wukTp2StzdrBixYIAdSwcFMTgBkZgJffQUsXw6kpAD16gG+vvKteuop4z2datfmrSMiIiIiIiorhlM1wGuvvQYA2L9/v2kLoZpNo5FnRekCqfPn5QSlY0fg44/lJ+w1bGjqKh8a//4LLFsGfPut3Au+c2fgww/l22TGf3MSERERERFVmcd7nQ7Ro66gQG5kPnGiPKWnUyc5cQkIAFatkvtL/fEH8OKLDKYgt9fasEG+Tc2bA99/D4wcKU8y278feOYZBlNEREREJqPVApGRdaDVlm17OVy8eNGsb9++jTw9PYMbN24c1LlzZ5+YmBjLSlZcLlFRUXZ79uypZWxfRESEk4ODQ6i/v39g48aNg5YsWVK3PGOHhYX5/fHHHzbF7d+yZUttf3//QH9//0AbG5vm3t7ewf7+/oEDBw70joiIcBo5cqRXed9PZWsyFBUVZffkk0/6GNvn7u4ekpaWVqm/qWu1WowePdrTy8sr2NfXN/DQoUNGawsPD/d2d3cP0d2vI0eOWFfmupVR3ntYnPDwcG9ra+vmN2/evJsRjRkzxlMI0bKy97WsGE4RPWqys4GNG4HnngOcneW1Zz/8ADz5pPzn9ety86Tx4+U1aoSrV4GFC4EGDYChQ+VeUkuWyL2lVqyQn5BHRERERCa2fn0djBrVGOPHe94NorRaYPx4T4wa1Rjr19epyLBarRb9+/f3eeKJJ7JTU1NPJycnn3n//fcvX7lyxbysY6jV6hJfl8Xvv/9ud/DgwWIfhd2vX7+b8fHxsX/88UfCu+++656amnpPaKBSqcp9TZ3w8PCs+Pj42Pj4+Njg4ODcyMjIc/Hx8bHbtm1LKesYFXnPD5NNmzbZnzt3ziolJeX0F198cWHq1KnFBnLvvvvuJd39at++fd6DrLMySvoZeXp6Fnz//fd1AECj0eDw4cN29erVq/iHqpwYThE9Cq5flxsj9e0rB1JDhgC//Sb/uWuXvP+HH+TXtWubutqHgiTJqxyHDwe8vIC33gJCQ4GoKODsWWD2bMDBwdRVEhEREdFdI0bcwpgx17B2bb27AdX48Z5Yu7Yexoy5hhEjblVk2KioKDszMzNp7ty513Xb2rdvn9erV68cw9k6I0eO9IqIiHAC5Nk6L7/8smvLli391qxZ42D4euvWrbWbNWvmHxgYGNC7d+9Gt2/fVujOe/HFF90CAwMDfH19A0+cOGGVkJBgERkZ6fzll1+6+Pv7B/7yyy/FhlTu7u5qLy+vgqSkJIvw8HDv8ePHe7Rp08Z36tSpHkeOHLEODQ319/X1DezRo0fj69evK3XnrVu3zql58+b+TZo0Cdq3b1+5ZttcvXrVvFOnTk0aNGgQPHnyZA/ddhsbm+azZs1ya9q0qf9vv/1mu3z5cseQkJAAf3//wGHDhjVQq9VQq9UIDw/3btKkSZCvr2/g22+/fff/kH///fcOISEhAd7e3sG695ybmyueeeYZb19f38CAgIDAH3/80c5IPcoOHTo0CQgICBw2bFgDSZLK83aM2rFjR53hw4dnKBQKdOvW7U5WVpbZhQsXyhxQFkej0WDEiBFePj4+QU8++aRP586dfdauXesAAAcPHrRp3bq1X1BQUEDHjh2b6K4XFhbmN2XKFHfDe5OTkyP69u3byNfXN7BPnz6N8vPz73a6Lenzpv+5LK7O8PDwzM2bNzsCwK5du+xat26dY2ZmVvkbW0YMp4hqqgsXgKVL5WZI9evLM6HOnAGmTpWX6qWlyUv3nnoKsHygM5Ifavn5wLp1QOvWQPv2chg1dSqQmCivgOzT57F/MCERERHRw0mhAFavTr0bUCmVLe8GU6tXp1b0L3ExMTHWoaGhuRU518rKSnv8+PGEiRMn3tR/3a9fv+z33nvP9Y8//kiMjY2Na9GiRe4777zjojuvbt266tjY2LixY8deX7RokYufn1/hyJEjr0+ePDk9Pj4+tlevXkaeCS2LjY21SE1NtQwMDCwAgOTkZKvDhw8nrlq16tLo0aMbvvfee5cSExNjg4KC8l555RU33Xm5ubmKEydOxEdERFyYOHFiuXp6xMbG2mzfvv1cXFzcmZ07dzokJSWZA0BeXp4iODg4LyYmJt7Z2Vm9efNmx+jo6Pj4+PhYhUIhffnll05//vmnTVpamvnZs2fPJCYmxk6bNi1DN65arRanTp2KW7x4cerChQvdAGDx4sX1ACAxMTH2u+++Ozdx4kTv3Nzcex439Oqrr7q1a9cuJy4uLrZ///630tLSLIzV3adPn0a65Xf6X8uWLXMyPDYtLc3c29u7UPfa1dW1sLhw6u2333b39fUNHDdunGdeXl6Jj0KKjIx0SE1NtUhISDjz9ddfp5w4ccIWAAoKCsSMGTO8duzYkXzmzJm4UaNG3Xj55ZfdS7o3H330UT1ra2ttYmJi7JtvvpkWGxtbq6h2s5I+b4afU2N8fX0LMjIyzK5fv6787rvvHIcNG5ZZ0vuqauyeUgMsXbrU1CXQw0CS5PBJ19D8xAl5e0gI8MYb8hP2QkP5mLhiXLwIfPGFnNdlZACBgfIT+J5/HrAt9v9LEREREdFDRRdQrV37X3+KSgRTlTVy5Mibxl7v37+/VnJyslVYWJg/AKhUKtGyZcu7gdOwYcNuAkBYWFjuzp07yzRf/8cff3Tw9/e3tbCw0C5duvSCi4uLBgAGDRp008zMDBkZGcrs7Gxlnz59cgBgwoQJGYMHD26kd81MAOjdu3dOTk6O4saNG8q6detqynLtjh07Zjk5OWkAwMfHJz85OdnSx8dHpVQqMXr06JsA8Msvv9idPn3aJjQ0NAAA8vPzFfXq1VMPGTLkVmpqquWoUaM8+/Xrd3vgwIFZunEHDx58EwDat29/Z86cORYAcOTIEdsXXnjhGgA0b948383NrfDUqVNW+vX89ddfdlu3bk0CgKFDh96eNGmS0fexa9euc2V5fwBgbPaVMPK71ccff3zZ09NTVVBQIIYPH95g/vz59T/66KO04sY9ePCg7aBBg24qlUp4eXmp27Ztmw0AMTExlmfPnrXu2rWrLyAvL3V2dr67jM7YvTl06JDtjBkzrgFAmzZt8nx9fXOB0j9vhp/T4vTr1+/mmjVrHP/5559a33777YWynFNVGE7VAM2aNTN1CWQqWi3w99//BVJJSfL2du2ADz6QAykfoz0BCXKet2+f3AN+xw5529NPAy+8AHTpwhyPiIiIqMbRLeXTN368Z2UCqpCQkLzt27cbDYjMzc0lrV6j9YKCgnv+BmlnZ6c19lqSJHTs2DHrxx9/PG9sXCsrKwkAzMzMJLVaXaa/lfbr1+9mZGTkRcPttra2ZeoEbxi0GAteimNhYXE3uVEqlZJKpRJF27VmRU8MkiRJDB48OOPzzz+/bHj+6dOnY7dt21Z7+fLl9TZs2OC4adOmFOCe+wCNRiOKxilTTYoy/Lz79OnTKDk52cpw+/Tp09OnT5+eob/Nzc1NlZKScncGVlpamoWXl9d9PZcaNGigAgBra2tp7NixGUuWLHExPEZfce9HkiTh4+OT9++//8Yb22/s3gDGf26lfd4MP6fFGTVq1M2wsLCAZ555JkOpVJZ+QhXi4pUaYO/evdi7d6+py6AHRaUC9uyR15p5eMhrzz75BGjUSJ76c+UKcOQIMGcOg6li5OTItyo4GOjWTV7lOHcucP48sHWr3BuewRQRERFRDWPYY0qjOX5fD6oK6NevX3ZhYaHQfwLegQMHbHbt2mXbuHHjgqSkJOu8vDyRkZGhPHToUJkauHbp0uVOdHS07enTpy0BIDs7W1Ha0//s7Ow02dnZFU4EnJycNLVr19bo+hN99dVXTu3atbs7e+b77793AIDdu3fb2tnZaXQzoapKr169sqKiohwuX75sBgDp6enKxMREi7S0NDONRoPRo0ffevfddy+fOnWqxH5XHTt2zFm/fr0jIM8uSktLs2jatGm+/jFt27bNXrNmjRMAbNy4sXZWVpbR+7Zr165zusbl+l+GwRQA9O/f/9a3337rpNVq8dtvv9Wys7PT6IIofbqlflqtFlu3bq0TEBCQBwD79u2zGThwoLfh8Z06dcrZvn27g0ajQWpqqtnff/9tBwBNmzbNz8zMNNu7d28tQA4+o6Oj7wvSirs3x44ds0pMTLQBKvZ5M6ZJkyaFr7322uVZs2ZdL/3oqsWZUzXAu+++CwDo3r27iSuhanPnDrB7tzw7KioKuHULsLEBeveWZ0f16QPUqWPqKh96iYnyUr21a4GsLKBFC/n7oUMBqxL/NU9ERERED7316+vc12Nq9epUAMDatfXQpUs2Ro68Vd5hFQoFdu7cmTx16lTPpUuX1re0tJQ8PDwKPvvss1QfHx9Vv379bgYEBAQ1bNgwPygoqEy9qdzc3NQrVqxIGTp0aKPCwkIBAG+99dblpk2bFhR3Tnh4+K1nnnmm8c8//1xn6dKlF0vqO1WctWvXnp8yZUqDGTNmKLy8vAq+//77FN0+BwcHTfPmzf1zcnKUK1euNDrDpjJatmyZ/8Ybb1zu1q2br1arhbm5uRQREXHRxsZGO27cOG+tVisAYOHChZdKGmfu3LnXnn/++Qa+vr6BSqUSK1asSLG2tr5n+tGiRYuuhIeHNwoMDAxo165djqura2Fx45XVs88+e3vXrl32DRo0CLa2ttauXr06Rbevc+fOPl9//fUFb29v1ZAhQxpmZmaaSZIkAgMDcyMjIy8AQEpKiqVhnYA8G2nv3r12vr6+QQ0bNswPDQ29U6dOHY2VlZX0ww8/JM+YMcMrOztbqdFoxJQpU9JbtWqVbziGzssvv3xt6NChDX19fQODgoJyQ0JC7gAV+7wVZ86cOTfKe05VEFXR1d7UWrVqJUVHR5u6jGrTpUsXAMD+/ftNWgdVscxM4Mcf5UBq9265U7ejI9C/vxxI9egBWFubusqHnlYrNzJftgz45RfA3BwYPFheutemDWdIERER0eNBCHFckqRWpq6jIk6ePJkSGhpa+i/EWq0cUI0YceueJXzFbSd6gCZNmuQxduzYjDZt2uQZ7rt9+7bC3t5ee/XqVWXr1q0DDh8+HO/l5aU2RZ2mdvLkybqhoaHehts5c4roQbp0Cdi+XQ6kDhwANBp56d6ECXIg1akTYMZ/LMvi5k15VtTnnwPnzgGursDbbwMTJ8oPLyQiIiKiR4xCAaMzo4rbTvQArVixotgZYT169GiSlZWlVKlUYs6cOWmPazBVEv4WTFTd4uP/a2h+7Ji8LSAAeOUVOZBq2ZLTe8rh1Cl5ltT69UBuLtCxI/D++/KtNDf6oFciIiIiIiLTOXr0aIKpawCA559/3uvYsWP3PKt8ypQp6TNnzryvB9eDxnCKqKpJEhAd/V8gFV/08IXWrYH33pNTFH9/09ZYw6hU8tP2li2TJ5xZWQHDhwPTpwN8mCUREREREVHpvvnmm/ue9viwYDhVA6xYscLUJVBp1Gr5kXDbtsnL9i5dApRKoHNnYNo0YMAAefkelcu1a8CqVfKT9y5fBry9gQ8/BMaOldtzERERERERUc3HcKoG8PPzM3UJZExeHvDrr3Ig9eOPcoNzKyvgf/8D3n0X6NsXcHIydZU10tGj8iypDRuAwkK5N/wXXwBPPSVnfkRERERERPToYDhVA/z4448AgH79+pm4EsKtW8CuXXIg9fPPctOjOnXkIGrgQDmYqlXL1FXWSAUFwMaNwGefya257OyASZOAqVO5CpKIiIiIiOhRxnCqBliyZAkAhlMmk5YmNzzatg34/Xd5CZ+rKzBqlBxIdenCTtyVcOkS8OWXwMqVwPXrchC1bBnw/PNA7dqmro6IiIiIiIiqm8LUBRA9lJKS5OZG7dsD7u7AlCnA+fPA7NnAn3/Kicry5fJ6MwZT5SZJcmPzZ56R+0i99x7Qrh2wZw8QGyu36WIwRUREREQPSnJysnm3bt0aN2jQINjT0zN4zJgxnvn5+SU+UvvGjRvKRYsWOetep6SkmPfq1atRVdQze/ZstzfffNPF2PZ69eo19ff3D2zSpEnQt99+a1+ecd3d3UPS0tKKnaTy6aefOvn7+wf6+/sHmpubt/D19Q309/cPnDp1qntxNVVWaTUZioiIcBo5cqSXsX02NjbNK1tPXl6e6NOnTyMvL6/gpk2b+ickJFgYO65Tp05N/Pz8An18fIKGDRvmpVarAQAffPCBs+6+tWzZ0u/48eNWAJCYmGgRFBQU4O/vH+jj4xP0wQcfOBsb90FISEiwaNKkSVBVjKVUKlvqPjP+/v6Bxd2v0jCcIgLktOTECeDNN4GQEKBJE2DuXHmt2cKFwOnTQEICsHgx0LYtoOA/OhVx5448Qyo0VJ5w9vvvct537pw8Oa17d0CU+FcAIiIiIiLg4EHYrFwJh4MHYVPZsbRaLQYMGODTv3//WxcuXDh9/vz503fu3FHMnDnTvaTzMjIylF999VU93Wtvb2/VL7/8cq6y9ZRm8uTJ6fHx8bEbNmxInj59urdGo7lnv0qlqvDYM2fOzIiPj4+Nj4+PrVevnurAgQOJ8fHxscuXL79clvO1Wi0M66lpPv3007r29vbqixcvnp4+fXr67NmzjT7ZaseOHckJCQmxiYmJZzIyMszXrFnjAADjx4/PSExMjI2Pj4+dPXv21VmzZnkCgJeXlyo6Ojo+Pj4+9vjx43Gffvpp/ZSUlBox00EXvBljaWmp1X1m4uPjY/38/Aorcg3+hk2PL41GfsLeiy8CjRoBLVoA//d/chPzpUuBlBTg+HHgjTeAoCCmJpWQnAy89JL8wMJJk+Sm5l99JU9A++ADefYUEREREVFZTJkC95494Td7Nrx79oTf1KkoMUQqzY8//mhnaWmpnTlzZgYAmJmZ4csvv0zdsGFD3ezsbEVERIRTt27dGnfq1KmJt7d38EsvveQKAC+99JJHamqqpb+/f+CkSZM89GejREREOHXv3r1x165dfdzd3UPee+895wULFrgEBAQEhoaG+qenpysBYMmSJXWDg4MD/Pz8Av/3v/81zs7OLvPv6C1atMhXKpW4evWqWVhYmN/06dPdW7du7ffuu++67Nixwy4gICDQ19c3cPDgwd55eXl3f5lZuHChS0hISEBISEjA6dOnLctzr+Li4qzDwsL8PDw8Qt599916gDwLp1GjRkEjRozwCgoKCkxOTraYP3++S3BwcICvr2/giy++6AYAWVlZii5duvj4+fkFNmnSJGjVqlUOunE/+OCDeoGBgQG+vr6BJ06csAKA9PR0Zffu3Rv7+voGhoaG+v/999/WhvXEx8dbNGvWzD84ODhg5syZbuV5L8WJioqqM3bs2AwAGDNmzM0jR47YabXa+45zdHTUAoBKpRIqlUqIot8XddsBICcnR6nbbmVlJVlbW0uAPDvL2JiGzpw5YxkaGuofHBwcMGvWLDf9mWHG7rHuZzF06NAGPj4+QR06dGiSk5MjAODgwYM2fn5+gc2aNfP/+OOP74aqarUakyZN8tCN9eGHH9Ytug92bdq08e3Xr19DPz+/KpllVRKGU/R4KSiQG5qPHy/3jercWV6eFxQkpyVXrwL79wMzZwINGpi62hpNqwV++UXuFd+kCRARIfeLP3QI+OcfYOxYwKbS/5+LiIiIiB4nBw/CZt061MvPh+LOHSjy86FYuxb1KjOD6tSpU9ahoaG5+tscHR21rq6uhbGxsZYAEBMTU2vTpk3nTp8+fWbnzp2Of/zxh82SJUsueXp6FsTHx8euWLHikuG4iYmJ1lu2bDl37NixuPfff9/dxsZGGxcXF9uqVas7K1ascAKA4cOH3zx9+nRcQkJCrJ+fX15ERETdstb9+++/11IoFJKrq6saAG7duqU8duxYwiuvvHJt0qRJDTds2JCcmJgYq1ar8eGHH95dQla7dm3NqVOn4iZNmnTthRde8CzPvUpKSrI6cOBA4rFjx+I++ugjt4KCAgEAKSkpVmPGjMmIi4uLPX36tFVSUpJVTExMXFxcXOy///5r8/PPP9tu3bq1dv369VUJCQmxZ8+ePTNo0KAs3bh169ZVx8bGxo0dO/b6okWLXABg7ty5bqGhobmJiYmx77zzzuVRo0Y1NKxn6tSpXuPHj79++vTpuPr16xc7Zaxly5Z++kvPdF/bt2+3Mzw2PT3domHDhoUAYG5uDltbW016errRZYcdO3Zs4uzsHFqrVi3NmDFjbuq2v//++86enp7Bb731lsfnn39+Ue/+mfv6+gY2bNiw6YwZM656e3uXOM1t+vTpnlOnTr12+vTpODc3t7vHbt26tbaxewwAFy9etJoxY8a1pKSkM/b29prIyEgHABg3bpz3xx9/fPHff/+N17/G0qVL69rb22tOnz4dd/Lkybivv/7aOT4+3gKQP/cffvjh5eTk5DPF1VhQUKDQ3c8ePXo0Lun9lIThVA3wzTff4JtvvjF1GTVXVhawYQMwZAhQt66clmzcCHTrJm+/cQOIipLTEmeTLft9ZNy+DXz6qdzYvHdvefLZm28CFy4AP/wAdOjASWhEREREVDFxcbBUKu/dplTK2ys6piRJEEJIxWwHAHTs2DGrfv36GltbW6lPnz439+/fb1vauO3bt892cHDQurm5qW1tbTWDBw++BQAhISG5KSkplgBw/Phx65YtW/r5+voGbtmyxenMmTNWpY375Zdfuvj7+wfOmTPHIzIy8pyiqOXIc889lwkAJ0+etPLw8Cho2rRpAQCMHj0649ChQ3dDmFGjRmUCwIQJEzJPnDhR6vvQ17Nnz1vW1taSq6ur2tHRUXXp0iUzAHB1dS3s1q3bHQD45Zdfav/xxx+1AwMDA4tmUlnFx8dbtWjRIu/gwYO1p0yZ4v7LL7/YOjk53V3/N2zYsJsAEBYWlpuammoJAEePHrUbN25cBgD0798/+9atW2YZGRn3/PT/+ecf2wkTJmQCwKRJkzKKq/v48eMJ+kvPdF8DBgzINjxWku77KBj9fADAoUOHzl69evVkYWGh4scff7zbNXfevHnXU1NTTy9YsODSW2+95arb7uPjo0pMTIyNi4s7/d1339VNTU0tsdfWiRMnbMeOHZsJyMsFdduLu8cA4O7uXtC+ffs8AGjevHluSkqKZUZGhjI7O1vZp0+fHADQzQwDgL1799beuHGjk7+/f2Dz5s0Dbt68aRYbG2sFAE2bNr3j7+9f4jI9/WV9e/bsSS7p2JLwaX01gKdnucJsAoBr14CdO+Un7O3dCxQWAvXqAc89Jz9hr2tXwLLC//0iI86cAT7/HIiMlHtLtW8PvP02EB4OWFSoJR4RERER0b0CAlBg2NJIo5G3V3TMkJCQvB07djjob8vMzFRcvXrVIiAgoOCvv/6yEQb/d9XwtTEWFhZ3Aw2FQgErKytJ971arRYAMHHixIabN29OateuXV5ERITTgQMH7pvJY2jy5MnpCxcuTDfcbmdnpwWMhyv6FHr9c4sLXYpjaWl593ilUnn3fdjY2NxdoyZJEmbNmpU2Z86cG4bn//PPP7Fbtmyxf/3119337t2b9dFHH6UBuHtvzMzMJN2YZQ2JFApFqe+hZcuWfnfu3FEabl+0aFGqYUBVv379wvPnz1s0btxYpVKpkJOTo6xXr16xjbRsbGykvn373tq2bVudgQMHZunvmzBhQuacOXPua97u7e2t8vPzy9u7d6+d/oyrsiruHickJFjof+6USqWUl5en0A9ajYwllixZcjE8PPye2qOiouz0f67V7YHPnBJC9BJCJAghkoQQrxrZby+E+FEIcVIIcUYIMeZB1/iw2bBhAzZs2GDqMh5+KSnAJ58ATzwhL9mbMAGIiwOmTwcOHgSuXJG7cffuzWCqiqjVcv7XtSsQHAysWQM8+6w8W+rwYTkLZDBFRERERFWlUyfkjhmDa1ZW0NaqBa2VFbRjxuBap07ILf1s4/r375+dn5+vWLZsmRMg9+CZOnWq5+DBg2/oAp9Dhw7VTk9PV+bk5IiffvqpTufOnXPs7e01d+7cqdTv1Lm5uQovLy9VQUGB+OGHHxwrM5ZOs2bN8i9fvmyh6ycVGRnp1KlTp7sBTGRkpCMAfPXVVw7Nmze/UxXX1Ne7d++sb775pu7t27cVAHD+/Hnzy5cvm6WkpJjb2dlpp06dmjlr1qz0f//9t8SlmG3bts1eu3atEyAHJQ4ODmr9fk4A0KJFi5xVq1Y5AsCqVaucihurPDOn+vTpc2vNmjVOALB27VqHdu3aZSsMHoh1+/ZtxYULF8wBuQH9L7/8Yu/v758HAKdOnbr7y+aGDRvsGzRoUADIT4TU9X+6fv26Mjo62jYoKCgfAKZNm+YeGRlZx7CWZs2a5axbt84BANasWXP381HcPS7u/detW1dja2ur2b17ty0ArFu37u5YPXr0uP3FF18465ZoxsTEWGZlZT3wrOiBzpwSQigBfA6gB4BLAI4JIXZKkhSrd9g0ALGSJPUTQjgDSBBCfCtJUoU6vj8KvvjiCwDAkCFDTFzJQ0aS5Kfobdsmf/37r7y9aVNg/nx5hlTTplxDVg1u3ABWrwa++AK4eBHw8gIWLQLGjZNXThIRERERVZfly3H5uedwMy4OlgEBKKhMMAXIM4m2b9+eNHHixAYffvihq1arRdeuXW9HRETcfUJdq1atcoYMGdIwJSXFKjw8POOJJ57IBYCWLVvmNGnSJKhr1663Z8+efa2813711VevhIWFBbi7uxcGBATk5uTk3De7p7xsbGykL7/8MmXw4MGNNRoNQkNDc19++eXruv0FBQWiadOm/lqtVvzwww9V/nTBQYMGZZ05c8aqdevW/kX1aL/99tvz8fHxlvPmzfNQKBQwMzOTli9ffqGkcRYvXnxl2LBh3r6+voHW1tbadevWnTc8Zvny5ReHDh3aaPny5S79+/cv9wwkY2bOnHkjPDy8oZeXV7C9vb1mw4YNd5eq+fv7B8bHx8dmZWUp+vTp41NYWCi0Wq3o0KFD1pw5c64DwMcff1zv4MGDtc3MzCR7e3u1ru6YmBjrV155xUMIAUmSMH369KthYWF5ABAbG2s9cODAW4a1fPbZZ6nDhw9vGBERUb9nz563bG1tNUDx99jMzKzYWWRfffVVyvjx472tra21Xbt2vTtL6sUXX7yRkpJiGRISEiBJknB0dFT99NNPFV6eV1GitCl/VXoxIdoBWCBJ0v+KXs8DAEmS3tc7Zh4AT8ghlTeAPQB8JUkqdjpZq1atpOjo6Gqs3LS6dOkCANi/f79J63goaLXAX3/9F0glJ8vhU/v2chg1YADQuMI92KgUx48Dn30m944qKJDbdk2fDvTrJ6/1JyIiIiLTEEIclySplanrqIiTJ0+mhIaG3rcE7GERERHhFB0dXSsyMvJi6UcTlV/Hjh2bHDp06Kzh9uzsbEWtWrW0CoUCK1eudNiwYYPjb7/99sCDo6p08uTJuqGhod6G2x90zyl3AKl6ry8BaGNwzDIAOwFcAWAHYEhJwRQ9BgoLgX375DBqxw75iXrm5nIyMncu0L8/UL++qat8ZBUWAps3y6HUX38BtWrJM6SmTQMCA01dHRERERERUc1mLJgCgMOHD9vMnDnTS5Ik1K5dW7Nu3bqUB1zaA/Ogwylj66sMp279D8C/ALoCaAxgjxDioCRJ9zTnEkJMBDARALy87usvRjVdTg7wyy9yILVrl/wIuFq15H5RAwcCffoA9vamrvKRduUK8OWXcpuu9HSgSRP5KXyjRvHWExEREdHjY8aMGRkAin0SHFF16dWrV05CQkJs6UdWr6tXryq7dOniZ7h9//79CfXr1y+2WXx5POhw6hLkJXs6HpBnSOkbA2CRJK83TBJCnAfgD+Co/kGSJK0EsBKQl/VVW8X04Ny4Afz4oxxI7dkD5OcDTk7AoEFyINW9O2BtbeoqH2mSJDcy/+wzYOtW+cknffrIS/d69AAUD7wtHhEREREREZlS/fr1NfHx8dUakj3ocOoYgCZCiIYALgMYCmCYwTEXAXQDcFAI4QLAD0CVN2mrSTZv3mzqEqpPaiqwfbscSP3xh5yGeHoCEyfKgVTHjoDZg/6YPn5yc4HvvgOWLQNOngTq1AFmzgSmTGELLyIiIiIiIqpeD/S3fkmS1EKI6QB2A1ACWCNJ0hkhxOSi/V8CeAfAOiHEKcjLAF+RJOmhbY73INR91B5/Fhf3X0NzXSP7wEDg1VflQKpFCz5h7wE5fx5Yvhz46ivg5k0gJERexjd8OGBT4oNdiYiIiIiIiKrGA5+SIknSTwB+Mtj2pd73VwD0fNB1PczWrVsHABg9erRJ66gwrVYOoXSBVEKCvL1NG2DRIjmQ8vU1bY2PEUkC9u6Vl+5FRclL9QYNkpfuderEXJCIiIiIiIgeLK6XqgFqZDilUsnL9LZtk5ftXb4sL8/r0gWYMQN4+mnA3d3UVT5WsrKAr78GPv9czgfr1QNefx2YNAnw8DB1dURERERERPS4Yntjqjq5uXIQNWoU4OIiNzBfswYICwMiI4Fr1+RG51OnMph6gOLj5VlR7u5yLlinDvDNN8DFi8A77zCYIiIiIqKaQasFIiNRR6st2/byuHjxolnfvn0beXp6Bjdu3Dioc+fOPjExMZaVq7h8oqKi7Pbs2VPL2L6IiAgnBweHUH9//8DGjRsHLVmypFy9X8LCwvz++OOPYht3bNmypba/v3+gv79/oI2NTXNvb+9gf3//wIEDB3pHREQ4jRw50qu876eyNRmKioqye/LJJ32M7XN3dw9JS0ur1OQbrVaL0aNHe3p5eQX7+voGHjp0yGht4eHh3u7u7iG6+3XkyBGTPbWrvPewOIbv6d13361XFfWVB2dOUeXcvCmvDdu2Ddi9Ww6o6tQB+vWT14r17MnmRSag0cg/lmXL5CV8FhbA0KFySNW6tamrIyIiIiIqv/XrUWfUKDTevx/XVq9GqkIhB1Pjx8Nz7VrUA5A8ciRulXdcrVaL/v37+wwbNiwjKirqHAAcOXLE+sqVK+ZNmzYtKMsYarUaZnoPcjJ8XRa///67na2traZHjx53jO3v16/fzcjIyIuXL182Cw4ODnr22WdveXp6qnX7VSoVzM3Ny3VNnfDw8Kzw8PBYQA48Pvroo9QnnngiF5CDsbKMUZH3/DDZtGmT/blz56xSUlJO79u3r9bUqVO9YmJi4o0d++67714aM2bMzQddY2WV9DMy9XvizCmSmxBt2yb/WZbtV64AX3wB9Oghrw0bORL4+29g9Gh5ZtS1a/JMqQEDGEw9YBkZwAcfyE/YGzBAnjX1f/8HXLokL+ljMEVERERENdWIEbg1ZgyurV2LeuPHw1M/mBozBtdGjCh/MAXIM3LMzMykuXPnXtdta9++fV6vXr1yDGfrjBw50ksX1ri7u4e8/PLLri1btvRbs2aNg+HrrVu31m7WrJl/YGBgQO/evRvdvn1boTvvxRdfdAsMDAzw9fUNPHHihFVCQoJFZGSk85dffuni7+8f+Msvv9gWV6+7u7vay8urICkpySI8PNx7/PjxHm3atPGdOnWqx5EjR6xDQ0P9fX19A3v06NH4+vXrSt1569atc2revLl/kyZNgvbt21euX9SuXr1q3qlTpyYNGjQInjx58t21FzY2Ns1nzZrl1rRpU//ffvvNdvny5Y4hISEB/v7+gcOGDWugVquhVqsRHh7u3aRJkyBfX9/At99+++6snO+//94hJCQkwNvbO1j3nnNzc8Uzzzzj7evrGxgQEBD4448/2hmpR9mhQ4cmAQEBgcOGDWsgGf7OWgE7duyoM3z48AyFQoFu3brdycrKMrtw4ULF0j49Go0GI0aM8PLx8Ql68sknfTp37uyzdu1aBwA4ePCgTevWrf2CgoICOnbs2ER3vbCwML8pU6a4G96bnJwc0bdv30a+vr6Bffr0aZSfn3+3Y3BJnzf9z2Vl3091YThF8lK8QYOAF1+UG5f/8IP854svytu3bwfOnpVTj3bt5PVhU6fK68Jeegn46y8gNVVuZtS9O1DBtJ4q7sQJYNw4eYneK68ADRsCmzfLT+N77TXA2dnUFRIRERERVY5CAaxejVRdQKVUoqUumNLNpKqImJgY69DQ0NyKnGtlZaU9fvx4wsSJE2/qv+7Xr1/2e++95/rHH38kxsbGxrVo0SL3nXfecdGdV7duXXVsbGzc2LFjry9atMjFz8+vcOTIkdcnT56cHh8fH9urV6+c4q4ZGxtrkZqaahkYGFgAAMnJyVaHDx9OXLVq1aXRo0c3fO+99y4lJibGBgUF5b3yyituuvNyc3MVJ06ciI+IiLgwceLEhuV5n7GxsTbbt28/FxcXd2bnzp0OSUlJ5gCQl5enCA4OzouJiYl3dnZWb9682TE6Ojo+Pj4+VqFQSF9++aXTn3/+aZOWlmZ+9uzZM4mJibHTpk3L0I2rVqvFqVOn4hYvXpy6cOFCNwBYvHhxPQBITEyM/e67785NnDjROzc3957HNr366qtu7dq1y4mLi4vt37//rbS0NAtjdffp06eRbqma/teyZcvumw2WlpZm7u3tXah77erqWlhcOPX222+7+/r6Bo4bN84zLy+vxEdKRUZGOqSmplokJCSc+frrr1NOnDhhCwAFBQVixowZXjt27Eg+c+ZM3KhRo268/PLLd/vfGLs3H330UT1ra2ttYmJi7JtvvpkWGxtbq6h2s5I+b4afU2PeeOMND939OXr06ANfqlhz59w9Rn766afSD6qMAQOAmTOBTz+VAyYrKyAvT14bFhYGzJ8PnDkjH9uyJfDuu/IT9gIC+Gg3E1KpgC1b5KV7hw/Lk9RGjZKX7gUHm7o6IiIiIqKqpwuoipbxAZBfVzSYqqyRI0feNPZ6//79tZKTk63CwsL8AUClUomWLVveDZyGDRt2EwDCwsJyd+7cWabZLD/++KODv7+/rYWFhXbp0qUXXFxcNAAwaNCgm2ZmZsjIyFBmZ2cr+/TpkwMAEyZMyBg8eHAjvWtmAkDv3r1zcnJyFDdu3FDWrVtXU5Zrd+zYMcvJyUkDAD4+PvnJycmWPj4+KqVSidGjR98EgF9++cXu9OnTNqGhoQEAkJ+fr6hXr556yJAht1JTUy1HjRrl2a9fv9sDBw7M0o07ePDgmwDQvn37O3PmzLEAgCNHjti+8MIL1wCgefPm+W5uboWnTp2y0q/nr7/+stu6dWsSAAwdOvT2pEmTjL6PXbt2nSvL+wMAY7OvhJHfdz/++OPLnp6eqoKCAjF8+PAG8+fPr//RRx+lFTfuwYMHbQcNGnRTqVTCy8tL3bZt22wAiImJsTx79qx1165dfQF5eamzs7NKd56xe3Po0CHbGTNmXAOANm3a5Pn6+uYCpX/eDD+nxph6WR/DqRrAprqXxgkBjBghB1NqNZCjF9JHRwNPPCEHVwMGAF5V3gePyunqVWDFCvkrLU1ewvfxx8CYMXK7LyIiIiKiR5VuKZ/+tvHj4VmZgCokJCRv+/btRgMic3NzSavXab2goOCetMLOzk5r7LUkSejYsWPWjz/+eN7YuFZWVhIAmJmZSWq1ukz/x1/Xc8pwu62tbZlawRsGLcaCl+JYWFjcTW6USqWkUqlE0XatroeRJEli8ODBGZ9//vllw/NPnz4du23bttrLly+vt2HDBsdNmzalAPfcB2g0GlE0TplqUpThB96nT59GycnJVobbp0+fnj59+vQM/W1ubm6qlJSUuzOw0tLSLLy8vFSG5zZo0EAFANbW1tLYsWMzlixZ4mJ4jL7i3o8kScLHxyfv33//NdrXyti9AYz/3Er7vBl+Th9GXNZXAyxfvhzLly+v3oskJQGWBg+jsLSUe0vt2yc/5o3BlMlIEnDkCDBsmPxjWLAAaNYM2LULSEyUV2AymCIiIiKiR5lhjymNBscNe1BVRL9+/bILCwuF/hPwDhw4YLNr1y7bxo0bFyQlJVnn5eWJjIwM5aFDh2qXZcwuXbrciY6Otj19+rQlAGRnZytKe/qfnZ2dJjs7W1nSMSVxcnLS1K5dW6PrT/TVV185tWvX7u7Mg++//94BAHbv3m1rZ2en0c2Eqiq9evXKioqKcrh8+bIZAKSnpysTExMt0tLSzDQaDUaPHn3r3XffvXzq1KkSZ1907NgxZ/369Y6APLsoLS3NomnTpvn6x7Rt2zZ7zZo1TgCwcePG2llZWUbv265du87Fx8fHGn4ZBlMA0L9//1vffvutk1arxW+//VbLzs5Oowui9OmW+mm1WmzdurVOQEBAHgDs27fPZuDAgd6Gx3fq1Cln+/btDhqNBqmpqWZ///23HQA0bdo0PzMz02zv3r21ADn4jI6Ovi9IK+7eHDt2zCoxMdEGqNjn7WHDmVM1wMaNGwEAU6dOrb6L+PjIS/n0aTRAixbVd00qVV6e3AJs2TLgn38Ae3tg2jS55VeTJqaujoiIiIjowVm/HnUMe0ytXo1UAFi7FvW6dEF2RZ7Wp1AosHPnzuSpU6d6Ll26tL6lpaXk4eFR8Nlnn6X6+Pio+vXrdzMgICCoYcOG+UFBQWXqTeXm5qZesWJFytChQxsVFhYKAHjrrbcul/T0v/Dw8FvPPPNM459//rnO0qVLL5bUd6o4a9euPT9lypQGM2bMUHh5eRV8//33Kbp9Dg4OmubNm/vn5OQoV65caXSGTWW0bNky/4033rjcrVs3X61WC3NzcykiIuKijY2Ndty4cd5arVYAwMKFCy+VNM7cuXOvPf/88w18fX0DlUolVqxYkWJtbX3P9KNFixZdCQ8PbxQYGBjQrl27HFdX18LixiurZ5999vauXbvsGzRoEGxtba1dvXp1im5f586dfb7++usL3t7eqiFDhjTMzMw0kyRJBAYG5kZGRl4AgJSUFEvDOgFg1KhRN/fu3Wvn6+sb1LBhw/zQ0NA7derU0VhZWUk//PBD8owZM7yys7OVGo1GTJkyJb1Vq1b5hmPovPzyy9eGDh3a0NfXNzAoKCg3JCTkDlCxz9vDRlRFV3tTa9WqlRQdHW3qMqpNly5dAAD79++vngtIkjz15tNP5de1agEFBfISv5kzgU8+YW+pB+zCBXnS2urV8hP4goLkXlIjRgC2xT63g4iIiIgeV0KI45IktTJ1HRVx8uTJlNDQ0BulHafVygHViBG4pb+iq7jtRA/SpEmTPMaOHZvRpk2bPMN9t2/fVtjb22uvXr2qbN26dcDhw4fjvby81Kao09ROnjxZNzQ01NtwO2dOkfw0vk8/BaytgY4dgbFj5ZlU69fL2zt3lhugU7WSJOD33+VZUjt3ytsGDABeeEH+ETAfJCIiIqLHmUIBGJsZVdx2ogdpxYoVxc4I69GjR5OsrCylSqUSc+bMSXtcg6mSMJwiOQFZuBB4801g4kTgmWfk7S1byqnIgAGmrO6Rl5MDREbKoVRcHFC3LvDKK8DkyWzzRUREREREVNMdPXo0wdQ1AMDzzz/vdezYsXvW4kyZMiV95syZ9/XgetAYTpE8JSc9XZ451bv3vds5Y6raJCbKD0hctw7IygJatQK+/hp49lnAqsQ2eEREREREjxStVqsVCoWi5vecIXqIffPNN/c97fFBKuo7ZvTRBQynaoBq6zWlo9UCW7YATz0l95uiaqPRAD//LM+S2r0bMDeXw6gXXgDCwrh0j4iIiIgeS6evX78e6OzsfJsBFdGjSavViuvXr9sDOG1sP8MpAo4cAa5e/W85H1W5mzeBNWuA5cuBc+cANzfgnXeACRMAFxdTV0dEREREZDpqtXr81atXV1+9ejUYAFuaEz2atABOq9Xq8cZ2MpyqAT766CMAwMsvv1w9F9i8GbC0BPr0qZ7xH2MxMfIsqfXrgbw8oFMnYNEiuY2XubmpqyMiIiIiMr2WLVteA9Df1HUQkekwnKoBoqKiAFRTOKVb0terF2BnV/XjP4ZUKvkBiMuWAX/8IbfyGj4cmD4dCA01dXVEREREREREDxeGU4+7o0eBS5eA9983dSU1Xno6sGoV8OWXwOXLQMOGwEcfAWPGAI6Opq6OiIiIiIiI6OHEcOpxt3mzvL6sXz9TV1Jj/f23PEtq40agsBDo2VMOqHr3BpRKU1dHRERERERE9HBjOPU4kyQ5nOrZE7C3N3U1NUp+vhxGLVsGHDsmr4icPBmYOhXw8zN1dUREREREREQ1B8OpGsDa2rp6Bj5+HLhwAViwoHrGfwSlpsqzolatAq5fBwICgM8/B55/ni27iIiIiIiIiCqC4VQN8PPPP1fPwJs3A2ZmQH8+GKMkkgQcOCDPktq+XX7dv7/c4LxrV0AIU1dIREREREREVHMxnHpc6Zb0devGbt3FuHMHWL9eDqVOn5Zv08svy8v3vL1NXR0RERERERHRo4HhVA3wzjvvAADmz59fdYOePAkkJwOvvlp1Yz4ikpKA5cuBNWuA27eB5s3l74cOBaprhSURERERERHR40ph6gKodL/99ht+++23qh1082b5UXIDBlTtuDWUVgv8/DPQpw/g6wt89hnw1FPA4cNya64xYxhMEREREREREVUHzpx6HEkSsGkT0KULULeuqasxqVu3gHXr5KbmSUlA/frAW28BEycCrq6mro6IiIiIiIjo0cdw6nF05gyQmAi8+KKpKzGZ06flQOqbb+TeUh06AO+8AwwaBFhYmLo6IiIiIiIioscHw6nH0ebN8iPmBg40dSUPlFoN7NwpL9nbvx+wsgKGDQOmTQNatDB1dURERERERESPJ4ZTNYCTk1PVDrh5M/DEE4CLS9WO+5C6fh1YvRr44gsgNRVo0ABYvBgYNw6o6ltLREREREREROXDcKoG2LJlS9UNFhcnL+v77LOqG/MhFR0tv80ffgAKC4Hu3eXXffvKveCJiIiIiIiIyPQYTj1udEHXoEGmraOaFBTIE8M++wz4+2/A1haYMEFeuhcQYOrqiIiIiIiIiMgQw6kaYN68eQCA999/v/KDbd4sd/92c6v8WA+Ry5eBFSvkr2vXAF9fICICGDUKqF3b1NURERERERERUXEYTtUAf/75Z9UMlJQEnDwJfPJJ1YxnYpIEHDoELFsGbN0KaDTykr3p0+UlfAqFqSskIiIiIiIiotIwnHqcPCJL+nJzge++k0OpkycBBwdg1ixgyhSgUSNTV0dERERERERE5cFw6nGyeTPQpg3g5WXqSirk3Dn5iXtffQXcvAk0bQqsWgUMGwbY2Ji6OiIiIiIiIiKqCIZTj4uUFPnxdR9+aOpKykWrBfbulRuc79olL9ULD5eX7nXsCAhh6gqJiIiIiIiIqDIYTtUAHh4elR9Et6QvPLzyYz0AWVnA11/LS/cSE4F69YA33gAmTQLc3U1dHRERERERERFVFYZTNcD69esrP8jmzUDLlkDDhpUfqxrFxcmBVGQkkJMDtG0LrF8PPPMMYGlp6uqIiIiIiIiIqKoxnHocpKYCf/0FvPeeqSsxSqMBoqLkpXu//SaHUEOHykv3WrUydXVEREREREREVJ0YTtUAs2bNAgAsXbq0YgNs3Sr/+ZAt6cvIAFavlpucX7gAeHrK+dn48YCzs6mrIyIiIiIiIqIHgeFUDfDvv/9WboDNm+VH2/n6Vkk9lXXihDxL6vvvgfx84MkngY8/Bvr3B8z4iSQiIiIiIiJ6rDAKeNRduQIcPgy8/bZJyygslCdwffYZcOQIYGMDjB4tL90LCjJpaURERERERERkQgynHnXbtgGSJHcUN4G0NGDFCvnr6lXAxwf45BM5mKpTxyQlEREREREREdFDhOHUo27zZiAwEAgIeGCXlCTgzz/lWVKbN8sNz3v3Bl54AejZE1AoHlgpRERERERERPSQYzhVA/hWtFdUejrwxx/AG29UbUHFyMuT+0gtWyb3lbK3lwOpqVPlGVNERERERERERIYYTtUAK1eurNiJ27cDWm21L+m7cAFYvlx+8l5mJhAcLC/jGz4cqFWrWi9NRERERERERDUcw6lH2ebN8hP6goOrfGhJAn77TZ4l9eOPgBDAgAHyTKknnpBfExERERERERGVhuFUDTBx4kQA5ZxBdeMGsG8f8MorVZoUZWcDkZFyKBUfD9StC7z6KjB5MuDpWWWXISIiIiIiIqLHRLlaUwuZpxCivRCCC7YekMTERCQmJpbvpB075E7kpSzpk6T/HuhX0vaEBGDGDMDdHZg+HbCzk0Oq1FTg//6PwRQRERERERERVUyZZ04JIaYCeANAfQASgNYA/hFCbAXwhyRJS6ulQqqYzZuBRo2AZs1KPGz7dmDQIGDmTGDECCApSW5evn498OmnwLx5wPHjwK+/AhYWwLPPykv3wsIeyLsgIiIiIiIiokdcmcIpIcQcAO8AWAxgH4Df9XbvB/AcgKVVXBtV1M2bwN69wOzZpS7pGzBADqY+/RT4/HPAykp+6p5GA9SuDbz/vjxb6t13gfHjAReXB/MWiIiIiIiIiOjxUNZlfdMAvClJ0lsADhrsSwDgW6VVUeXs3Amo1WV6Sp8Q8owpMzP5lJwcOZgCgMaNgU2bgPPngddfZzBFRERERERERFWvrMv66gM4Xsw+LQCrqimHjGlWytK8+2zeDHh5Aa1alenwpCR5xlROzn/brK2BuXPLlG8REREREREREVVYWcOpJACdAfxmZN8TAGKrrCK6z9KlS8t+8O3bcoOo6dPL/JQ+Hx95KZ8+lUreTkRERERERERUncq6rG8pgFeFEG8AaFK0rZ4QYhyA2QA+qYbaqCKiooDCwjJPeZIkufm5bimfpeV/S/zWr7//KX5ERERERERERFWpTOGUJEmrAbwO4BUAZ4o2/wTgUwALJEn6rnrKIwAYMWIERowYUbaDN2+WO5i3aVOmw7dvl5uht2ghh1Kffw78+ed/TdK3b69w2UREREREREREpSrrsj5IkvShEOJLAO0A1AWQCeBPSZJuV1dxJLt06VLZDszOBn7+GZg0CVCUbVLcgAHAli3yg/169gTGjZO3t2wJdO4s7yciIiIiIiIiqi5lSjCEECOFEE6SJGVLkvSrJEnfSZL0iyRJt4UQjkKIkdVdKJXBTz8BBQXl6mIuBODhAVy4ADz77L3bBw4sc9sqIiIiIiIiIqIKKWvPqbUAGhezr2HRfjK1zZuB+vWB9u3LddqmTYC5OfD009VUFxERERERERFRMcoaTpU0f8YJQFYV1EKVkZsrz5waNAhQKst8miTJ4VSPHkCdOtVXHhERERERERGRMcX2nBJCPA1Afy7NfCHEdYPDrAB0AnCsGmqjIu3atSv9oF9+kQOqcizpA4DoaHlJ34IFFauNiIiIiIiIiKgySmqIXg9AiN7rxgDqGxxTCOBXAO9WcV2k5/333y/9oM2bAWdnoFOnco3NJX1EREREREREZErFhlOSJK0CsAoAhBD7AEyRJCn+QRVG5ZCfD/z4IzBsGGBW5gcw3l3S17074OBQjfURERERERERERWjTD2nJEl6ksGU6YSHhyM8PLz4A379FcjJKfeSvuPHgZQUYPDgytVHRERERERERFRRZZ5mI4Swg9yDyhdyr6l7SJI0twrrIj0ZGRklH7B5M+DoCHTpUq5xN22SJ1pxSR8RERERERERmUqZwikhRGMAhwHYAKgF4DoAx6LzbwK4DYDhlCkUFAA7dwLh4XLzqDLSX9Ln6FiN9RERERERERERlaBMy/oAfAIgGoALAAHgKQDWAEYAyAEwpFqqo9L99htw+3a5l/T98w9w/jyX9BERERERERGRaZV1WV8YgPEACopeW0iSpAHwnRCiLoBPAbSvhvqoNJs3A/b2QLdu5TpNt6RvwIDqKYuIiIiIiIiIqCzKGk5ZAciSJEkrhMgE4Ka37zSA0CqvjO7qVlzwpFIB27cD/fsDFhZlHk+3pK9bNy7pIyIiIiIiIiLTKms4lQigQdH3JwBMFkL8BEADYByAK9VQGxWZP3++8R379gE3b5Z7Sd+JE8C5c8Brr1VBcURERERERERElVDWnlM/AGhW9P18AG0AZAHIhtxv6u2yXlAI0UsIkSCESBJCvFrMMV2EEP8KIc4IIQ6UdezHzubNgK0t0LNnuU7btAlQKrmkj4iIiIiIiIhMr0wzpyRJ+ljv+7+EEMEAekNe7ve7JEmnyzKOEEIJ4HMAPQBcAnBMCLFTkqRYvWPqAFgOoJckSReFEPXK+mYeVb179wYA/Pzzz/9tVKuBbduAfv0AK6syj6W/pM/JqaorJSIiIiIiIiIqn7LOnLqHJEmpkiStlCQpAsAZIURZn9YXBiBJkqRzkiQVQp6R9bTBMcMAbJUk6WLRta5VpMZHSV5eHvLy8u7d+McfwI0b5V7S9++/QHIyn9JHRERERERERA+HMoVTQghnIYQw2GYthJgOIAnAd2W8njuAVL3Xl4q26fMF4CCE2C+EOC6EGFnGsR8vmzcDNjZAr17lOo1L+oiIiIiIiIjoYVJsOCWEsBFCrBRC5AK4CuCmEOLlon2TAKQAiIAcTnUp4/WEkW2SwWszAC0B9AHwPwDzhRC+RuqbKISIFkJEX79+vYyXf0RoNMDWrUCfPnJAVUa6JX1duwJ161ZjfUREREREREREZVRSz6k3AYwCsAbASchP63tNCNEWwCAAvwOYJ0nSsXJc7xIAT73XHrj/SX+XANyQJOkOgDtCiD8AhEJ+YuBdkiStBLASAFq1amUYcD3aDh8G0tPLvaTv5EkgKQmYO7ea6iIiIiIiIiIiKqeSwqlBABZKkvR/ug1FT877CcAaSZLGV+B6xwA0EUI0BHAZwFDIPab07QCwTAhhBsAC8pMBP6nAtR4Zffv2vXfD5s1yE/SnnirXOLolfQMHVmFxRERERERERESVUFI41QDAAYNtutdfV+RikiSpi/pU7QaghBxynRFCTC7a/6UkSXFCiF8AxADQAlhd1qcBPqpefvnl/15otcCWLUDv3oCtbZnH0C3pe/JJLukjIiIiIiIioodHSeGUOYBCg22613cqekFJkn6CPPtKf9uXBq8/BPBhRa/xSPvrL+DKlXIv6YuJAc6eBfRzLiIiIiIiIiIiUyspnAKAF4QQaXqvdQ3NZwoh0vW2S5IkvVK1pZFOly5dAAD79++Xl/RZWACGS/1KwSV9RERERERERPQwKimcugigo5HtFwA8YbBNAsBwqrpJkhxO/e9/QO3a5Tpt0yagSxfA2bn6yiMiIiIiIiIiKq9iwylJkrwfYB1UFseOAampwLvvluu0U6eAxERg9uxqqouIiIiIiIiIqIIUpi6AymHzZsDcHOjXr1ynbdoEKBRc0kdEREREREREDx+GUzXJ5s1A9+6Ag0OZT9Ff0levXvWVRkRERERERERUEQynaoBnn30Wz7ZtC5w/X+6n9J0+DSQkAIMHV1NxRERERERERESVwHCqBpg6dSqmKhTy4/aefrpc5+qW9A0aVE3FERERERERERFVAsOpGiD3zh3kbtwIdO0KODmV+TxJAjZuBDp35pI+IiIiIiIiIno4lTucEjI3IUSxT/qjqvVUly54KjmZS/qIiIiIiIiI6JFT5nBKCPGUEOJvAPkALgJoWrR9pRBiRDXVRwBw/br854AB5TqNS/qIiIiIiIiI6GFXpnBKCDESwE4A8QAmGpx3FsC4qi+N7rp+HahTp1xr83RP6XviCcDFpfpKIyIiIiIiIiKqjLLOnHodwIeSJI0CsN5g3xkAgVVaFf0nNhbIzQWcnct12pkzQHw8l/QRERERERER0cOtrOFUAwB7itmXD6B21ZRD99myRf6zbt1ynbZpEyAEl/QRERERERER0cOtrE3NUwE0B/C7kX2tACRVWUV0r82bMdrXF5g4sVyn6Zb01a9fTXUREREREREREVWBsoZTXwF4SwiRDmB70TYhhOgGYC6AhdVQGyUmAjExGP3pp8Do0WU+7cwZIC4OmDat+kojIiIiIiIiIqoKZQ2nFgPwBPA1AE3RtiMAlABWSJIUUQ21UdGSvhtdugA3bqBuGZf26Zb0hYdXY21ERERERERERFVASJJU9oOF8AHQFUBdAJkAfpckKbGaaiuzVq1aSdHR0aYuo+q1bAlYWqKLhQUAYP/+/WU6LShIblF14EA11kZERERERA8NIcRxSZJamboOIqKKKNPMKSGEjSRJuZIkJYH9pR6Mc+eAf/4BliwBdu4s82mxsfLXZ59VY21ERERERERERFWkrE/ruyGE+P/27j1K0rq61/iz594NiIbLkXARRC6i4pw4oBATUfEEUOQo4pijJniSgKDGSUARophEDmoiOXiigMSwiOYC9AAGcEQBbTAZQMEMqOgQBHEGUAYwCFRXzfTMPn+81Vo0fanuqrequub5rNWru95b7e5+F9Pry96/99KIeFNELC61IhXGntI3w8ftOdInSZIkSZLmkmbDqQ8CzwVWAg9HxBcj4vUR0eyaVZqplSth2TLYc88ZnTY0BK98JeyySzllSZIkSZIktVNT4VRmfiYzX0WxKPpHgb2BqyiCqr+PiNeVWOPW5/774Vvfgre8ZUan/eAHxZP6jjuupLokSZIkSZLabEadT5n5IHAucG5E7AG8FfgT4Pdnei1N4Yoris/12byTTjqpqdMc6ZMkSZIkSXPNrAKl+lP7ltc/dgHWtbOord7KlbB0KbzgBQAsX768qdOGhuA3fxN+/ddLrE2SJEmSJKmNml1ziojYMyI+GBG3A2uB9wDDwG9l5vNKqm/r88ADsHr100b61q1bx7p1U+d/P/whfO97jvRJkiRJkqS5panOqYi4FVgGPAZcAZwKDGdmlljb1mlspK8hnHrnO98JwPDw8KSnDQ0Vnx3pkyRJkiRJc0mzY30/oFgI/brM3FxiPVq5El78YthvvxmdNjbSt+uuJdUlSZIkSZJUgmaf1nd8Zl5rMFWyn/4UvvnNGT+lb+1a+O53HemTJEmSJElzz6SdUxFxFPBvmfmL+tdTysxVba1sa3TllZA543DKkT5JkiRJkjRXTTXWdw3wCuBb9a+nksD8dhW11Vq5EvbfHw44YEanDQ3BoYfCbruVVJckSZIkSVJJpgqn9gIeavhaZdqwAYaH4YwzIOJpu0455ZRJT7v7brjzTvi//7fk+iRJkiRJkkowaTiVmfc3vgQeysxN44+LiAXAr5dQ29blS1+CLVsmHOk7+uijJz1tbKRvhpOAkiRJkiRJPaGpBdGB+4D/Psm+l9b3qxUrV8ILXgAHHviMXWvXrmXt2rUTnjY0BIcc4kifJEmSJEmam5oNp2KKfUuAWhtq2Xo9+ijccEPR/hTP/FGfeOKJnHjiic/Y/p//CXfc4VP6JEmSJEnS3DXV0/oOBJY2bDoqIvYfd9gS4K3A3e0vbSty1VWwefOsn9LnSJ8kSZIkSZqrploQ/U3AR+tfJ3DmJMfdBzyzrUfNW7kS9twTfuM3ZnTa0BC84hWw++7llCVJkiRJklS2qcb6zga2A55FMdb3mvrrxo/Fmbl3Zl5fdqF96/HH4brrJh3pm8w998CaNY70SZIkSZKkuW2qp/VtAsaeztfs2lSaqauvhk2bHOmTJEmSJElbpanWnDoA+FFm1upfTykz72prZVuLlSuLubyDD570kA9/+MPP2DY0BC9/OeyxR5nFSZIkSZIklWuqNae+B7wC+Fb965zkuKjvm9/e0rYCTzwB114LJ5005Ujf4Ycf/rTXP/oR/Md/wKc+VXaBkiRJkiRJ5ZoqnHo1cFfD12q3L38ZarVpZ/PWrFkDwNKlSwFH+iRJkiRJUv+Yas2pGyf6Wm20ciXssgsccsiUh61YsQKA4eFhoAinDj4Ynve8kuuTJEmSJEkqWVMLnUfEzhGxV8PriIgTIuLciDi6vPL62FNPwapVcOyxMK/59ebvvRe+8x2f0idJkiRJkvpDs6nIxcCfNLz+C+A84Ajgyog4vr1lbQW+8hUYGfEpfZIkSZIkaavWbDj1G8DXASJiHnAScEZm7g/8H2BFKdX1s5UrYeed4ZWvnNFpQ0Nw0EGw557llCVJkiRJktRJzYZT2wOP1r9+GfBrwD/VX38deEGb6+pvIyNwzTXw5jfD/OYfcnjvvXD77Y70SZIkSZKk/jHV0/oarQcOAL4JvB74YWY+UN+3PVAtobb+9dWvFmtONTmbd/bZZwNFsxU40idJkiRJkvpHs+HURcBfRcThFOHU6Q37XgH8oN2F9bWVK2GHHeBVr2rq8EMPPRSA978fli2Dvfaa5gRJkiRJkqQ5oqlwKjM/HhEPAAcB76MIq8b8GvD5EmrrT7UaXHUVLF8OC5rLBlevXs2DD8Jttx3KJz9Zcn2SJEmSJEkd1GznFJn5BeALE2x/d1sr6nfXXQdPPAHHHtv0KWeccQbr1gEMu96UJEmSJEnqK02HUxGxADgWeCVFt9RjFGtQXZGZo+WU14dWroRnPxte85oZnbZhA7zsZY70SZIkSZKk/tJUOBUROwNfAw4Efgz8DDgEeA9wR0T8j8zcUFaRfWPjRvjXf4VjjoFFi5o+rVotmq3smpIkSZIkSf1mXpPH/Q2wA/DyzHx+Zh6Smc8HXl7f/jdlFdhX1q6F//ov+J3fmdFpG+qxn+GUJEmSJEnqN82GU0cBp2Xmtxs31l+fTvEEP01nZKT4/Kxnzei0DRtg223h+c8voSZJkiRJkqQuanbNqcXAE5PsewJofkZta1atFp+XLGn6lPvvhyeeOJf3va+kmiRJkiRJkrqo2c6pW4DTImKbxo3116fV92s6tVrxeQbh1MqVAEt5//uXllGRJEmSJElSVzXbOXUK8A1gXUR8jWJB9J2B3wECOKyU6vrNWOfU4sVNnzI0BHvvfT333Qd77314SYVJkiRJkiR1R1OdU5m5BtgHuBDYCXgdRTh1AbBPZt5RVoF9ZYadUz/5Cdx6K2zZchZnnXVWiYVJkiRJkiR1x7SdUxGxA7An8NPM/FDpFfWzGXZOFSN9sNNOJdUjSZIkSZLUZZN2TkXEdhFxGfAw8C3gJxFxS0Ts3bHq+s0MO6cuuwyWLoWBgfJKkiRJkiRJ6qapxvr+AjgSOBN4PfBeYFfgog7U1Z9m0Dk1NtJ33HEl1yRJkiRJktRFU431vRH4cGZ+emxDRHwPGI6I7TPz8dKr6zcz6JwaG+k77jj42tdKrEmSJEmSJKmLpgqnngd8e9y2Wymezvc84M6yiupbM+icGhqCl74U9tkHPve5z5VcmCRJkiRJUndMFU7NBzaN27a5YZ9maiycWrRoysPWrYNbboGxB/Ttt99+JRcmSZIkSZLUHdM9re/jEfFYw+uof/6riPh5w/bMzOXtLa0P1WrFSF/ElIc1jvQBXH311QAcffTRZVYnSZIkSZLUcVOFUzdRdEjtNG77jfXzxm/XdKrVpkf6DjwQ9t23eH3OOecAhlOSJEmSJKn/TBpOZeZhHaxj6zDWOTWFdevg5pvhYx/rUE2SJEmSJEldNK/bBWxVmuicuvzy4vPYSJ8kSZIkSVI/M5zqpCY6p4aG4CUvAddAlyRJkiRJWwPDqU6apnNq/XpYvdquKUmSJEmStPWY7ml9aqdpOqcmG+n74he/WGJRkiRJkiRJ3dPxzqmIOCIi1kbEPRHxoSmOOygiNkfEWzpZX6mm6ZwaGoIXvxj23//p23fffXd23333kouTJEmSJEnqvBmFU1HYPSIOjYhtZvpmETEf+CxwJHAA8LsRccAkx30S+OpM36OnVauTdk498AD8+79PPNJ36aWXcumll5ZcnCRJkiRJUuc1HU5FxMnAA8D9wDeB/erbr4iIFU1e5mDgnsy8NzM3ApcAx0xw3PuAy4GHm61vTphirG+qp/Sdf/75nH/++SUWJkmSJEmS1B1NhVMR8QHgb4C/A14DRMPuYWB5k++3K7Cu4fX6+rbG99oVeBNwQZPXnDumGOsbGoIXvQhe+MIO1yRJkiRJktRFzXZOvQc4MzM/StE11WgtsG+T14kJtuW41+cCp2Xm5ikvFHFCRNwWEbdt2LChybfvskk6px58cPKRPkmSJEmSpH7W7NP6ngvcPsm+LcDkj6B7uvVA48reuwEPjjtmGXBJRADsCBwVEaOZ+aXGgzLzQuBCgGXLlo0PuHrTJJ1Tl18OmYZTkiRJkiRp69Ns59Q9wKsm2ffbwF1NXufbwD4RsVdELALeBlzVeEBm7pWZe2bmnsBK4OTxwdScNUnn1NAQHHBA8SFJkiRJkrQ1abZz6lzgvIjYSBEYAewcEX8A/CnwR81cJDNHI+K9FE/hmw9clJnfj4h31/f33zpTjSbonHroIfi3f4Mzz5z8tJUrV06+U5IkSZIkaQ5rKpzKzM9HxHOAM4G/qG9eBVSAP8/Mf272DTNzVf3cxm0ThlKZeXyz150TJuicamakb8cddyy5MEmSJEmSpO5otnOKzPzriLgAOBTYAXgMuDkzHy+ruL6yeTNs2vSMzqmxkb4XvWjyUy+++GIAjj/++PLqkyRJkiRJ6oKmwymAzHyCYiRPM1WrFZ8bOqceegi++c2pR/rAcEqSJEmSJPWvpsKpiDh5umMy87zWy+ljY+FUQ+fUFVf4lD5JkiRJkrR1a7Zz6jNT7Mv6Z8OpqVSrxeeGzqmhIXjhC6ce6ZMkSZIkSepn85o5KDPnjf8Afg34XeAO4IAyi+wL48b6fvpTuOkmu6YkSZIkSdLWbUZrTjXKzP8CLo2I7YHPAYe1qab+NNY5VR/rc6RPkiRJkiSphXCqwX3AsjZcp7+N65waGoL9929upG/VqlUlFiZJkiRJktQ9TY31TSYidgFOoQioNJWGzqmf/exXI30R0586ODjI4OBgufVJkiRJkiR1QbNP69vArxY+H7MI2A6oAm9uc139p6Fz6oorYMuW5kf6zjuvWGv+5JOnfWiiJEmSJEnSnNLK0/qqwHrg2sx8tH0l9amGzqmhIdhvP3jxi5s79bLLLgMMpyRJkiRJUv+ZNpyKiIXA9cB9mflg+SX1qXo49XBlW268Ec44o7mRPkmSJEmSpH7WzJpTm4GvAy8suZb+Vh/ru+KbO85opE+SJEmSJKmfTRtOZeYW4D+B/1Z+OX2s3jk1dP1z2HdfeMlLulyPJEmSJElSD2j2aX1/BpwZEUYqs1Wr8TA7MXzrQNNP6ZMkSZIkSep3k645FRG/DXwnM58EPgzsAKyJiAeAnzHu6X2ZeXCZhc551Srf5iC2bAmOOGJmpw4PD5dSkiRJkiRJUrdNtSD6N4BDgG8B36t/aLZqNZ5iGwCe85wu1yJJkiRJktQjpgqnfjl4lpnv6kAt/a1aZYQBAAYGZnbqpz71KQBOPfXUdlclSZIkSZLUVc2uOaVW1WpU6p1Tg4MzO/Waa67hmmuuKaEoSZIkSZKk7pqqcwrgqIjYv5kLZeYX2lBP/6pWqSx4FozOPJySJEmSJEnqV9OFU2c2eZ0EDKemUq0ysmBnGJ35WJ8kSZIkSVK/mi6cejVwWycK6Xu1GpV527FgASxc2O1iJEmSJEmSesN04dRIZj7VkUr6XbXKyPxtZzXSN2CrlSRJkiRJ6lPThVNql1qNyrxtGVgy81O/8pWvtL8eSZIkSZKkHuDT+jqlWqUS27gYuiRJkiRJUoNJO6cy0+CqnWo1RmJwVouhf+xjHwPgIx/5SJuLkiRJkiRJ6i4DqE6pVqkwOKvOqRtuuIEbbrih/TVJkiRJkiR1meFUp9RqVBhwrE+SJEmSJKmB4VSnVKuM5JJZjfVJkiRJkiT1K8OpTqlWqWyxc0qSJEmSJKnRpAuiq81qNUa2LJ5VOLXDDju0vx5JkiRJkqQeYDjVKdUqlS2LZzXWd/nll7e/HkmSJEmSpB7gWF+n1GpURhc51idJkiRJktTAcKpTqlVGNs8unDr99NM5/fTT21+TJEmSJElSlznW1yGj1VE2bl4wq7G+m2++uf0FSZIkSZIk9QA7pzph82ZGNi8EcKxPkiRJkiSpgeFUJ9RqjFC0TM2mc0qSJEmSJKlfGU51QrVKhaJlys4pSZIkSZKkX3HNqU5o6JyaTTi12267tbkgSZIkSZKk3mA41QkNnVOzGev7x3/8xzYXJEmSJEmS1Bsc6+sEx/okSZIkSZImZDjVCS2O9a1YsYIVK1a0tyZJkiRJkqQe4FhfJ7Q41rdmzZr21iNJkiRJktQj7JzqhFrNsT5JkiRJkqQJGE51QrX6y7G+2XROSZIkSZIk9SvDqU6wc0qSJEmSJGlCrjnVCQ2dU7MJp/bdd982FyRJkiRJktQbDKc6oaFzasmSmZ9+4YUXtrkgSZIkSZKk3uBYXyfUn9a3ZHEyz5+4JEmSJEnSLxmVdEJ9rG9wMGd1+gknnMAJJ5zQ5qIkSZIkSZK6z7G+TqjVqPCcWT+p7+67725vPZIkSZIkST3CzqlOqI/1DQ5GtyuRJEmSJEnqKYZTnVCrMcIgg9t0uxBJkiRJkqTeYjjVCdUqlXnbMDBg55QkSZIkSVIj15zqhFqNkXnbMDg4u9OXLl3a1nIkSZIkSZJ6heFUJ1SrVNiG7We5IPq5557b1nIkSZIkSZJ6hWN9nVCrUYnBWXdOSZIkSZIk9SvDqU6oVhnJgVmHU+94xzt4xzve0d6aJEmSJEmSeoBjfZ1QrVJhgIFZjvWtX7++vfVIkiRJkiT1CDunOqFWo7JliWN9kiRJkiRJ4xhOdUCOVBnZsthwSpIkSZIkaRzDqQ7YWN3CFubPeqxPkiRJkiSpX7nmVAdUKsXn2XZOHXLIIe0rRpIkSZIkqYcYTnXASDWA2YdTH//4x9tYjSRJkiRJUu9wrK8DKtXix+xYnyRJkiRJ0tMZTnXASK34Mc+2c+rYY4/l2GOPbWNFkiRJkiRJvcGxvg6o1OYDs++cevTRR9tYjSRJkiRJUu+wc6oDxsKp2XZOSZIkSZIk9SvDqQ4Y2VQ0qBlOSZIkSZIkPZ3hVNlGR6lsWQy4ILokSZIkSdJ4rjlVtlqNCkXL1Gw7p1772te2sSBJkiRJkqTe0fFwKiKOAD4NzAc+n5mfGLf/7cBp9ZdPAidl5h2drbKNqlVGKFqmZhtOfeQjH2ljQZIkSZIkSb2jo2N9ETEf+CxwJHAA8LsRccC4w+4DXpWZBwIfAy7sZI1t19A55VifJEmSJEnS03V6zamDgXsy897M3AhcAhzTeEBmrs7Mn9df3gLs1uEa26sNnVNHHnkkRx55ZBuLkiRJkiRJ6g2dDqd2BdY1vF5f3zaZPwC+UmpFZat3Ts2ft4WFC2d3iZGREUZGRtpblyRJkiRJUg/o9JpTMcG2nPDAiFdThFOvnGT/CcAJAHvssUe76mu/apUKgwws2kyED0eUJEmSJElq1Om0ZD2we8Pr3YAHxx8UEQcCnweOycxHJ7pQZl6Ymcsyc9lOO+1USrFtUR/rG1yypduVSJIkSZIk9ZxOh1PfBvaJiL0iYhHwNuCqxgMiYg/gCuCdmXl3h+trv/pY38BiwylJkiRJkqTxOjrWl5mjEfFe4KvAfOCizPx+RLy7vv8C4ExgB+C8iAAYzcxlnayzrepjfYMDE04vNuUNb3hDGwuSJEmSJEnqHZ1ec4rMXAWsGrftgoav/xD4w07XVZparRjrG5j9JU499dT21SNJkiRJktRDXKG7bGMLorcQTkmSJEmSJPUrw6myjXVObTP7Sxx22GEcdthhbStJkiRJkiSpVxhOlW1szanB6HYlkiRJkiRJPcdwqmxjT+vbxh+1JEmSJEnSeCYmZatWi7G+bf1RS5IkSZIkjWdiUraxsb7t5ne7EkmSJEmSpJ6zoNsF9L02jPW99a1vbWNBkiRJkiRJvcNwqmRbRmrUWMLg4OyvcfLJJ7evIEmSJEmSpB7iWF/JRp7aAsDAwOyvUalUqFQqbapIkiRJkiSpd9g5VbKxcKqVzqmjjjoKgOHh4TZUJEmSJEmS1DvsnCrZWMNTK+GUJEmSJElSvzKcKlnlqQRaG+uTJEmSJEnqV4ZTJRupFp/tnJIkSZIkSXomw6mSVSoBGE5JkiRJkiRNxAXRS1apFvlfK2N9xx9/fHuKkSRJkiRJ6jGGUyUbqRXhVCudU4ZTkiRJkiSpXznWV7KxzqlWwqlHHnmERx55pE0VSZIkSZIk9Q47p0o2snE+0NpY31ve8hYAhoeH21CRJEmSJElS77BzqmSVjUX+54LokiRJkiRJz2Q4VbLKpoVAa51TkiRJkiRJ/cpwqmQjm4rOKcMpSZIkSZKkZzKcKllldBGL529i/vxuVyJJkiRJktR7XBC9ZJXRRQwsGQUWzvoaJ510UvsKkiRJkiRJ6iGGU2UaHWWEJQwu3ATMfq5v+fLl7atJkiRJkiSphzjWV6ZqlQqDDC7a3NJl1q1bx7p169pUlCRJkiRJUu+wc6pM1SojDDCwuLVw6p3vfCcAw8PDbShKkiRJkiSpd9g5VaZareicajGckiRJkiRJ6leGU2Wqj/UNLM5uVyJJkiRJktSTDKfKVKsxwgCDA1u6XYkkSZIkSVJPMpwq09iC6AN2TkmSJEmSJE3EBdHLVKtR4TkMDLR2mVNOOaU99UiSJEmSJPUYw6ky1Z/WNzjY2ljf0Ucf3aaCJEmSJEmSeotjfWUae1rfNtHSZdauXcvatWvbVJQkSZIkSVLvsHOqTGNP6xustHSZE088EYDh4eE2FCVJkiRJktQ77Jwq0aYna2xmAYPb+mOWJEmSJEmaiKlJiSpPbAZgcLv5Xa5EkiRJkiSpNxlOlWjkiVEABrY1nJIkSZIkSZqI4VSJKk8WT+kbfJZLe0mSJEmSJE3E1KREY+HUwHat/Zg//OEPt6McSZIkSZKknmM4VaKRSr1zavuFLV3n8MMPb0c5kiRJkiRJPcexvhJVnkyg9QXR16xZw5o1a9pQkSRJkiRJUm+xc6pElZEAYGCgteusWLECgOHh4dYuJEmSJEmS1GPsnCrRSKXeOTXY5UIkSZIkSZJ6lOFUicY6pwynJEmSJEmSJmY4VaKRanvG+iRJkiRJkvqV4VSJKtXix2vnlCRJkiRJ0sRcEL1ElVrxlL5Ww6mzzz67DdVIkiRJkiT1HsOpEo3U5hFsYdGi1hrUDj300DZVJEmSJEmS1Fsc6ytRZdMCBufViGjtOqtXr2b16tXtKUqSJEmSJKmH2DlVosrGBQzMrwGtrYh+xhlnADA8PNx6UZIkSZIkST3EzqkSjWxayOCCjd0uQ5IkSZIkqWcZTpWoMrqQwQWbul2GJEmSJElSzzKcKtHI6EIGFhpOSZIkSZIkTcZwqkSVzYsZXDja7TIkSZIkSZJ6lguil6iyeQnbLmo9nDr33HNbL0aSJEmSJKkHGU6VaGTLYnZatLnl6yxdurT1YiRJkiRJknqQY31lyaSSSxhc3Ho4df3113P99de3oShJkiRJkqTeYudUWUZHqTDI4JKRli911llnAXD44Ye3fC1JkiRJkqReYudUWapVRhhgYEl2uxJJkiRJkqSeZThVllqt6JwaMJySJEmSJEmajOFUSXKkygiDDBhOSZIkSZIkTcpwqiTVx2sADA5GlyuRJEmSJEnqXS6IXpLK45sAGBxs/Vqf+9znWr+IJEmSJElSDzKcKsnI4xsBGNim9ea0/fbbr+VrSJIkSZIk9SLH+kpS+cUoAIPbtv4jvvrqq7n66qtbvo4kSZIkSVKvsXOqJO0Mp8455xwAjj766JavJUmSJEmS1EvsnCrJyJObARjYzvxPkiRJkiRpMoZTJak8UYRTg9vN73IlkiRJkiRJvctwqiQjT20BYHB7O6ckSZIkSZImYzhVksqTRTg1sN3CLlciSZIkSZLUuzre1hMRRwCfBuYDn8/MT4zbH/X9RwEV4PjM/E6n62xV5akEYPDZi1q+1he/+MWWryFJkiRJktSLOhpORcR84LPA64D1wLcj4qrMvKvhsCOBfeofLwfOr3+eU0YqRTg18KzWO6d23333lq8hSZIkSZLUizo91ncwcE9m3puZG4FLgGPGHXMM8IUs3AI8OyJ26XCdLatUis+Dz1nc8rUuvfRSLr300pavI0mSJEmS1Gs6Pda3K7Cu4fV6ntkVNdExuwIPlVtae1VGAoCBZ7ceTp1//vkALF++vOVrSZIkSZIk9ZJOd07FBNtyFscQESdExG0RcduGDRvaUlw7PXfX+Ryy7XdZsHh+t0uRJEmSJEnqWZ0Op9YDjQso7QY8OItjyMwLM3NZZi7baaed2l5oq/7oi7/N6ide0u0yJEmSJEmSelqnw6lvA/tExF4RsQh4G3DVuGOuAn4vCq8AHs/MOTXSJ0mSJEmSpOZ0dM2pzByNiPcCXwXmAxdl5vcj4t31/RcAq4CjgHuACvCuTtYoSZIkSZKkzonMZyznNOcsW7Ysb7vttm6XUZpHHnkEgB133LHLlUiSJEnqRRFxe2Yu63YdkjQbnX5an2bBUEqSJEmSJPWrTq85pVm4+OKLufjii7tdhiRJkiRJUtsZTs0BhlOSJEmSJKlfGU5JkiRJkiSpawynJEmSJEmS1DWGU5IkSZIkSeoawylJkiRJkiR1zYJuF6DprVq1qtslSJIkSZIklcJwag4YHBzsdgmSJEmSJEmlcKxvDjjvvPM477zzul2GJEmSJElS2xlOzQGXXXYZl112WbfLkCRJkiRJajvDKUmSJEmSJHWN4ZQkSZIkSZK6xnBKkiRJkiRJXWM4JUmSJEmSpK6JzOx2DS2LiA3A/d2uYwI7Ao90uwj1Le8vlc17TGXy/lKZvL9Upl69v56XmTt1uwhJmo2+CKd6VUTclpnLul2H+pP3l8rmPaYyeX+pTN5fKpP3lyS1n2N9kiRJkiRJ6hrDKUmSJEmSJHWN4VS5Lux2Aepr3l8qm/eYyuT9pTJ5f6lM3l+S1GauOSVJkiRJkqSusXNKkiRJkiRJXWM41QYRcURErI2IeyLiQxPsj4j4f/X9d0bEb3SjTs1NTdxfb6/fV3dGxOqIeGk36tTcNN391XDcQRGxOSLe0sn6NLc1c39FxGERsSYivh8RN3a6Rs1tTfwbuX1EXB0Rd9TvsXd1o07NPRFxUUQ8HBHfm2S/f99LUhsZTrUoIuYDnwWOBA4AfjciDhh32JHAPvWPE4DzO1qk5qwm76/7gFdl5oHAx3AdBDWpyftr7LhPAl/tbIWay5q5vyLi2cB5wBsz80XAcZ2uU3NXk/8New9wV2a+FDgMOCciFnW0UM1VFwNHTLHfv+8lqY0Mp1p3MHBPZt6bmRuBS4Bjxh1zDPCFLNwCPDsidul0oZqTpr2/MnN1Zv68/vIWYLcO16i5q5n/fgG8D7gceLiTxWnOa+b++l/AFZn5E4DM9B7TTDRzjyWwXUQEsC3wGDDa2TI1F2XmTRT3y2T8+16S2shwqnW7AusaXq+vb5vpMdJEZnrv/AHwlVIrUj+Z9v6KiF2BNwEXdLAu9Ydm/vu1L/CciBiOiNsj4vc6Vp36QTP32GeAFwIPAt8F3p+ZWzpTnvqcf99LUhst6HYBfSAm2Db+EYjNHCNNpOl7JyJeTRFOvbLUitRPmrm/zgVOy8zNReOB1LRm7q8FwMuA1wIDwM0RcUtm3l12ceoLzdxjvwOsAV4D7A1cFxHfzMxflFyb+p9/30tSGxlOtW49sHvD690o/u/cTI+RJtLUvRMRBwKfB47MzEc7VJvmvmbur2XAJfVgakfgqIgYzcwvdaRCzWXN/vv4SGY+BTwVETcBLwUMp9SMZu6xdwGfyMwE7omI+4D9gW91pkT1Mf++l6Q2cqyvdd8G9omIveoLbL4NuGrcMVcBv1d/qscrgMcz86FOF6o5adr7KyL2AK4A3mm3gWZo2vsrM/fKzD0zc09gJXCywZSa1My/j/8K/FZELIiIQeDlwA86XKfmrmbusZ9QdOYREf8N2A+4t6NVql/5970ktZGdUy3KzNGIeC/FU6zmAxdl5vcj4t31/RcAq4CjgHuACsX/xZOm1eT9dSawA3BevbtlNDOXdatmzR1N3l/SrDRzf2XmDyLiWuBOYAvw+cyc8LHt0nhN/jfsY8DFEfFdijGs0zLzka4VrTkjIv6F4gmPO0bEeuCjwELw73tJKkMUXc6SJEmSJElS5znWJ0mSJEmSpK4xnJIkSZIkSVLXGE5JkiRJkiSpawynJEmSJEmS1DWGU5IkSZIkSeoawylJ0oxFxJ9HRE7wcX2T5+9ZP/4NHaj1xw31bYyIH0bERyJiURvf4/j69betv965/jPac9xxh9WPe3G73nuauhp/NyMR8YOIOC0iFsziWh+MiMPaX6UkSZK2djP+41SSpLrHgSMm2NaL/hn4W2Ax8Grgo8D2wKltuv6XgUOASv31zvX3GAZ+3HDcd+rH/ahN79uMc4CVwADwBuATwELgrBle54PAZyi+J0mSJKltDKckSbM1mpm3dLuIJj3UUOuNEbEb8O6I+EBmZqsXz8wNwIYmjvsF0Omf2Y8bvvdvRMSLgN9j5uGUJEmSVArH+iRJbRURu0TERRFxb32U7O6IOGu6MbqIeGNE3B4RT0XEzyPi1oh4VcP+eRHxoYi4JyJq9ev+/izLvB3YBtixfu3X1N+vGhE/i4jzxkb06vsXRsSnIuIn9fd+MCKuHPueGsf66qN8362f+o2xsbr6cU8b64uIGyPisgl+FmPvFfXXSyLiryJiXf3974iIo2b5vd8B7D7u/T4REd+NiCcjYn1E/FNEPLdh/4+BHYCPNowJHlbf187fiyRJkrZCdk5JkmZtgrWLNlMEPo8Bfwr8HNgX+HNgJ+DESa6zN8Xo2aeBDwBLgJcBv9Zw2N8Cvw/8JcV43OuAiyLi0cy8Zoal7wlsBB6LiAOAa4HrgGMpgptPAM/nV2OLpwNvBz4E3Ac8FzgKmD/BtR+qH/tPwHvqtU7mEuCciNgmM58CqAdSxwGXNXR1rQQOphgV/BHwVuCqiFiWmWtm+L3vUf8eGu0MnA08SPF7OgX4ekS8JDM3A28CvlGv4/P1c+6qf27n70WSJElbIcMpSdJs7QBsGrftdZl5PQ1rOUXEvwNPUQQW78vMjRNc678DT2TmBxq2rWq4xguAk4B3ZeY/1DdfHxG7UAQ204UgUQ/SFgGvAd4NXJ2ZmyPiTOB+4I31IIaIeAy4NCIOycybKYKhf254b4BndDwBZGYtIu6sv7xrmtHHlRThztEUQRXAKygCpEvqtbwWeD1wWGbeWD/maxGxL/BnFEHWVObVv/exNafeTBEmNdb8v8e+joj5wM3AeuA3gZsy8z8iYhRY3/j9tOH3IkmSJDnWJ0matceBg8Z93BqFFRFxV0SMUARY/0SxGPkek1zru8D2EfEPEfE/ImKbcftfC2wBroyIBWMfwA3A0nqgMpU/rdfxFHA1cBNFVxMUwdOVY8FU3eXAKPDK+us1wPH1J9YdODZu16r6WlVfB5Y3bF4O/Cgzb6u/Phz4KfDvE3zvy5p4m09TfO+/oFgY/rOZeUnjARFxZESsjojHKb7v9fVd+05z7VZ/L5IkSZKdU5KkWRttCFB+KSL+BPgUxWjcjRSjfQcBn6UY13uGzFwbEcdQjM2tAjZFxJXA++sBzo4UI3STPQ1wF34VqEzkHylCmhrFAuFPjDv3Z+Pq2RwRj/KrscKzKEKYk4FPAg9ExF9n5qeneM9mXQKcFxHPAp6k6IS6uGH/jhRjhOO71KAYo5zOX1N0eW0PrAD+JCKuz8xVABFxEHAVcCXF7+xhICkWbp/w9zWutlZ+L5IkSZLhlCSp7Y4DhjLzz8Y21Nd1mlJmfhn4ckRsTzHGdi7FyNvbKNawGqUYM9sywekPT3P5n00UpNU9RLHm0i/VO352qL8vmVkFzgTOjIh9KMYCz42ItZl57XTf2zSuBM4HjqEYL/x14NKG/Y8BDwD/c5bX/8nY9x4RN1F0qf11RHylvqbVmyieNLh8bI2riHhek9du9fciSZIkGU5JktpugKJDqdHbmz05Mx8H/jmKJ/UdUt/8dYoOne0z87q2VPkrtwJviogzGkb73kzxb+S/TVDff0bEqRRjgWOLqY83tq7WdJ1HZObPI+JrFON89wM/yMw7Gw65gWKB8icz84dNfk+TvdemiPgIRSfV0RQdUwPApobF12Hi39dGnvn9lPl7kSRJ0lbCcEqS1G7XAX8cEbdSPFnu7cALpjohIk6kCKKupXhi3D4UHVhfgF+O/V0AXBIRfwXcRhGUvAjYNzP/sIV6zwL+A/hSRJwP7EYxuvfV+mLo1EcMb68fNwK8heLf0JsmueZP6sf9fn0dp01TdG5B0Sl1EcV43GfG7bsO+CpwXUR8Evg+8CxgKbAkM0+f0XdbrKf1Q4qnIl5Vv/6KiDiXYj2uQ4F3THDeD4HXR8S1FOOHa0v+vUiSJGkrYTglSWq3vwR2ogh9AK4A/pgi+JjMncAbgb+hWOfpIeDvKEbpxrwHuBv4o/p7/AK4C/j7VorNzO9HxJHA2fVafwH8C/DBhsNWU3Q2fYDiYSJ3AcdOFjhlZjUi/ojiiXU3AguBqRZR/1eK8bgd+dVT+8aulRHxZuAMijWj9qAYp1tDMfY4I5m5JSI+DvxD/WmEqyLiNOB9FD/bmyme6nf3uFM/QLFu2JeBQeDVwDAl/V4kSZK09Yind/FLkiRJkiRJnTOv2wVIkiRJkiRp62U4JUmSJEmSpK4xnJIkSZIkSVLXGE5JkiRJkiSpawynJEmSJEmS1DWGU5IkSZIkSeoawylJkiRJkiR1jeGUJEmSJEmSusZwSpIkSZIkSV3z/wGvfLL0tgk6vQAAAABJRU5ErkJggg==\n", "text/plain": [ "
    " ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABKsAAAH3CAYAAAB0CtyjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd1hU19YG8HfP0AaYoTfp0rsttmgsqFFRo9jBFBNLYoleW/QmGhPzJdZ4Q6JJ1KiXROwllphiYovmqhhDkaIoWBAQaTMwMEw53x+HQcpQRBTQ9XsensiZc87sGYzKy1prM47jQAghhBBCCCGEEEJIayBo6QUQQgghhBBCCCGEEKJFYRUhhBBCCCGEEEIIaTUorCKEEEIIIYQQQgghrQaFVYQQQgghhBBCCCGk1aCwihBCCCGEEEIIIYS0GhRWEUIIIYQQQgghhJBWg8IqQgh5hjDGljPGuCof2Yyxo4yx4DrOD2CM7WaM3WeMlTHGrjHGPmaMmdRxfoeK87MZY+WMsXuMse2MMf9GrM2OMfYfxtgNxpiCMVbAGDvOGHv5cV93a8EYEzDGNjDGcire/+UtvSZCCCGEEELaGr2WXgAhhJBmVwRgcMWv3QB8DOA3xpgfx3H52pMYY/0AHAPwD4DZALIBdAHwbwBDGGP9OI4rrnJ+OIBdAM4A+BeATABOACIAnANgUdeCGGM+AE4CKAGwFkASAAmAoQAOM8a6chwX97gvvBUIBzADwFvgX+Pdll0OIYQQQgghbQ/jOK6l10AIIaSZVFTyzOI4zrrKse4A/gIQyXFcTMUxYwBpAG4A6M9xnLLK+cEAYgFs5DhubsWxdgBSARwA8AZX4y8PxtgwjuOO1rOuWABGAHpyHCet8VgwgEKO424/xusWcRxX2tTrmwtj7AMA8ziOs2zptTwpreW9JoQQQgghzy5qAySEkGeftmLJucqxsQAcALxfNagCAI7j4gHsADClItQCgCkADADMrxlUVVxTX1D1EoDOAJbUDKq0z6cNqhhjpxhj+2pc37eipS6w4nO3is8jGWPRjLFCAEcYY/9ljF3U8fyzGGOljDHTis8FjLHFjLG0inbEa4yx1+taf5X7GDPGoipaIMsYY5cYY4OqPH4KwAoAFlXaMN3quFcPxtjhijbKEsbYP4yxSB3n9WWMxVd5vq6MsQc12wsZY68wxmIrzstmjK1mjOk38HoYY2xFRQuolDG2lTE2oeq663qvKx5zZ4wdqrhWxhg7whjzrHJ/7bXDajzv9orwUvv58orX9CJj7O+K1/APY6xXjetGMMYuV7xfBYyxC4yxPvW9RkIIIYQQ0jZRWEUIIc8+l4r/plc59hKAAo7jztRxzSEAJgA6VXzeB0Asx3EPmvD8fQCoAZxowrX1WQtABj54+xR8i+ILjLH2Nc4bB+BYlZbGLwF8AGATgDAABwFsrRmq6LAZwGQA/wdgFIA7AI5VCVVmAPgOfBtmj4qPrDru5Qq+dXIKgOEA9gPYxhibqD2BMeYI4CcA9wGMAfAt+BBRVPVGjLFx4CveLgIYAeAjANMAfNbA65kLvuXzm4r7lwJYXce51d5rxpghgN8B+AGYCuANAO4ATjPGmlJVZgzgh4q1jAVQCOA4Y8weABhjHgD2AfgD/PsVCeAogGe2go0QQggh5HlGM6sIIeQZxBjT/vnuCuAr8HOpfqxyiiOAW/Xc4laV87T/vdLE5TgCyH0CrWP/4zhupvaTitecBz6cWllxzBFAr4pjqKj8eQfAZI7j/ltx6QnGmAOAD8EHILUwxvwATKx6HWPsFwDxAJYCeJnjuCTG2F0AKo7j/lffwjmO21Xl3gz8HDAn8MHPzoqH5gKQAxiufe8YY1IAu2tcuwZANMdxM6ocVwDYwBj7jOO4PB2vRwhgEYBvOI5bVnH4V8aYO6pX4GnVfK/fBh+CenMcd7Pi2AUANwFMR8NBWU0i8FV+2jbVkwBuV7wHiwF0BCDjOG5hlWt+esTnIIQQQgghbQRVVhFCyLPHCoCy4iMN/Df64RzHKR7zvo8z5PBJDEg8Vu0JOE4FvsJofJXDY8EPddeeGwpAA+AgY0xP+wG+SqhDRYijywsAGIC9VZ5PU/F5rzquqRNjzKKipfAWHn6tpgHwrvGcv9UI+Q7XuJU3+NBoT43X8wf4GWGBdSzBGYC9jvvV/FzrWI3PuwL4WxtUAQDHcXfBV4s98vtR4WCVexUD+K3ieQAgAYBZRavnIFbHbpWEEEIIIeTZQGEVIYQ8e4rABx3dwVe5GACIYYxV/TM/E3zVVV1cq5yn/a9LHec2JBOADWPMqInX1yVHx7Fd4EMnbegzHsDhKoGPNQAh+PdIWeVjO/hqY4c6nssBQDHHcXIdazCuaIt7FNsr1rYGwCDwX6+t4AMmLXsAuVUv4jiuDEBxlUPaQfo/ofrr0bZ86qqS0t4bNe+v43Otmu+1g45j2vOa0ppXrKPy7n7F84DjuFQArwBoD/61PmCMxTDGbJrwXIQQQgghpJWjNkBCCHn2qDiO0w6wvsAYKwUQDb7KSNtCdgbAm4yxXhzH/anjHiPAVyRdrvj8FID3GWOWHMflP+J6TgH4GHxVU80KnZrKwIdrVdUVfuiq1joFIBvAeMZYNIBuqN6Slg9ABeBF8BVWNd2v47myAJgyxoxrBFZ2AOSPUrVWEdqFgd+18Zsqx2v+ACkbgI2Oa02rHNJ+LaZBd5tmuo5j2nuj5v11fK5V873OAhCg4zy7Kmsqq/hvY76epqz2LoO2qDLzi+O4Y+BnhJmBf//+A37+2IQ61kwIIYQQQtooqqwihJBn3w8ArgJ4r8qxveCDgP+rMt8KAMD4XfdeBbC5SnjwHfiKnbW6noAxFlbXk3McdxZ86PUpY0ys49ogxpi2AuguAN8apwys6946nksDfhD3ePBzqqQAfq5yyh/gK6vMOI6L1fFRXsetL4EPbMZUWTer+FxX2Fcfw4o1VAZcFe/LCB3POZAxVnWges1zUsFXrrnV8XpqzauqcAd8YPVKjeM171+XCwA6V8y40r4GRwA98fD9uA/+94xflXNMwQ+e12VUjfMGgh8aXw3HcUUVs60OAvBv5HoJIYQQQkgbQpVVhBDyjOM4jmOMfQpgB2MslOO43zmOkzPGIsFXOp1ijEWBb+HqDH6HuDjwg8O197jHGHsDwE7GmBP4lrVM8MPTx4Pf8a++9q9IACcBxDLG1gNIAiAB8DL4oeLdwAcoBwG8VXHOMQD9Ks55FLsBzALwLwAHqwZQHMelMsa+AbCLMbYaQCz41rsA8MPCp+i6IcdxyYyxnQC+YoxJwM8Cmwo+WHvnURbHcVwRY+wSgGUVA9M14IeIF4F/T7T+A2AmgCMV74d9xXnyimvAcZyGMTYfwPcV6zoOoBx8u9xIAGN0tC6C4zg1Y2wNgDWMsVzws6ZGAAiqOEVX1VlV28GHn8cZY8vA7/a4HMAD8LsWatf2I4B/VczmKgQwH/yugzWVgg9OTQHcA7AAfEXWFwDAGJsOPuT6ueJxL/CVgtENrJMQQgghhLRBVFlFCCHPh90AroPfAQ4AwHHcSfADrO8B2ADgVwBvA9gIoG/FkGtUOX8/+FCpEHyI8AeAz8G3Cw6o78krZg51Ah82LAI/PPt78APCIziOi6s47xj4sGwM+ODKFfyOcI/iHPjgywH8DKuaZgJYAeA18POPtoNvKzvTwH2nAvgv+BDvx4q1DaujjbIhEeBb9KLBv5f7USN44Tgus2JdtuAHx88G8Cb4qixplfN2g6+Q6gC+Yu4AgBkA/gYfXNVlPYBPK87dD8Ci4nNUvb8uFW2PAwCkgK+6+y/4HST71mgTnQX+67ER/O+xneB/39QkB//1qLqWoRzHadsA48G3KH4O/vfpBwA2o3q1ICGEEEIIeUYwjnsSGzQRQgghpLkxxnoBOAugf0XY2Nz33wJgIMdx9Q3fb+7nXA5+fpd1Q+cSQgghhJDnA7UBEkIIIa0UY2wV+MHp2QB8wFd1xQM43Qz3DgTfwnkefNvfEACTQdVKhBBCCCGkhVFYRQghhLRehgDWgN9lTwa+BW5exSD5x1UCoBf4Vj0T8G187wFY1wz3JoQQQgghpMmoDZAQQgghhBBCCCGEtBo0YJ0QQgghhBBCCCGEtBoUVhFCCCGEEEIIIYSQVuOZmFllbW3Nubm5tfQynpj09HQAgLu7ewuvhBBCCCGEENIaXb58+QHHcTYtvQ5CCGkOz0RY5ebmhtjY2JZexhPTt29fAMCpU6dadB2EEEIIIYSQ1okxdqul10AIIc2F2gAJIYQQQgghhBBCSKtBYRUhhBBCCCGEEEIIaTUorCKEEEIIIYQQQgghrcYzMbPqWdejR4+WXgIhhBBCCCGEPBGXL1+21dPT2wIgEFRQQcjzQgMgUaVSTencufP9mg9SWNUGfPbZZy29BEIIIYQQQgh5IvT09LbY29v72djYFAgEAq6l10MIefI0Gg3Lzc31z87O3gJgRM3HKbUmhBBCCCGEENKSAm1sbKQUVBHy/BAIBJyNjU0R+IrK2o8/5fWQJhg9ejRGjx7d0ssghBBCCCGEkCdBQEEVIc+fiv/vdeZS1AbYBuTl5bX0EgghhBBCCCGEEEKeCqqsIoQQQgghhBDyXBMKhZ19fX39vby8Avr37+/54MEDofax2NhYo+7du3u7ubkFurq6Bi5cuNBBo9FUXrtnzx5JYGCgX/v27QPc3d0Dpk2b5tTY5y0tLWU9e/b09vX19d+8ebNFM7+sJ+7o0aNiX19ff09Pz4AXXnjBR3vc0dExyNvb29/X19c/MDDQryXXSNomCqsIIYQQQgghhDzXDA0NNSkpKUnXr1+/am5urlqzZo0NABQXF7NRo0Z5Llq0KDsjIyMxMTEx6cKFC6arVq2yAYBLly4ZzZ8/3+X7779Pv3nz5tVr165dbd++vaKxz3v+/HljpVLJUlJSkqZOnVrwpF6fLrm5ucKGz6rbgwcPhHPmzHE5cuRIWlpa2tVDhw7dqPr46dOnr6WkpCQlJiYmP95KyfOI2gAJIYQQQgghhLQOb77pjMRE42a9Z2CgHFu33mns6d27dy+Jj48XAcDmzZutunTpUhweHi4FALFYrPn6669vh4aG+ixZsiT3008/tZ8/f35Wx44dywBAX18fixcvzq15z5ycHGFkZKTb7du3DUUikWbTpk23nJyclJMnT3YvKCjQ8/X19d+/f/+NgICAyqBr3bp11tu2bbNRKpXMzc1NsW/fvnSxWKy5evWqYUREhLtarWYDBgwo2rRpk51cLr8CAEuXLrU7ePCgZXl5OQsLCytcv379vbpeZ6dOnfw6dOhQMnXq1AfDhg2TCQSPVsuyZcsWy7CwsAIvL69yAHB0dFQ90g0IqQdVVrUBoaGhCA0NbellEEIIIYQQQsgzTaVS4eTJk+KRI0cWAsDVq1eNOnXqJK96TkBAgEIulwvy8/MFqampom7dusl13qyKRYsWtQsJCZFfu3YtacWKFZmvv/66u6Ojo2rjxo23unTpUpySkpJUNagCgMjIyILExMTk1NTUJB8fn9KoqChrAJg1a5bzjBkz7icmJia3a9dOqT3/wIEDkrS0NKP4+Pjk5OTkpH/++cf4+PHjpnWtKT09PTEiIiL/q6++svX09AxYvHixfUZGhr728bfeesvZ19fXv+bHv//9b3sAuHbtmlFBQYFe165dfQICAvy++uorq6r3Dw0N9QoICPBbu3atdUPvDyE1UWVVG7B06dKWXgIhhBBCCCGEPHmPUAHVnBQKhcDX19c/MzPTIDAwUD5y5EgpAHAcxxhjOq+p67guFy9eFO/fvz8NAEaMGCGbNm2aXl5eXr1teJcvXxYtW7bMUSaTCUtKSoR9+vQpAoArV66Y/vrrr2kAMGXKlLzly5c7AcDPP/8sOXPmjMTf398fAORyuSAlJcVoyJAhxbrur6enh4kTJxZNnDix6N69e3r/+te/HD09PYN/++235H79+sm/++67er8WKpWKxcfHG589e/ZaSUmJoHv37r4vvfRScXBwsOLcuXMpbm5uyszMTL3+/ft7BwQElNW1DkJ0ocoqQgghhBBCCCHPNe3MqoyMjITy8nK2cuVKWwAICAgovXz5crW2xKSkJANjY2ONhYWFxtvbu+zChQsNti1yHFfrGGOs9sEqpk2b5v7VV1/dvnbtWtJ77713T6FQ1Pv9O8dxmDt3blZKSkpSSkpK0u3btxP/9a9/Pajvmry8POHatWuthw4d6nnjxg2j9evXZ3Tr1q0UaLiyysnJqTw0NFQqkUg0Dg4Oqm7dusliY2ONAcDNzU0J8K2BYWFhhX/99ZdJvW8QITU81bCKMbaVMXafMZZYx+OMMRbFGEtjjMUzxjo9zfW1VkOGDMGQIUNaehmEEEIIIYQQ8kyzsrJSR0VF3d6wYYOdQqFg06ZNy7t06ZL40KFDYoAfuD5z5kyX2bNnZwPAkiVLsj///HOH+Ph4QwBQq9VYvny5Xc37du/eXbZt2zYrgN9Bz8LCQmVpaampeV5Vcrlc4OLiolQoFGzXrl2W2uMdOnQo3r59uwUAbN26tfL4kCFDpN9//711UVGRAADS09P1MzMz6+ymeuWVV9w7dOjgd/PmTcPvv/8+PTY2NnX27Nl5xsbGHAB89913d7TBV9WPTz/9NBsAxowZU/jXX3+ZKpVKyGQywZUrV0yDgoJKpVKpoKCgQAAAUqlUcPLkSUlwcHBp474ChPCedhvgdgBfAYiu4/EhALwqProB+Lriv8+10lL6/5oQQgghhBBCnoYXX3yx1M/Pr3TLli0WM2fOzD9w4EDarFmzXObOnauv0WgwduzYvCVLltwHgG7dupWuWrXqzsSJE9uXlpYKGGMYMGBAUc17rlq16l5ERISbt7e3v0gk0mzfvj29oXUsXrz4XteuXf0cHR3L/fz85MXFxUIA+PLLL+9ERka6R0VF2Q8aNKjQ1NRUDQDh4eHSq1evGr3wwgu+AGBsbKzZsWNHel2Dz8eNG5e/b9++dH19fV0PN6hTp05lAwYMKPL19Q0QCAR49dVXc1944YWypKQkg1GjRnkCgFqtZqNHj84bM2aMtElPQp5bTFc54hN9QsbcABzlOC5Qx2PfAjjFcdzOis9TAfTlOC6rvnt26dKFi42NfRLLbRX69u0LADh16lSLroMQQgghhJDnkVqjhlKjRHFhEbIyHiCoS0BLL6kWxthljuO6tPQ6miIuLi4jJCSk3nY18pBMJhOYmJhoBAIBNm3aZLF7927L33///UZLr4uQpoiLi7MOCQlxq3m8tQ1YdwRQdYjb3Ypj9YZVhBBCCCGEkNZJw2mgVCuh1Cgr/1uuLq92rFxdrvPXDZ1b7+O6zlcqUK6QQ6ksq/hQoFylgEKlRJlKhTKNGuWcGkqmhrrKB6qMFjLRiFHchYpESMs5d+6c8Zw5c1w4joNEIlFv3749o6XXREhza21hla7tFHSWfjHGpgGYBgAuLi5Pck2EEEIIIYS0CI7joNKoHi+0acLjzXlvNad+4u+TEALoQwADTgB9DeM/1IBAJQBTCcCp9KDR6IODATgB/8GEehAKTSEUimGgx8FSn4NQIIQAAgjB/5epDMApDcGUBtBXG8CQM4CFnviJvx5C6jN48ODi1NTUpMacm52dLezbt69PzeOnTp1Ktbe3f/L/cxLSRK0trLoLwLnK504A7uk6keO4TQA2AXwb4JNfWssZNmxYSy+BEEIIIaRNUmvUzRq8PFZVTxMCI5VG56iZZsXAYCA0gL5QH/oCfegL9fnPK36tL9Cv9biZvlmdj9d9rR70VRwMFCroK5TQLy2Hfmk5DEoV0JeXQb+kDPrFpTAoKYW+TA59aQn0pSUwKJJBv6gY+oVS6JWroVCbIk9tj3yNPXLV9riv74QHYlsUSixQbCaG0swAnBgwECsgkcggkUghMi+r9bqV5YbQKE0h5ExhJJRAIjGDpa0F7O3N4OoqgZOTBEZGhk/8/SfkSbK3t1enpKQ0KtgipDVpbWHVYQCzGGO7wA9WL2poXtXzYMGCBS29BEIIIYQ8h2q2bz2RVi1djzdjmxinu0i/WTU24NE+bmJgovtxwaMFRlUff5Rzaz4uFAgb90I1GqC4GCgsrP1RVFTjWJbuc9S6CzmU0EMO7JBt6IYsYw9kG7oiS98ROSJbFIpMUWxpAIUDoDEsh4lpCSQSaeWHgYESIpRDhBwAOQAAtdoEQqEEhoYWEItdYWkpgb29BI6OYlhZSSCRSNDUodKEEEKevKcaVjHGdgLoC8CaMXYXwIcA9AGA47hvAPwEYCiANAByAJOf5voIIYQQQpqLtn3ribdqPaGqnqfWvsWEjxSsGOoZQmworn1uM4Q2TXlcT6AHxnRNsmiFNBpAKm0gZNLxoT2nqIi/R31MTABzc8DcHJzEDEVWHshycEW2niOy4YAstS2yyy2RXSZGnlIImVoFhaYUTMgHUGKxrEoQlQtbvWzYVrk9xzEIBGIYGkpgamoHCwtP2NlJYGfHB1ASiQRisRhCYSMDOEIIIa3SUw2rOI6b2MDjHICZT2k5bQbtBkgIIeR5w3Ec1Jz68UObJ1DV09jnfhrtWwImeOSQxVjf+LGreporANIT6EHABE/8fXpmqNXVw6VHCZoKC/mgqqGdwMViPmwyM+P/6+QEBAZWBlAwN0e5qSVyOFtkq22QVWaB7FIzZBebIKvACNn3hcjJUaOoSIayHClEUmmV8EkGieQmJJJ/4C6WwUNQcy1CGBhIYGoqgbm5E2xsxLCweBhCSSQSmJiYQCCg3zOEEPKsa21tgIQQQghpBtr2rSfaqlVXa1Yz3ftptW89SvBiamCq+9wWquppdPsWaR2USj48etSQSfshkzX8HBJJtWAJrq5ASEj1Y9ogqsoHZ2aOArUE2Q/0kJ0NZGUB2dl4+Otk/te5uUqoVFXDpxxIJNchkUhhaSmFr68UHTqU1FqWQKAPExMJzM0lsLR0r1YFpf21sbFx26lSI4QQ8kRRWEUIIYTUwHFctRDliQ1gboaqnrqeW8M10KrTDPQEeo8Usoj0RJAYSmo//oihTXMFQEImpG+MyaMpL284aKrv8ZLaIU41jNUOkjw86g2Zqn2IxUCN9jeFAsjJqRE+3QayL6JWKMWYAhJJQbV5UObmUtjYyNChgxQikRR6eqW1lm1gYAQzMwnMzCQQi+2rVUJpPwwNDen/N9KqCYXCzl5eXqVqtZo5Ozsr9uzZk25tba0GgNjYWKNZs2a5ZGdnG3Ach3HjxuWtWrUqS1vlt2fPHsnHH3/sKJfLBRzHYeDAgUWbNm2625jnLS0tZaGhoV75+fl68+fPz5o6dWrBE3yZldLS0vQjIyPdc3Nz9QUCAV5//fXcpUuX3tc+/n//93+2mzdvttXT0+MGDBhQ9M0339R6PXPmzGl3/Phxc4FAACsrK+WOHTsy3NzclGVlZWzSpEmu8fHxxowxrFu37s6wYcMakbYT8hCFVYQQQppVzfatJ9aqVdfjzXDvp9m+9SjBi4m+SYtV9dQ8V1+gT994krZHoWhayKT9KK0d1FQjENQOkHx8Ghc0mZnxYVMjWtw4DsjPrxI+Jdaogqry64ICAOAgEpVWBlBmZlLY2UlhayuDu7sUxsZS6OtLwVh5recyMTGpqIAyg0TiXCuEEovFMDAwaHDNhLR2hoaGGu2ueeHh4W5r1qyxWbVqVXZxcTEbNWqU5xdffHE7PDxcKpPJBGFhYR6rVq2yWbJkSe6lS5eM5s+f73L48OG0jh07limVSqxbt86msc97/vx5Y6VSyZ72jn36+vpYt27d3V69eskLCgoEHTt29B86dKi0c+fOZUeOHBEfO3bMPDk5+apIJOIyMzN15gYffvhh9hdffHEPAD755BPbf//73w4xMTG3169fbw0A165dS8rMzNQbNGiQ15AhQ5Jplhx5FBRWEUJIK6PhNE+nVesJVPVoH38aHnUXLLGBWPfjT3CHrfoepzk9hDwijgPKypoWMmnPKSur/zn09GqHSO3a1R8yVQ2iTE356qgmKit7GDTpbMWr8phSyV/DGAcTk2JIJDJYW0vh6CiFs7MUQUFSmJhIYWAgBSADUD2EZ4zB1NS0InSygUTiUa0lTxtE6enRtwvk6XrzTTgnJsK4Oe8ZGAj51q2409jzu3fvXhIfHy8CgM2bN1t16dKlODw8XAoAYrFY8/XXX98ODQ31WbJkSe6nn35qP3/+/KyOHTuWAXwItHjx4tya98zJyRFGRka63b5921AkEmk2bdp0y8nJSTl58mT3goICPV9fX//9+/ffCAgIUGivWbdunfW2bdtslEolc3NzU+zbty9dLBZrrl69ahgREeGuVqvZgAEDijZt2mQnl8uvAMDSpUvtDh48aFleXs7CwsIK169ff0/Xa3R1dVW6uroqAcDCwkLj4eFRevv2bYPOnTuXff311zaLFi3KEolEHAA4Ojrq/CmepaVlZRl3SUmJQPtDrKSkJFH//v2l2mslEon6zJkzxv369ZM39mtACP3t0waMGzeupZdASJtRs33ribVqNVDV8zjP/TTbtxob0oj0RDAzNHtqVT0NnUvtW4S0QRwHyOVNHw5eWMi34dVHXx+wsKgeILm4NBwyaT+MjR8rbNJFo3lYBVVX+KT9dWFh9WsFAjXE4mK4ukrh5CRFQIAUvXpJYWoqg4GBFIxJoVbLwNX4e0MgEFQJnRxrhVASiQSmpqY0qJwQHVQqFU6ePCl+6623HgDA1atXjTp16lQtZAkICFDI5XJBfn6+IDU1VbRo0aKchu67aNGidiEhIfITJ07cOHz4sPj11193T0lJSdq4ceOtdevW2Z08eTKt5jWRkZEF8+fPfwAA7777bruoqCjr999///6sWbOcZ8yYcX/69On5q1evrqziOnDggCQtLc0oPj4+meM4DBgwwPP48eOmQ4YMKa5vbampqQZJSUnGffr0KQaAmzdvGp0+fVq8bNkyR0NDQ27t2rV3+vTpozNomj17tuPevXutxGKx+vTp06kAEBISIj9y5Ij51KlT82/cuGGQmJhofOvWLQMAFFaRRqOwqg2YMWNGSy+BkCcipzgHe5P24p/sfyrDm8cNjJ5G+5aQCR85hKnavlVfVc+THsZsIDRoW9usE0JaD44DioubPhy8sBBQNfBntJFR9RDJwgJwd29c0GRuzl//lP58Ky1tXBVUTs7DKqiqxGIV2rfnq6BefJEfTi4WS2FoKINAIIVKJYVCUfv7Sz09vSqhk6vOtjwTExP6c560WY9SAdWcFAqFwNfX1z8zM9MgMDBQPnLkSCkAcBzH6vr/6VH+P7t48aJ4//79aQAwYsQI2bRp0/Ty8vLq7Yu7fPmyaNmyZY4ymUxYUlIi7NOnTxEAXLlyxfTXX39NA4ApU6bkLV++3AkAfv75Z8mZM2ck/v7+/gAgl8sFKSkpRvWFVUVFRYLw8HCPlStX3tFWSqnValZQUCD8559/Uk6fPm0cERHhcefOnQRdAfeXX36Z+eWXX2YuWbLEfs2aNbbr16+/N2fOnAfJycmioKAgf0dHR0WnTp2KqUqTPCr6HdMGyOV8AG1s3KzVsIS0CKlCioPJBxGTGIMTN09Aw2lgZ2IHkb6ozsoaIz2jukOYFqjqofYtQkibpNHwYVNTh4MXFQFqdf3PIRJVD49sbAAvr4ZDJu1xI6Pmfc2PSKMB8vJqt9zpCqKKimpfLxAAtraAk5MCTk4yvPDCwxBKJJJCIJBCrZZCoZChtLR2gYG+viFMTbWhk63OQeVGRkYURBHyBGhnVuXl5QkHDRrkuXLlStsPPvjgfkBAQOnZs2dNq56blJRkYGxsrLGwsNB4e3uXXbhwwbhHjx71DrXjuNo73DLG6t32dtq0ae779u1L69GjR2lUVJTV6dOnxQ09x9y5c7MWLlz4oL7ztBQKBQsLC/MYO3Zs/uuvv16oPW5vb18+ZsyYQoFAgH79+skFAgGXnZ2t9+677zolJiYa29nZlZ8+fbpaJdjkyZPzw8LCvNavX39PX18f3333XWXo2LFjR18/P78G+rAJqY7CqjZg6NChAIBTp0617EIIaaIyVRl+uv4TYhJicPTaUSjUCriZu2Hxi4sxMWgiAm0DW3qJhBDS+mk0gFTa9OHgUil/j/qYmFQPkBwcAD+/xu1GZ2YGtNJB23J5wxVQWVl8FZSuPM7UFLC3BxwcOHTsWAZ7eymsrflh5UZGUujpSaHRyFBWJoVMJoVCoah2fVkZIBAYQyKRwMrKDGKxk86KKENDw6f0jhBC6mJlZaWOioq6PWbMGM+FCxfmTps2Le/zzz93OHTokHjkyJGy4uJiNnPmTJfZs2dnA8CSJUuyx44d69G/f//i4OBghVqtxooVK+yWL19erTWwe/fusm3btlmtWbMm6+jRo2ILCwtV1ZlPusjlcoGLi4tSoVCwXbt2WTo4OCgBoEOHDsXbt2+3mDp1asHWrVsttecPGTJEunz58nbTpk3LNzMz06Snp+sbGBhwumZOaTQaTJgwwdXb27us5lqHDx9eeOLECfGwYcNk8fHxhkqlUmBvb6/at29fRtXzEhISDIOCghQAsHfvXnMPD49SAJDJZAKO4yCRSDQHDx6UCIVCrnPnzhRWkUdCYRUh5IlQaVQ4mX4SOxN3Yn/yfkgVUtia2GJa52mICIpAN8du9JNhQsjzRa2uHSo9SkudVMq34tVHLK4eIDk7A0FBDe9EZ24OSCT8zKc2QqMBHjxoeA5Udjb/1tUkEAB2dnwIZW8PhIRwsLcvgbU1v1ueSCSFvr4MHCeFXC6FVMp/qCpaGVUqfhYVgMpB5dbWVmjf3r1WCCWRSGhQOSFtyIsvvljq5+dXumXLFouZM2fmHzhwIG3WrFkuc+fO1ddoNBg7dmzekiVL7gNAt27dSletWnVn4sSJ7UtLSwWMMQwYMKBW7eWqVavuRUREuHl7e/uLRCLN9u3b0xtax+LFi+917drVz9HRsdzPz09eXFwsBIAvv/zyTmRkpHtUVJT9oEGDCk1NTdUAEB4eLr169arRCy+84AsAxsbGmh07dqTrCqt+++0300OHDll5eXmV+vr6+gPARx99lDl+/Piid99998H48ePdvLy8AvT19TWbNm1K19UCuGDBAqebN28aMcY4Jyen8u++++4WANy7d0/v5Zdf9hYIBJy9vb0yJiamwddKSE1MVzliW9OlSxcuNja2pZfxxPTt2xcAVVaR1o/jOFzIvICdCTux++pu5JTkQGwgRrhfOCKCItDfvT/0BPSPdUJIG6VUPgyOmjK3SSZr+Dl0hUoNBU3axyUSfje7Nq6kpHFVUPfv666CEov5gjBtCOXgANjZaWBjUwxzcymMjaXQ15dCo+GroGQyWWUQpdHUHlRedTh5XYPKaTt20howxi5zHNelpdfRFHFxcRkhISGNal0jfOWSiYmJRiAQYNOmTRa7d++2/P3332+09LoIaYq4uDjrkJAQt5rH2/6/aAghLS4pNwkxCTHYmbgTNwtuwlBoiDDvMEQERmCo11CI9EUtvURCCOF3knuc4eAlJfXfn7HaIZKHR+OCJnNzPmV5RkMPtRrIzW1cCFWsYwywUPiwCsrBAejY8eGvbW1VMDeXwdSUD6EUCj54qhpCFRcXIzOTQ2bmw3tWHVTu4uKiM4iiQeWEkNbo3LlzxnPmzHGpaLVTb9++PaOl10RIc6OwihDSJLcKb2FX4i7EJMYgPiceAiZAqHsolr60FKN8R8HMyKyll0gIedYoFE0fDl5YyG/fVh+hsHaA5OPT+J3oTE353rLnSHFxw+FTdjZfBaVrXJZE8rAKqlOn2hVR1tblMDHhZ0LVrILSfiQl1R5UbmBgUBk4eXh46KyMEolEFEQRQtqkwYMHF6empiY15tzs7Gxh3759fWoeP3XqVKq9vX0Du2YQ0nIorGoD3njjjZZeAiEAgNySXOxL2oeYxBj8eftPAEB3p+6IGhyFsQFjYW9q38IrJIS0WhzHT5lu6nDwoiL++vro6dUOkBwdG99WZ2LCV0c959RqPlxqTBWUrmIzPT2+CsrBAXByArp0qR5C8R8czM0VUKmktcInbSB15YoUZTq+5iKRqDJwateunc4d82hQOSGE8Ozt7dUpKSmNCrYIaU0orGoDKKwiLUmmkOHH1B8RkxCDX2/8CjWnhr+NPz7p9wkmBk1Ee4v2Lb1EQsjTwHH8lmpNHQ5eWMi34dXHwKB2gOTq2vjZTSIRhU114LjGV0Hl5uqugjI3fxg2vfBC9Qqoqr+2sOBQViavM4T6+2/+c6VSWes5tIPKLS0t4erqqnPHPP02NASeEEIIIU1DYVUb8OABP2vQ2tq6hVdCnhcKlQI/p/2MmMQYHEk9glJVKVzMXLCg5wJEBEUgyDaIWicIaWu0aUVTh4MXFvLbn9XHyKh6eGRlxc9sasxOdGZm/PX0Z8sjUakeVkHVFUJpP5fX7paDnt7DkMnFBejatXb4ZG/PV0qJRPxW58XFxbVmQkmlUty9+zCUUteYfM4Yq2zBs7Ozg5eXV60ZUWKxmAaVE0IIIQQAhVVtwpgxYwDQboDkyVJr1Dh96zRiEmKwP3k/CssKYW1sjckdJiMiKAI9nHtAwJ6vWSyEtCoazcOwqSlzm4qKdG+dVpWxcfUAydYW8PJqXNCkDZvIY+M4fuPAhiqgtFVQujZ2trB4GDh161ZfFdTDMVtqtbpWAFVYKMWdO7Jq1VE1d5IWCoWVgZOzs3Odg8p1bXtOCCGEEKILhVWEPMc4jkPsvVjEJMRg99XdyCrOgqmBKUb5jsLEwIkY0H4A9IXUbkFIs9BoAKm06cPBi4p0pxJVmZpWD5EcHAA/v8btRGdmxrfhkSdGqWy4Ckr7a12z4A0MHgZNbm5Ajx66Qyg7u9q5oVKprBZCFRRIcetW9eqoEh0DqPT19SsDJ3d3d53zoWhQOSGEEEKaG4VVhDyHUh6kYGfCTsQkxiAtPw0GQgMM9RqKiYETMcx7GIz1jVt6iYS0Pmq17kCpsS11UmnDYZNEUj1EcnYGgoIatxudmRnf00WeKo7jv7SNqYJ68ED3bwFLy4eBU8+euiug7O35KqiamRDHcVAoFJVVT/n5UmRk1B5armtQuZGRUWXgZG9vX+egcgqiCCHPA6FQ2NnLy6tUrVYzZ2dnxZ49e9Ktra3VABAbG2s0a9Ysl+zsbAOO4zBu3Li8VatWZWkrRvfs2SP5+OOPHeVyuYDjOAwcOLBo06ZNdxvzvKWlpSw0NNQrPz9fb/78+VlTp04teIIvsxaVSoWgoCB/e3v78pMnT6YBQE5OjnDUqFHtMzMzDR0dHRU//vjjTRsbG53l2f/3f/9nu3nzZls9PT1uwIABRd98803l675+/bpBSEhIwIIFC+59/PHHOU/rNZFnA/2rlpDnxF3pXexK3IWYhBhcyb4CBoZ+7v2w+MXFCPcLh4XIoqWXSMiTpVRWD5YedW6TTFb//Rl7GDZpP9zdG78TnUQC0LyeVqO8nK+CakwIpWuTQgODhyFT+/bAiy/WXQVV18Z1HMehtLQUUqkUDx5IcfOmVOesqHIdg+tNTEwgkUhgYWEBFxcXnYPKDaiSjhBCKhkaGmq0u+aFh4e7rVmzxmbVqlXZxcXFbNSoUZ5ffPHF7fDwcKlMJhOEhYV5rFq1ymbJkiW5ly5dMpo/f77L4cOH0zp27FimVCqxbt06m8Y+7/nz542VSiVrqR37PvnkEztPT8/S4uLiyn+EfPjhhw59+/aVffrpp9f//e9/2y9btsz+66+/zqx57ZEjR8THjh0zT05OvioSibjMzMxq+cKsWbOc+/TpU/Q0Xgd59lBYRcgzLE+eh31J+xCTGIOzt86CA4cX2r2A9S+vx7iAcWgnbtfSSySk8crLH284uI4Wp2oEgtpBkqdn43eiE4sfDv8hrRLH8b8VGgqfsrKAvDzd97Cyehg29epVPXiqGkSZm9c/K16j0aCkpAQPHujeMU/7oWtQuXbHPBsbG3h4eNQKocRiMfSoyo4Q0kb9+OOPzvfv32/WMn9bW1v5K6+8cqex53fv3r0kPj5eBACbN2+26tKlS3F4eLgUAMRisebrr7++HRoa6rNkyZLcTz/91H7+/PlZHTt2LAP49unFixfn1rxnTk6OMDIy0u327duGIpFIs2nTpltOTk7KyZMnuxcUFOj5+vr679+//0ZAQIBCe826deust23bZqNUKpmbm5ti37596WKxWHP16lXDiIgId7VazQYMGFC0adMmO7lcfgUAli5danfw4EHL8vJyFhYWVrh+/fp7db3OGzdu6P/yyy9mS5YsyVq/fr2d9vjPP/9sfvr06VQAmD59el6fPn18ANQKq77++mubRYsWZYlEIg4AHB0dK3di+f77783d3NwUJiYmOvaXJaRh9C+ZNuCdd95p6SWQNqS4vBiHUw9jZ+JO/Jz2M1QaFXysfPBR348wIXACvKy8WnqJ5HlVVta4uUx1PaZriE9VQmHtAMnXt3FBk7k5P++J2p3apPJyICencVVQCkXt6w0NH4ZMXl5A7966W/FsbRs31kutVkMqLa7Vilc1kJLJZNBoqv/7XSAQVIZOjo6O8PX1rVURZWpqSoPKCSHkCVKpVDh58qT4rbfeegAAV69eNerUqVO1/VQDAgIUcrlckJ+fL0hNTRUtWrSowRa3RYsWtQsJCZGfOHHixuHDh8Wvv/66e0pKStLGjRtvrVu3zk7bgldVZGRkwfz58x8AwLvvvtsuKirK+v33378/a9Ys5xkzZtyfPn16/urVqyuruA4cOCBJS0szio+PT+Y4DgMGDPA8fvy46ZAhQ4p1rWnmzJnOq1evvltUVFSttDsvL0/P1dVVCQCurq7K/Px8nbnBzZs3jU6fPi1etmyZo6GhIbd27do7ffr0kUulUsG6devsT58+fe2jjz6yb+i9IUQXCqvagPHjx7f0EkgrV64ux683fkVMQgx+TP0RcqUcThIn/Kv7vzAxcCI62HegmSPk8XAcHzY1dTh4YaHulKAqPT1+KE/VAMnRsXE70ZmbAyYmFDY9QzgOKCioHTbpCqLy83Xfw9r6YeDk7a17DpS9Pf9bqLG/dZRKZa3qp5oVUcXFtb8nqDqo3M3NTeeOecbGxvRnNSHkufcoFVDNSaFQCHx9ff0zMzMNAgMD5SNHjpQCAMdxrK4/mx/lz+yLFy+K9+/fnwYAI0aMkE2bNk0vLy+v3v7/y5cvi5YtW+Yok8mEJSUlQm1L3ZUrV0x//fXXNACYMmVK3vLly50A4Oeff5acOXNG4u/v7w8AcrlckJKSYqQrrNq5c6eZtbW1qnfv3vKjR4+KG/1CqlCr1aygoED4zz//pJw+fdo4IiLC486dOwkLFixoN2vWrBwzMzOqqiJNRmFVG3DnDv/ntbOzcwuvhLQmGk6Ds7fOIiYhBvuS9yG/NB+WIku8GvwqIoIi0MulFwSMfvpOKnAcIJc3fTh4YSFfvlIfA4PqYZOZGeDq2rid6MzNAZGIwqbngEJRf/BU9TFdv+WMjB4GTT4+QJ8+dVdB6T/iZqbaQeX1teWV6qjwMzQ0rAyc7OzsarXlSSQSGBkZURBFCCGtmHZmVV5ennDQoEGeK1eutP3ggw/uBwQElJ49e9a06rlJSUkGxsbGGgsLC423t3fZhQsXjHv06FFvCTinY4cNxli9O69MmzbNfd++fWk9evQojYqKsjp9+nS9oRLHcZg7d27WwoULH9R3HgD8+eefpr/99pu5o6OjmUKhEJSUlAheeeUV9x9//DHdyspKdevWLX1XV1flrVu39C0tLVUAMGbMGLfExERjOzu78tOnT6fZ29uXjxkzplAgEKBfv35ygUDAZWdn612+fNnk2LFjFh9++KGTVCoVCgQCGBkZaf7973/Xao8kpC4UVrUBr776KgDg1KlTLbsQ0uI4jsOV7CuISYjBrsRdyJRlwljfGCN9RyIiMAIDPQbCQEgDc59JHAcUFz9a0FTzcZVK560riUTVQyQrK8DDo3FBk7k5nyKQ5xLH8dVNDc2Bys7mq6VqYgywsXkYNvn56a6AcnDgR4M9aubDcRzKysrqbcuTSqVQ6Kj+MzY2hkQigZmZGZycnHTumEeDygkh5NlhZWWljoqKuj1mzBjPhQsX5k6bNi3v888/dzh06JB45MiRsuLiYjZz5kyX2bNnZwPAkiVLsseOHevRv3//4uDgYIVarcaKFSvsli9fXq01sHv37rJt27ZZrVmzJuvo0aNiCwsLlaWlZb2VR3K5XODi4qJUKBRs165dlg4ODkoA6NChQ/H27dstpk6dWrB161ZL7flDhgyRLl++vN20adPyzczMNOnp6foGBgZc1VlSWhs2bMjcsGFDJgAcPXpUvG7dOrsff/wxHQBefvnlwm+//dbq008/zf7222+tBg8eXAgA+/bty6h6j+HDhxeeOHFCPGzYMFl8fLyhUqkU2Nvbqy5fvpyqPWfevHntTE1N1RRUkUdFYRUhbcD1vOuISYjBzsSdSM1LhZ5AD0M8h2DtoLUY7j0cJgYmLb1E0hCNht9NrqnDwQsL+XvUx9i4enhka8v3PjVmJzozs7q3JCPPrbKyxldBKZW1rxeJ+IDJwQHw9wf699fdimdj8+hVUFocx6GkpKTBiiiVjrBWW/VkZWUFd3d3nTvm0aByQgh5/rz44oulfn5+pVu2bLGYOXNm/oEDB9JmzZrlMnfuXH2NRoOxY8fmLVmy5D4AdOvWrXTVqlV3Jk6c2L60tFTAGMOAAQNq7YC3atWqexEREW7e3t7+IpFIs3379vSG1rF48eJ7Xbt29XN0dCz38/OTa3fs+/LLL+9ERka6R0VF2Q8aNKjQ1NRUDQDh4eHSq1evGr3wwgu+AGBsbKzZsWNHuq6wqj4fffRR1qhRozxcXV2t27VrV37o0KEbus579913H4wfP97Ny8srQF9fX7Np06Z0mqtImgvTVY7Y1nTp0oWLjY1t6WU8MX379gVAlVXPm3uye9iduBsxiTGIvRcLBoY+bn0wMXAiRvuNhpWxVUsv8fmi0QBSadOHgxcV8eUn9TE1bdxsproea+p3++S5otHwVVCNGUZeWFj7esb4HLSuyqeqv37cmfUajaZa6FTXrChdg8przoSq+bmpqSmEwnpHhRBCSJvCGLvMcVyXll5HU8TFxWWEhIQ02LpGeDKZTGBiYqIRCATYtGmTxe7duy1///13nYESIa1dXFycdUhIiFvN4/TjQkJakYLSAuxP3o+YhBicyjgFDhw6OXTC2oFrMT5wPJwkTi29xLZLpao/bGqo4kkmazhskkiqB0guLkBwcON2opNI+AHjhDRRaWnD4VNWFr9rnq6OUBOTh2FTYCAwcKDuEMrGpnl+q6pUqkYNKq/5QzU9Pb3KwMnV1VXnoHITExOaD0UIIeSZde7cOeM5c+a4cBwHiUSi3r59e0ZLr4mQ5kbfGRHSwuRKOY6kHkFMYgyOXz8OpUYJL0svLOuzDBMDJ8LH2qell9h2paYCO3YAMTHAjQZ+2MRY7VCpffuGgybt4xIJQFUapJlpNEBeXuOqoIpqNRwAAsHDKigHByAoqO5qKFPT2tc3VXl5eb2zoaRSKeRyea3rtIPKxWIxPDw8dM6HokHlhBBCnneDBw8uTk1NTWrMudnZ2cK+ffvW+obi1KlTqfb29urmXx0hzYPCqjZg/vz5Lb0E0syUaiV+u/kbdibuxMHkgyhRlqCduB1md52NiUET0dmhM30z1lTZ2cCuXXxIFRvLf7fevz/w6qvVd6qr2VYnFvPnEvIUyOUNz4DSVkGpdfwz0tT0YcgUHAy8/HLdVVDNmaHWHFSuqzKqrkHlIpGoMnBydHTUWRFlSHPTCCGEkGZlb2+vTklJaVSwRUhrQmFVGzB8+PCWXgJpBhpOg3O3z2Fn4k7suboHeaV5MDcyR0RQBCYGTsRLri9BKKDKnCaRyYBDh4AffgBOnODLUTp1Aj7/HJgwgf/unZAnTK0GHjxoXCueTFb7eoEAsLN7GDaFhOiugrKza94qKC2O4yCXyxscVK7UMUnd1NS0clC5m5ubzkHl+jRTjRBCCCGENBKFVW1Aaiq/86ePD7WDtTUcxyE+J75yJ7870jsQ6YkwwmcEIoIi8LLHyzDUo0qCJlEqgV9/5SuoDh3iB/a4uQFLlgCRkYCfX0uvkDwjSkoaDp+ys4H793VXQUkkD8Omjh2BIUN0h1BWVk+uk1Sj0aC4uLjeIEomk0Fd4wUwxioroOzs7ODl5VUriKJB5YQQQgghpLlRWNUGTJ8+HQDtBtiW3Mi/gZ2JO7EzcSeScpMgZEK87PkyPgv9DK/4vgJTgydQFvE84DjgwgW+gmr3br6MxdISeP11YNIkoGfPx9t6jDw31GogN7dxVVDFxbWvFwofVkG1a8cX8umaA2Vnxw8uf5K0g8rrasmra1C5UCisDJycnZ3rHFROW1ATQgghhJCnjcIqQppJdnE29lzdg5iEGFzIvAAA6O3SG1+HfY0x/mNgbWzdwitsw65d4yuoduzgB6UbGQEjRvAVVIMHAwYGLb1C0koUFzduGPn9+3y3aE1mZg8Dp86ddc+B0lZBPY0Mp7y8vMEd80pKSmpdp6+vDzMzM0gkEnh4eOgMokQiEc3GI4QQQgghrRKFVYQ8hsKyQhxMPoiYxBj8kf4HNJwGHew7YNWAVZgQOAEuZi4tvcS2KyeHr5764Qfg0iW+Yqp/f+CDD4DwcL63ijwXVKqHVVANBVE6chvo6T0MmpycgBde0B1C2dkBxsZP5zVxHAeFQtHgjnllZWW1rjUyMqoMnBwcHGrNhtIOKqcgihBCCGk8oVDY2cvLq1StVjNnZ2fFnj170q2trdUAEBsbazRr1iyX7OxsA47jMG7cuLxVq1ZlaauP9+zZI/n4448d5XK5gOM4DBw4sGjTpk13G/O8paWlLDQ01Cs/P19v/vz5WVOnTi14gi+zWX399deW69evtwcAExMTzcaNG2/16NGjFAAcHR2DTExM1AKBAHp6elxiYmJyy66WtDUUVhHyiEqVpTh2/RhiEmJw7PoxlKvL0d6iPf7d69+YGDQR/jb+Lb3Etqu4uPqgdLWaH/Kzdi0/KN3RsaVXSJoJxzW+Cio3V3cVlLn5w8Cpa1fdFVD29nyn6NPsZNMOKq+vLU8mk6G8vLzWtSYmJpBIJLCwsICLi0utaiiJREKDygkhhJAnwNDQUKPdNS88PNxtzZo1NqtWrcouLi5mo0aN8vziiy9uh4eHS2UymSAsLMxj1apVNkuWLMm9dOmS0fz5810OHz6c1rFjxzKlUol169bZNPZ5z58/b6xUKllr2bGvrKyMlZeXM4lEouNfX9V5enoqzp07l2pjY6Pes2ePZPr06a7x8fEp2sdPnz59zcHBQfVkV0yeVRRWEdIIKo0Kv9/8HTGJMTiYfBCychnsTOzwTpd3EBEUgRfavUBVDE2lVAK//fZwULpcDri6Au+9x7f5+VP415aoVHyLXdWwqa4gSi6vfb2+/sOwycUF6NZNdxWUvT3fDfq0aTQalJSUNLhjXkODyj09PXUOKtfTo7+WCSGEPN/e/PFN58T7ic1a6xxoGyjf+srWO409v3v37iXx8fEiANi8ebNVly5disPDw6UAIBaLNV9//fXt0NBQnyVLluR++umn9vPnz8/q2LFjGcC34i9evDi35j1zcnKEkZGRbrdv3zYUiUSaTZs23XJyclJOnjzZvaCgQM/X19d///79NwICAhTaa9atW2e9bds2G6VSydzc3BT79u1LF4vFmqtXrxpGRES4q9VqNmDAgKJNmzbZyeXyKwCwdOlSu4MHD1qWl5ezsLCwwvXr199rzGv++++/jb7++mvrn376yWLPnj1pL774YmlD1wwcOLCypr1fv34ls2bNotkcpNnQv4rbgA8++KCll/Bc4jgOf939CzsTdmJP0h7cL7kPM0MzjPUfi4lBE9HPrR+EAtoBq0k4Drh48eGg9NxcwMICePVVPqB68cWnWwpD6sVxgFTauGHkDx7w59dkYfEwbOrevXbwpP3cwqLlvvRqtbpW6KTrc12DyrVBlKOjI/z8/Kq15GmDKBpUTgghhLR+KpUKJ0+eFL/11lsPAODq1atGnTp1qvYjtoCAAIVcLhfk5+cLUlNTRYsWLcpp6L6LFi1qFxISIj9x4sSNw4cPi19//XX3lJSUpI0bN95at26d3cmTJ9NqXhMZGVkwf/78BwDw7rvvtouKirJ+//3378+aNct5xowZ96dPn56/evXqyiquAwcOSNLS0ozi4+OTOY7DgAEDPI8fP246ZMgQHdvFAFKpVLBt2zaL6Ohoa47j2KRJkx6sXr36qoWFhQYA3nrrLedz586Ja14XHh6e/+mnn2ZXPfbll19a9+vXr6jqsdDQUC/GGCZPnpy7YMGCBw29R4RURWFVGzBgwICWXsJzJfF+ImISYrAzcScyCjNgpGeE4d7DMTFwIoZ4DYGRXguUczwrrl9/OCg9LQ0wNASGD+d38hs8mP+cPDVKZe0qqLp+XarjZ2sGBg/DJnd3oEcP3a14dnYt/6VVKpV1tuVpjxfr2PZPX1+/MnByd3fXOajc2NiYKisJIYSQZvIoFVDNSaFQCHx9ff0zMzMNAgMD5SNHjpQCAMdxrK6/5x/l7/+LFy+K9+/fnwYAI0aMkE2bNk0vLy+v3p98X758WbRs2TJHmUwmLCkpEfbp06cIAK5cuWL666+/pgHAlClT8pYvX+4EAD///LPkzJkzEn9/vjVBLpcLUlJSjOoKq9q1axfi4+Mj37Jlyy1tZVhV3333XaO+FkeOHBH/8MMP1ufPn69sATx37lyKm5ubMjMzU69///7eAQEBZXWtgxBdKKxqA/755x8AQIcOHVp0Hc+yjMIM7EzYiZjEGCTeT4SQCTGg/QB81PcjjPQdCYkhDfNusvv3Hw5Kv3iRH5Terx+wZAkwejS//RppNhwHFBU1vgpKF0vLh4FTz56650Bpq6BaQ0bTmEHlpTrSNu2gcrFYDDs7O53zoWhQOSGEEPJ80M6sysvLEw4aNMhz5cqVth988MH9gICA0rNnz5pWPTcpKcnA2NhYY2FhofH29i67cOGCsXaweF1qVmYDAGNMRz36Q9OmTXPft29fWo8ePUqjoqKsTp8+XavKqeZzzJ07N2vhwoWNqmKKjo6+8d1331mPHj3aIzw8PH/atGl53t7elUM1G1NZdeHCBdGMGTNcjx07dt3e3r5yDoKbm5sSABwdHVVhYWGFf/31lwmFVeRRUFjVBsydOxcAcOrUqRZdx7Pmfsl97Lm6BzsTd+L8nfMAgJ7OPfHVkK8wNmAsbE1sW3iFbVhJCT9/ascO4Ndf+UHpISHAmjX8oHQnp5ZeYZtTXs5vkKgreKr5uY4N5GBo+DBk8vDgOy11VUHZ2rZ8FZQWx3EoLS2tty1PKpXqHFRubGwMiUQCMzMzODs766yIMjCgsQqEEEIIqc7KykodFRV1e8yYMZ4LFy7MnTZtWt7nn3/ucOjQIfHIkSNlxcXFbObMmS6zZ8/OBoAlS5Zkjx071qN///7FwcHBCrVajRUrVtgtX768Wmtg9+7dZdu2bbNas2ZN1tGjR8UWFhYqS0vLeoeYy+VygYuLi1KhULBdu3ZZOjg4KAGgQ4cOxdu3b7eYOnVqwdatWy215w8ZMkS6fPnydtOmTcs3MzPTpKen6xsYGHCOjo46h5yHh4dLw8PDpdnZ2cLNmzdbjRgxwtPS0lK1bdu2DB8fn/KGKquuX79uMHbsWI+tW7emBwcHV87akkqlArVaDQsLC41UKhWcPHlS8v777zdqdhYhWhRWkeeKVCHFweSD2Jm4EydunoCaUyPINgifhX6GCYET4Gbu1tJLbLtUKn4Hvx9+4IOqkhJ+QvbChfwcqsDAll5hq8NxQGFhwxVQ2dlAXp7ue1hbPwybevfWXQHl4MAXsLWmAiGO43QOKq8ZSKlU1f9txRiDqakpJBIJbGxs0L59+1ohlFgspkHlhBBCCGmyF198sdTPz690y5YtFjNnzsw/cOBA2qxZs1zmzp2rr9FoMHbs2LwlS5bcB4Bu3bqVrlq16s7EiRPbl5aWChhjGDBgQFHNe65atepeRESEm7e3t79IJNJs3749vaF1LF68+F7Xrl39HB0dy/38/OTFxcVCAPjyyy/vREZGukdFRdkPGjSo0NTUVA3w4dPVq1eNXnjhBV8AMDY21uzYsSO9rrBKy97eXr106dL7S5cuvX/y5EljoVBYb8WX1gcffOBQWFioN3v2bFcA0NPT4xITE5Pv3r2rN2rUKE8AUKvVbPTo0XljxoyRNuaehGgxXeWIbU2XLl242NjYll7GE9O3b18AVFnVVGWqMhy/fhwxiTE4eu0oylRlcDN3w8TAiZgYOBFBdkEtvcS2i+OAS5f4Cqpdu/iWP3NzYNw4PqDq1eu5HJReXt7wTnjaD4Wi9vWGhnzAVFf7nfbXtrb83KjWRq1Wo7i4uN4QSiaTQaOp/sNEgUBQazC5rh3zaFA5IYQQUhtj7DLHcV1aeh1NERcXlxESEkIDuBtJJpMJTExMNAKBAJs2bbLYvXu35e+//36jpddFSFPExcVZh4SEuNU8Tj96Js8ktUaNkxknEZMQgwPJB1CkKIKNsQ2mdJyCiKAIdHfqTnNoHkda2sNB6dev84nJ8OF8QDV0aOvpI3uKMjOBb74Btm3jf62Ljc3DwMnHp+4gSiJpXVVQValUqnpb8uoaVK6np1cZOLm6uuoMpExMTOj/S0IIIYSQBpw7d854zpw5LhzHQSKRqLdv357R0msipLlRWEWeGRzH4WLmRcQkxGBP0h5kF2dDbCBGuF84IoIi0N+9P/QE9Fu+yXJzHw5Kv3CBT1P69AHee48flG5u3tIrfOo4Dvjf/4AvvgD27+dHcw0bBrz9tu4qKH39ll5x/crLyxtsy5PL5bWuMzQ0rAycbG1tdVZEGRkZURBFCCGEENIMBg8eXJyamprUmHOzs7OFffv29al5/NSpU6lVB6IT0trQd+5twKefftrSS2jVknKTKnfyu1lwEwZCAwzzHoaIwAgM9RoKkb6opZfYdpWUAIcP8wHVL7/waUxwMLBqFTBxIuDs3NIrbBEKBbBnDxAVBcTG8vOg5swBZswA2rdv6dXVxnEcysrKGgyiFDp6EkUiUWXg5OjoWGs2lHbHPEIIIYQQ0vrY29urU1JSGhVsEdKaUFjVBvTs2bOll9Dq3C66jV2JuxCTEIO4nDgImAD93fvjg94fYJTfKJgbmbf0EtsulQr4/Xe+xe/AAT6wcnICFizg2/yCnt8ZX1lZfKvfN9/w47n8/ICvvwYmTQJMTRu+/kmoOqi8rrY8XYPKAVQOKreysoKbm5vOQeX6rb0cjBBCCCGEEPLMobCqDTh//jwACq0eyB9g79W9iEmMwZ+3/wQAdHPshi8Gf4FxAeNgb2rfwitswzgOuHyZr6DatQvIyeHLhSZO5JOY3r2fy0HpWhcu8FVUe/Y8bPV7910gNPTJzpbSaDQNDiqXSqU6B5Vrq54cHBzg7e2tc1C5UCh8cosnhBBCCCGEkCaisKoN+Pe//w3g+dwNUKaQ4cfUHxGTEIPfbv4GlUYFP2s/fNLvE0wInAAPS4+WXmLbdvMmX0H1ww/AtWv8oPSwMD6gGjoUMDJq6RW2GIUC2LuXD6kuXeKHns+eDcycCXg0w287lUqlsxKq6rHi4mLU3LFVKBRWBk7Ozs61WvK0g8ppxzxCCCGEEEJIW0VhFWl1FCoFfrnxC2ISYnA49TBKVaVwMXPB/B7zMTFwIoLtgmlQ8+PIzeVLhHbsAP76iz/Wpw/f5jdmDGBh0bLra2HZ2Q9b/XJy+F37NmwAXnut8a1+HMchPz+/zpY8mUyGkpKSWtcZGBhUBk4eHh46d8wTiUT0+58QQgghpJkxxjq/8sor+YcOHUoHAKVSCVtb25AOHTqUnDx5Mu1R77djxw6zq1evij799NPs5l9tw7p27epz//59fSMjIw0AvPfee1mTJ08uEAqFnb28vErVajXz9PQs3bNnT4ZYLNZUPe7s7KzYs2dPurW1deUA9qqD2h88eKAvEAg4S0tLFQDs2bPnxujRoz2vX79+tTlfw7x589qZmpqqP/7445zGXmNsbNxRLpdfqXl89OjRbsOGDSuaPHlyweOs6csvv7Rau3atAwAsWLAga/bs2Xk1zyktLWVjxoxxT0hIMDY3N1ft3bv3po+PT/n58+dFM2bMcC0uLhYKBAJu4cKFWVOnTi3Qru9///ufWCwWqwFg69at6T179ix9nLW2dRRWkVZBrVHjzK0ziEmIwb7kfSgsK4S1sTXe6PAGIoIi0NO5JwSMKkWaTC6vPihdpQICA4GVK/lWPxeXll5hi7t48WGrn1LJF5i9+y4wYEDjOyDz8vIQFxeHhIQEFBYWVnus6qDydu3a6dwxjwaVE0IIIYS0DJFIpElNTRUVFxczU1NT7uDBgxI7OztlU+8XGRlZBKCoGZf4yKKjo2++9NJL1bZyNjQ01GgHro8YMcJ93bp1NsuXL8+pejw8PNxtzZo1NqtWraoM2qoOaq8ZIqWmpho0Zj1KpbJNz0PNyckRrlq1qt3ly5eTBAIBOnbs6D9hwoRCGxubarsqfvHFF9ZmZmaq27dvJ27atMli3rx5TseOHbtpamqq+f7779ODgoIUGRkZ+i+88ILfqFGjpNpQ8JNPPrn7uGHas4TCKtJiOI7D5azLiEmIwa7EXcgqzoKpgSlG+o5ERGAEBrQfAH1h2/3DrMWp1cAff/AB1YEDQHEx4OgI/OtffJtfcHBLr7DFlZcD+/bxIdWFC4BYzO/oN3Mm4OXVuHuUlJQgMTERCQkJyMzMBGMM7u7u6NWrFywtLSuDqLb8FzMhhBBCyPMgNDS0aO/eveaTJ08u2Llzp+Xo0aPzz58/bwoAJ0+eNJ43b55LWVmZwMjISLN9+/b0kJAQxfLly+2uXr0q2rt3b8bFixdFkZGR7f/+++/kbdu2WcTGxppER0ffHj16tJuRkZEmLS3NKDMz0/Dbb79N3759u/Xly5dNOnbsWLJ///4MoHpV0LZt2yyOHj1qtn///ozGXv+oevXqVRwfH19r6/Tu3buX6DpeH7VajQkTJrjGxsaa2tnZlf/yyy9ppqamXNeuXX26du1afOHCBdOhQ4cWDhgwQDZv3jxnuVwusLCwUO3YsSPD1dVV+cknn9hu27bNRigUct7e3mVHjx69CQDJycmirl27+ty7d8/g7bffzvnggw/uA8Dy5cvtduzYYQ0Ar776au6yZcvuV12PRqPBG2+84XLu3Dmxs7OzouZojaY4dOiQ2UsvvSS1s7NTA8BLL70kPXDggNn06dPzq5539OhR8+XLl98DgMmTJxe89957LhqNBsHBwZVbb7u5uSktLS1VWVlZelUr2MhDFFaRpy71QSpiEmKwM3Enrudfh75AH0O9hiIiKALDvIfBWN+4pZfYdnEc8PfffIvfzp18T5tEAowfzwdUL730XA9K18rJAb79lm/1y8oCvL2BL78EXn+dD6waolQqce3aNcTHxyMtLQ0ajQZ2dnYYOHAggoKCIG7MTQghhBBCiE5du3b1qXksPDw8f/HixbkymUwQGhpa68eKkyZNevDuu+/mZWVl6b3yyivVJoxevHgxtTHP++qrr+Z/+OGHDuPHjy9MTk42fuutt/K0YVVISEjZxYsXU/T19XHo0CHxokWLnH755ZcbS5cuzenWrZtPdHS0+erVqx02bNiQIRaLNTXvXVRUpPfXX39di4mJMR8/frzXH3/8kdK5c+fS4OBgv/Pnz4saavlqyvWvvfZae20b4KlTp1Lt7e0rQxGlUolffvlFMmjQIGnVa1QqFU6ePCl+6623HjTmPdO6ffu20Q8//HCzZ8+et4YOHdo+OjraYsaMGfkAUFhYKLx06VKqQqFg3bt39zl27Fhau3btVJs3b7ZYsGCB4969ezOioqLsb926lSASibgHDx5U7gKUlpZmdP78+dTCwkKhn59f4MKFC3MvXrwoiomJsbp8+XIyx3Ho3LmzX2hoqOzFF1+sfA++//5787S0NMPU1NSrd+/e1Q8KCgp44403arXsLV261G7v3r1WNY93795dtn379jtVj2VmZuo7OTmVaz93dHQsz8zMrPUT6ZycHAN3d/dyANDX14epqak6JydHz8HBoXJ77pMnTxorlUrm7+9fGWB99NFHjp999plD7969ZV999dVdkUj0+AlbG0ZhVRvwn//8p6WX8NjuSu9id+JuxCTG4O+sv8HA0M+9Hxa9uAij/UbDQvR8z0l6bOnpfEC1YweQkgLo6z8clB4W9lwPSq8qNpavotq9m6+qGjIE2LoVGDSo4QyP4zjcunULcXFxSE5OhkKhgFgsRvfu3REcHAw7O7un8yIIIYQQQsgT0a1bt9K7d+8abt682XLAgAHVWvjy8/OF48ePd8/IyDBijHFKpZIB/OY30dHR6V26dAmIjIzMHTRoUO3BpADCwsIKBQIBOnXqJLeyslJ27dq1FAC8vb1Lb9y4YdhQWNWU63W1ASoUCoGvr69/xeuVzZkz50HV45mZmQaBgYHykSNHSmverz6Ojo4K7Ro6duwoz8jIqJxvMXHixHwAiI+PN7x+/bqof//+3gBf/WRjY6MEAB8fn9JRo0a5jxgxojAyMrJQe+2gQYMKRSIRJxKJVJaWlsq7d+/qnTp1ynTo0KGFEolEU/HeFJw8eVJcNaw6ffq0eNy4cfl6enpwc3NT9ujRQ6Zr3StWrMhZsWJFo2Zi6arO0jVLto7zKg/eunVLf/Lkye2/++67dO3u3J9//nmms7OzUqFQsMjISNelS5far127Nqsx63pWUVjVBnTo0KGll9AkefI87E/ej5iEGJy5dQYcOLzQ7gV8PuhzjA8cj3bidi29xLYtL48fsPTDD8D58/yxl17i2/zGjAEsLVt2fa2EUgns38+HVH/9xQ9Jnz4dmDWLr6hqSG5ubuUcKqlUCgMDA/j5+SE4OBhubm606x4hhBBCSDOrrxJKLBZr6nvcwcFB1dhKKl0GDx5c+OGHHzr/+uuvqffv36/8fvm9995z7NOnj+y33367kZqaatC/f//K6q/k5GQjY2NjTXZ2dp1zH4yMjDiAD7cMDAwqgwuBQACVSsWA6sFHaWkpe9TrG6PqbCpdx/Py8oSDBg3yXLlypa225a4xqq5JKBRypaWllf9I1laacRzHPD09S//555+UmtefPHny+vHjx8WHDh0yX716dbvr168nVqyr6n2hUqlYY1v6GrMp0aNUVjk5OSlPnz5d2UKRmZlp0KdPn1ohmL29fXl6erqBh4eHUqlUori4WGhra6sGgPz8fMGQIUM8ly1blhkaGloZbLq6uioBQCQScW+++WbeunXrnvufhNN3WW3AiRMncOLEiZZeRqOUlJdgZ8JODN85HPbr7DH96HRkF2djed/luDbrGi5OvYh/9fgXBVVNVVrKlwWNGAHY2/MDloqKgM8+AzIygNOngWnTKKgCcP8+8MkngJsbP0M+Nxf44gsgM5MPruoLqoqLi/HXX39h06ZN2LhxI86fPw9bW1uEh4djwYIFGDlyJNq3b09BFSGEEELIM+add955MH/+/HvayiUtqVQq1LaAffvtt9ba43l5ecIFCxY4//HHHyn5+fl627Zta3LLiJWVlfLvv/82UqvV+PHHH1uk9cTKykodFRV1e8OGDXYKhaJZt6AODg4uy8/P1ztx4oQJACgUChYbG2ukVqtx48YNg+HDh8s2btx4VyaTCYuKioR13ad///7FP/30k7lMJhNIpVLBTz/9ZNGvX79qoVGfPn1ke/futVSpVLh165b+//73P51zOlasWJGTkpKSVPOjZlAFACNHjiw6ffq0JDc3V5ibmys8ffq0ZOTIkbWG6IeFhRVu3brVCuBnj/Xo0UMmEAhQVlbGwsLCPCdMmJD35ptvVhukfuvWLX2ArzY7cOCAuZ+f33O9EyBAlVVtwieffAIAGDBgQAuvRLdydTl+vfErdibuxKGUQ5Ar5XAUO2Jut7mICIpAB/sOjUq1SR3UauDkSb7Fb/9+QCYD2rUD5s59OCid3t9Kf//Nh1E7d/Ktfi+/DGzeDAweXH+rX3l5OVJSUpCQkIAbN26A4zg4ODjg5ZdfRmBgIExNTZ/eiyCEEEIIIS3Cw8NDuXTp0loVRe+99172lClT3KOioux79+5d2SL39ttvO7/11lu5wcHBiv/+978Z/fv39xk0aJDOlrOGfPTRR5mvvPKKp4ODg9LX17e0pKSkRX4y+uKLL5b6+fmVbtmyxWLmzJn5DV/ROEZGRtyuXbtuvPvuuy4ymUyoVqvZO++8kxMUFKSIiIhwl8lkQo7j2PTp03PqGzreq1cveURERF6nTp38AH7AetUWwIpjhb///rvEx8cnwN3dvaxr165N+ppUZWdnp164cOG9zp07+wHAokWL7mmHrc+dO7fdCy+8UBIZGVk0Z86cB6NHj3Z3cXEJNDMzU+/evfsGAGzdutXi0qVLpgUFBXoxMTHWFcfSe/bsWTp+/Hj3/Px8PY7jmL+/vzw6OvrW4663rWt0CV1r1qVLFy42Nrall/HE9O3bFwBw6tSpFl1HVRpOg7O3zmJn4k7sTdqL/NJ8WIosMdZ/LCYGTkRv194QMKo6aTKOA65ceTgoPSuLH5Q+ZgwQGQn06QMI6/xhw3NHqQQOHuRDqnPnABMT4I03+FY/X9+6r9NoNEhPT0dCQgKSk5NRXl4OMzMzBAUFITg4GDY2Nk/tNRBCCCGEPA7G2GWO47q09DqaIi4uLiMkJOSRBnoTQp4NcXFx1iEhIW41j1NlFWk0juPwT/Y/iEmIwa6ru3BXehfG+sYY6TsSEwMnYpDHIBgIDVp6mW1bejoQE8OHVMnJ/KD0oUMfDkoXPdIOss+83Fy+amrjRr69r317YP16YPJkwMys7utycnIQFxeHxMREyGQyGBoaIiAgACEhIXBxcaFKQEIIIYQQQghpQRRWkQZdz7uOnYk7EZMQg9S8VOgJ9DDYczBWD1iNET4jYGJg0tJLbNvy8oC9e/lB6efO8cd69QK++QYYO5bmT+nwzz98FVVMDKBQAAMH8m/XkCF1F5xJpVIkJCQgPj4e9+/fh0AggJeXF4KCguDj4wM9PfrjkBBCCCGEEEJaA/ru7DnCcRwOpRzCSN+R1SpHdB2/J7uH3Ym7sTNxJy7duwQGhpdcX8K8HvMw2m80rIxrbZhAHkVpKXD0KB9QHT/O97H5+QH/939ARAQ/FZxUo1IBhw7xIdXZs4CxMfDmm3yrn7+/7msUCgWSk5MRHx+P9PR0AICTkxOGDBmCwMBAGBsbP70XQAghhBBCCCGkUSisagO+/fbbZrnPoZRDCN8Tjjnd5mBS0CSkFaTB08ITPyT8gC8ufIHokdFQqBXYmbgTJ9NPggOHTg6dsHbgWowPHA8niVOzrOO5pVYDp07xLX779vGD0h0cgHff5edQdehAg9J1ePAA2LKFb/W7cwdwdwfWreODKnPz2udrNBrcuHED8fHxSElJgUqlgoWFBV566SUEBwfDyoqCVkIIIYQQQghpzSisagN8fHya5T4jfUdiTrc5+OLCF9hwaQOMhEYoVZVCzanR3qI93jr8FpQaJTwtPbH0paWYGDQRvtb1TKcmDeM4IC6Or6DauRO4dw8Qi4HRo/k5VH370qD0OsTFAV9+yWd7ZWVAaCjw1Vf86K6abxnHccjKykJ8fDwSExNRUlICIyMjhISEICQkBE5OTjSHihBCCCGEEELaCAqr2oAjR44AAIYPH/5Y92GMYVLQJGy4tAEqjQrFmuLKx6QKKWZ1nYWIoAh0duhM39g/rlu3+IFKP/wAJCUBenr8oPTISGD4cBqUXgeVCjh8mG/1O32af5tefx2YPRsICKh9flFREeLj4xEfH48HDx5AKBTC29sbwcHB8PT0pDlUhBBCCCGEENIG0XdybcC6desAPH5YBQBpBWkwEBhApVFVHjMSGuGLwV8gIijise//XMvP5wel79jBD1UCgBdfBL7+mh+UTu1ndcrP51v9NmwAbt/mR3atXcu3+llYVD+3rKwMSUlJiI+Px61btwAALi4uCAsLQ0BAAEQUBBJCCCGEEEJImyZo6QWQp8vTwhNl6rJqx1ScCt6W3i20ojaurIyfPzVyJGBvD7z9NpCbC3zyCXDzJvDnn/wxCqp0SkgApk0DnJyA994DPD35IeppacD8+Q+DKrVajdTUVOzduxdr167FkSNHIJPJ0LdvX7z77ruYPHkyunTpQkEVIYQQQghpkhs3buiHhoZ6uLq6Bjo7OwdOnjzZuaysrN52kwcPHghXrlxpo/08IyNDf/Dgwe2bYz3z5s1rt2zZMjtdx21tbYN9fX39vby8Anbs2GH2KPd1dHQMysrKqrNo5YsvvrDy9fX19/X19dfX1+/k7e3t7+vr6z9jxgzHutb0uBpaU01RUVFWr732mouux4yNjTs+7npKS0tZWFhYexcXl8Dg4GDf1NRUA13n9e7d28vHx8ff09MzICIiwkWl4gtCVq9ebaN93zp37uxz+fJlIwC4du2aQUBAgJ+vr6+/p6dnwOrVq2103betuXDhgqhDhw6+np6eAd7e3v5yuZwBQNeuXX3c3NwCtb+fMjMzH6lYisKq5wjHcfg+/ntoOA0YGEz1TaEn0INKo8IPCT+A47iWXmLboNEAJ08Cb70F2NnxVVMXLvDb0l2+zLf9vf8+Pwmc1KJW84FU//5AcDDfKTlpEhAfD/z+O/DKK/xMKo7jcPfuXfz000/4/PPPsWvXLmRkZKBTp06YMmUKZs2ahT59+sCiZukVIYQQQgh59p09a4xNmyxw9uxjb++s0WgwcuRIzxEjRhTeunUrMT09PbGkpEQwZ84cx/quy8vLE3733Xe22s/d3NyUP//8883HXU9D3n777ZyUlJSk3bt335g1a5abWq2u9rhSqWzyvefMmZOXkpKSlJKSkmRra6s8ffr0tZSUlKSNGzdmNuZ6jUaDmutpa7744gtrMzMz1e3btxNnzZqVM2/ePJ07jf344483UlNTk65du3Y1Ly9Pf+vWrRYAMGXKlLxr164lpaSkJM2bNy977ty5zgDg4uKijI2NTUlJSUm6fPly8hdffGGfkZGh/zRfW025ubmPNUBZqVTi1Vdfdf/6669vpaWlXT1z5kyqgYFBZbAQHR19U/v7ydHRUVXfvWqiNsDnyKGUQ4i6GAUAWPbSMvja+FbbDbCPax+M8hvVwqtspTiOT1N27OBnUWVmAqam/KD0yEg+eaFB6fUqKAC++45v9cvIAFxcgFWr+MyvauFZQUEB4uPjkZCQgLy8PAiFQvj6+iI4OBgeHh4Q0vtMCCGEEPJ8e+cdR2zfbguhkP9J6OTJ99HIMEWXI0eOiA0NDTVz5szJAwA9PT188803d9q3bx+8du3ae9u2bbP48ccfzcvLywV37twxHD16dN66deuy5s+f73Tnzh1DX19f/z59+kjnzZt3f9iwYV7Xr1+/GhUVZXX48GFzjUbDUlNTRTNnzswuLy8X7N6928rAwEDz66+/Xrezs1OvW7fOetu2bTZKpZK5ubkp9u3bly4WizWNWXenTp3KhEIhsrOz9UaNGuXRtWvX4gsXLpgOHTq0sFOnTvLFixc7q9VqhISEyKOjo2+JRCIOAD7++GO7P//8UwIAO3fuvBkYGKho7HuVnJws6tq1q8+9e/cM3n777ZwPPvjgfmpqqsGQIUO8evbsKbt8+bLpjz/+mPb9999bHDx40LK8vJyFhYUVrl+//p5UKhWMGDGifVZWloFGo2GLFi26N3Xq1AIAWL16te0vv/xiplKp2O7du2927NixLCcnRxgZGel2+/ZtQ5FIpNm0adOtbt26lVZdT0pKisGECRPaq1QqFhoaWtTY11Gfo0ePmi9fvvweAEyePLngvffec9FoNBAIqtf6WFpaagBAqVQypVLJtHOftccBoLi4WKg9bmRkVBnilJaWMo2m4S9zTEyM2cqVKx2USqXAwsJCtXv37pvOzs6qe/fu6Y0ZM8a9sLBQr0OHDvJTp05JLl++nOzg4KDauHGj5ddff22nVCpZp06dSqKjo2/VNct36NChnmKxWP3WW2/ljhs3rkhf/9GyswMHDpj5+fmV9ujRoxQA7O3tmy2ppMqq58hI35EY2H4gjPWNMb/nfEwInIAujl2w/uX1ODDuAEb6jmzpJbY+t28DK1fyJUAdOgDr1wMdOwK7dgE5OcD27cDAgRRU1ePqVb4T0skJWLgQcHUF9u8HbtwAFi3ig6rS0lLExsZi69atiIqKwqlTpyAWizFixAgsWLAAY8aMgbe3NwVVhBBCCCHPu7NnjbF9uy3KygQoKRGgrEyAbdtsH6fCKiEhQRQSEiKveszS0lLj4OBQnpSUZAgA8fHxJnv37r2ZmJh49fDhw5ZnzpwxXrdu3V1nZ2dFSkpK0rfffnu35n2vXbsm2r9//81Lly4lf/bZZ47Gxsaa5OTkpC5dupR8++23VgAQGRlZkJiYmJyamprk4+NTGhUVZd3Ydf/xxx8mAoGAc3BwUAFAYWGh8NKlS6nvvffe/enTp7vv3r37xrVr15JUKhXWrFlT2XImkUjUCQkJydOnT78/e/Zs50d5r9LS0oxOnz597dKlS8lr165tp1AoGABkZGQYTZ48OS85OTkpMTHRKC0tzSg+Pj45OTk56Z9//jE+fvy46YEDByT29vbK1NTUpOvXr18NDw+Xau9rbW2tSkpKSn7zzTdzV65caQcAixYtahcSEiK/du1a0ooVKzJff/31Wq0rM2bMcJkyZUpuYmJisr29fZ0lZZ07d/bRtqNV/Th06JC45rk5OTkG7u7u5QCgr68PU1NTdU5Ojs60p1evXl42NjYhJiYm6smTJxdoj3/22Wc2zs7OgR9++KHThg0bbld5//S9vb393d3dg999991sNze3esvgBg4cWPzPP/+kJCcnJ40ZMyb/448/tgeAxYsXt+vTp48sKSkpOTw8vCArK8sAAP7++2+jffv2WWoruAQCAffNN9/UOZPmwoULqfPnz8/ev3+/hYeHR+DMmTMdExMTDbWPL1261E7X+/bGG284A0BqaqohYwy9evXy8vf39/vggw+qtYlOmTLFzdfX13/hwoUOjQnnqqLKqjbg+++/b5b7lKnKcDHzIkb7jYbY8OH/k4wxqqiqqqCAn0P1ww/AmTP8sZ49+ZKgceMA60b//fHcUquBY8f4Xf1+/x0wMuJb/WbP5nM/AFCpVEhOvo74+Hhcv34darUaNjY2CA0NRVBQEMzMHqn9nhBCCCGEPA+Skw1r/aBYKOSP9+4t131R/TiOA2Os1kyUiuMAgF69ekm1VSNhYWEFp06dMh0/fnxhffft2bOnzMLCQmNhYaExNTVVjx07thAAgoKC5PHx8cYAcPnyZdGyZcscZTKZsKSkRNinT58Gq4O++eYbuz179liZmJioo6Ojb2orfiZOnJgPAHFxcUZOTk6K4OBgBQC88cYbeRs2bLAFcB8AXn/99XwAmDp1av4HH3zwSGHVoEGDCkUiEScSiVSWlpbKu3fv6gGAg4NDeWhoaAkA/Pzzz5IzZ85I/P39/QFALpcLUlJSjEJDQ2Xvv/++8zvvvOP4yiuvFA0ePLhye/qIiIgCAOjatav88OHDFgBw8eJF8f79+9MAYMSIEbJp06bp5eXlVfvi//3336bHjx+/AQDTp0/PW7Fihc6WvcuXL6c29jXqGo+j6/cHAPz555/X5XI5GzVqVPsjR45IRo0aJQWAJUuW5C5ZsiT3m2++sfzwww8dDhw4kAEAnp6eymvXriVlZGToDx8+3HPSpEkFzs7OdbbHpaenG4wcOdIpNzdXv7y8XODs7KwAgIsXL5oeOnQoDQDGjBkjlUgkagD4+eefxYmJicYhISF+AFBWViawtbWt8/4CgQBhYWHFYWFhxfn5+YIPP/zQoUOHDoFbtmy58cYbbxSuWLEiZ8WKFTl1Xa9SqdilS5dMY2Njk01NTTW9e/f2fuGFF+SvvPKKbPfu3Tfd3d2VBQUFgmHDhnls3LjRatasWXl13asmCqvaAGfnR/rzo05Hrh1BkaIIr4W81iz3e6aUlfHpyo4d/H/LywEfH+Djj4GICMDDo6VX2CYUFgJbtwJffQWkpwPOznxh2pQpfAUVx3G4ffsO4uPjcfXqVZSVlcHExARdunRBSEgI7O3tK/9BQAghhBBCSC1+fgrUnImkVvPHmygoKKj0xx9/rDYINT8/X5CdnW3g5+en+N///mdc89+ojfk3a9XZPQKBoLINTCAQQKVSMQCYNm2a+759+9J69OhRGhUVZXX69OlalT41vf322zkff/xxrQBB2z7Y0Cziqu1sdYUwdTE0NKw8XygUVr4OY2PjyrIZjuMwd+7crIULFz6oef3ff/+dtH//frP333/f8cSJE9K1a9dmAQ9b5PT09DjtPRsbGgkEggZfQ+fOnX1KSkpqtWmsXLnyzsiRI2VVj9nb25enp6cbeHh4KJVKJYqLi4W2trZ1trcZGxtzw4YNKzx48KC5NqzSmjp1av7ChQtrDYN3c3NT+vj4lJ44cUJctSKrplmzZrnMmTMnOzIysujo0aPijz/+uB1Q99eY4zg2duzYvA0bNjS6Lba4uJj98MMPFtHR0dZSqVS4YsWK2yNGjJACfGXV3r17a1Vmde/eXbZ9+/Y7Tk5O5d27d5dpq/sGDhxYFBsba/zKK6/I3N3dlQBgYWGhGT9+fP7FixdNADQ6rHrqbYCMscGMsVTGWBpjbLGOx80YY0cYY3GMsauMsclPe42tze7du7F79+7Hvs9/4/4LJ4kT+rn1a4ZVPQM0GuDUKT5JsbcHxowBzp8HZswALl0CkpOBpUspqGqEpCT+bXN05Hfxc3bmi9Nu3uR3+QPycPLkSURFRWHbtm2Ii4uDl5cXIiMjMW/ePAwePBgODg4UVBFCCCGEkPr17i3H5Mn3YWSkgYmJBkZGGkyefL+pVVUAX7VTVlYm+Oqrr6wAvgNgxowZzmPHjn2gDYD+/PNPSU5OjrC4uJj99NNP5n369Ck2MzNTl5SUPNb31HK5XODi4qJUKBRs165dlo9zL60OHTqUZWZmGmjbuaKjo6169+5dGchER0dbAsB3331n0bFjx5LmeM6qhgwZIv3++++ti4qKBACQnp6un5mZqZeRkaEvFos1M2bMyJ87d27OP//8U2/rZvfu3WXbtm2zAoCjR4+KLSwsVFXnQQFAp06dijdv3mwJAJs3b66z3e3y5cup2kHfVT9qBlUAEBYWVrh161YrANi2bZtFjx49ZDXnVRUVFQlu3bqlD/BDxn/++WczX1/fUgBISEiobKPbvXu3maurqwLgd5wsLi5mAD/YPDY21jQgIKAMAGbOnOkYHR1tXnMtMplM6OLiogSA7du3V76+rl27Fn///feWAHDgwAGJVCoVAsDgwYOlR48etdDuvJeTkyO8du2azt0MAeDtt9928vHxCTx37pzpmjVr7iQmJiYvWbIkV/s+r1ixIkfX+7Z9+/Y7ADBq1ChpcnKySCaTCZRKJc6dOycOCAgoUyqV0O7wqFAo2E8//WQWGBhYWtc6dHmqlVWMMSGADQAGArgL4BJj7DDHcUlVTpsJIInjuOGMMRsAqYyxHRzHlT/NtbYmX3/9NQBg/PjxTb5HdnE2fkn7BQt7LoRQ8JzP/UlI4Fv8YmKAu3cBExMgPJzvU+vfH6hj+BypTqMBfvqJb/X77TfA0JCfNT97Nj/eSy6X4++/ExEfH4/MTD7Yb9++Pfr27QtfX18YGhrW/wSEEEIIIYTosnFjJiZOLEBysiH8/BSPE1QBfKXRoUOH0qZNm+a6Zs0aB41Gg/79+xdFRUVVVqd06dKlePz48e4ZGRlGo0ePznvppZfkANC5c+diLy+vgP79+xfNmzfv/qM+9+LFi+917drVz9HRsdzPz09eXFz82N+sGRsbc998803G2LFjPbQD1hcsWJCrfVyhULDg4GBfjUbDdu3a1ey7F4aHh0uvXr1q9MILL/hWrEezY8eO9JSUFMMlS5Y4CQQC6OnpcRs3brxV331WrVp1LyIiws3b29tfJBJptm/fnl7znI0bN96eMGFC+40bN9qNGDGizgqlRzFnzpwHo0ePdndxcQk0MzNT7969+4b2MV9fX/+UlJQkqVQqCAsL8ywvL2cajYa9+OKL0oULF+YCwOeff2579uxZiZ6eHmdmZqbSrjs+Pl703nvvOTHGwHEcZs2ald21a9dSAEhKShKNGjWqsOZa3n///XsTJ070sLOzK+/SpUvJ7du3DQFg5cqV98aMGdPe39/fokePHsU2NjZKc3NztYODg+qDDz7IDA0N9dZoNNDX1+eioqJue3t768xT+vXrJ/v8888zjY2NH6nCTsvGxkY9a9asnI4dO/oxxhAaGlo0YcKEIqlUKhgwYICXUqlkGo2G9e7dWzpv3rzchu/4EGuoRLA5McZ6AFjOcdzLFZ8vAQCO4z6rcs4SAM7gQys3AL8B8OY4rs5pXF26dOFiY2Of4MpbVt++fQEAp06davI91v+1HvN+nYekGUnws/FrnoW1JXfuADt38iFVQgLf1z54MJ+ujBjBB1akUYqKgG3b+Fa/Gzf4aqoZM4CpUwELCxVSU1MRHx+PtLQ0aDQa2NnZITg4GIGBgZBIJC29fEIIIYSQZxJj7DLHcV1aeh1NERcXlxESElKrZay1iIqKsoqNjTWJjo6+3fDZhDy6Xr16ef3555/XG3t+aWkp09PT4/T19XHixAmTWbNmuaakpCQ1fGXrExcXZx0SEuJW8/jTLiFxBHCnyud3AXSrcc5XAA4DuAdADGB8fUEVaZz/xv0XL7R74fkKqgoL+V60HTuA06cBjgO6d+dTlnHjABubBm9BHkpJ4d+67duBkhKgVy/gs8+AV17hcO/eLfz1VzySkpKgUCggFovRvXt3BAcHw87OrsF7E0IIIYQQQsjz6lGCKgBIS0szGDdunIe2eurbb7/NeEJLazFPO6zSNZCmZmnXywD+AdAfgAeA3xhjZzmOqzaojDE2DcA0AHBxqTWvjFQRlx2HuJw4fDXkq5ZeypOnUPC9aT/8ABw9yg9K9/YGli/nq6ho/tQj0WiAn3/mW/1++QUwMODnzc+eDTg75yI+Ph4bNyagqKgI+vr68Pf3R3BwMNzc3FCzr5sQQgghhJC26N13383DIwyGJuRJCwoKUiQnJze6kio4ONi3vLy82jdo0dHR6do2xNboaYdVd8G3+Gk5ga+gqmoygJUc35+YxhhLB+AL4GLVkziO2wRgE8C3AT6xFT8DouOioS/Qx/jAps+8atU0GuDsWb6Cau9evqLK1hZ45x0+oOrSBaDB3Y9EKuUrqL78EkhLA9q1Az75BIiMLEZ2diJiY+Nx5EgWGGPw8PBAaGgofHx8YGBQ5+w+QgghhBBCCCEtID4+PqWl1/ConnZYdQmAF2PMHUAmgAkAImqccxtAKICzjDE7AD4Amn3oW1uyb9++Jl+r0qiwI2EHwrzDYG1s3YyragUSEx8OSr9zh587NWoUPyg9NJQGpTdBaurDVr/iYqBnT+Djj5Xw80vB1avxiI6+AY7j4ODggJdffhmBgYEwNTVt6WUTQgghhBBCCHmGPNXv5jmOUzHGZgH4BYAQwFaO464yxt6uePwbACsAbGeMJYBvG3yP47hWO2zvabC2bnrI9OuNX5FTkoPXQ15vxhW1oLt3Hw5Kj4/nB6W//DKwciXwyis0KL0JNBq+xS8qim/5MzAAJkzQYOLEDJSVxSM5ORnXrpVDIpHgxRdfRHBwMGxo3hchhBBCCCGEkCfkqZeecBz3E4Cfahz7psqv7wEY9LTX1Zpt374dAPDGG2888rXRcdGwEllhqNfQ5l3U01RYCOzfz7f5nTrFD0rv1o3vURs3jm/5I49MJnvY6nf9OmBvD3z0UQ6Cg+Nx82YCLlyQwdDQEAEBAQgODoarqysYtVMSQgghhBBCCHnCqE+qDWhqWFVYVohDKYcwtdNUGAjb2CwhhQI4fvzhoHSFAvD0BD78kJ/w7eXV0itss9LS+Fa/rVv5wKpPHxnmzEmAQBCP+/dzkJAggKenJ15++WV4e3tDX1+/pZdMCCGEEEIIIeQ5Qtt1PcP2Xt0LhVqB10Jea+mlNI5GA5w5A0yfDjg48POnzpwBpk0DLlwArl3jwyoKqh6ZttVv2DB+c8TNm8sxaVIcvvzye/Tr9zkePPgN+vp6GDJkCObNm4eJEyciICCAgipCCCGEENJ6aDRAdLQ5NJrGHX8Et2/f1hs2bFh7Z2fnQA8Pj4A+ffp4xsfHGz7mih/J0aNHxb/99pvOuSZRUVFWFhYWIb6+vv4eHh4B69ate6RZMV27dvU5c+aMcV2P79+/X+Lr6+vv6+vrb2xs3NHNzS3Q19fXf9SoUW5RUVFWr732msujvp7HXVNNR48eFffr189T12OOjo5BWVlZj1WMo9Fo8MYbbzi7uLgEent7+//555861zZ69Gg3R0fHIO37df78edHjPG9rUFZWxiZOnOjq5uYW6O7uHrB9+3ZzoPrvO19fX//PP//8qQ3CpsqqZ1h0fDT8rP3QpV2Xll5K/a5e5Vv8duwAbt8GjI35oCoyEhgwAKDApMlkMiA6Wtvqp0GnTjfx4Yfx0NNLgUqlhFptjpdeegnBwcGwsrJq6eUSQgghhBBStx9+MMfrr3vg1Kn72LLlDgQCPqiaMsUZ27bZAriB114rfNTbajQajBgxwjMiIiLv6NGjNwHg/Pnzonv37ukHBwcrGnMPlUoFvSobPNX8vDH++OMPsampqXrgwIEluh4fPnx4QXR09O3MzEy9wMDAgHHjxhU6OzurtI8rlcom/7B59OjR0tGjRycBfIi0du3aOy+99JIc4AOLxtyjKa+5Ndm7d6/ZzZs3jTIyMhJPnjxpMmPGDJe6dtH75JNP7k6ePLngaa9Rl9zcXKGNjY36ce6xZMkSBxsbG2VGRkaiWq3G/fv3K7+Q2t93j7/SR0OVVc+oG/k38OftP/FayGutc85QZiawdi3QsSMQGAisXg34+/Ntfzk5/H+HDKGgqolu3AD+9S/AyYnD//1fFrp1+wUfffQ5hg3bASOj6wgJCcbkyZPx7rvvol+/fhRUEUIIIYSQ1m/SpEJMnnwf27bZYsoU52pB1eTJ9zFpUmFTbnv06FGxnp4et2jRolztsZ49e5YOHjy4uGY1z2uvveaiDW8cHR2DFixY4NC5c2efrVu3WtT8/MCBA5IOHTr4+vv7+w0ZMqR9UVGRQHvdv/71r3b+/v5+3t7e/leuXDFKTU01iI6Otvnmm2/sfH19/X/++ec6t9x2dHRUubi4KNLS0gxGjx7tNmXKFKdu3bp5z5gxw+n8+fOikJAQX29vb/+BAwd65ObmCrXXbd++3apjx46+Xl5eASdPnmx0RRMAZGdn6/fu3dvL1dU18O2333bSHjc2Nu44d+7cdsHBwb6///676caNGy2DgoL8fH19/SMiIlxVKhVUKhVGjx7t5uXlFeDt7e3/0UcfVQ4d3rlzp0VQUJCfm5tboPY1y+VyNmbMGDdvb29/Pz8//yNHjoh1rEf44osvevn5+flHRES4chz3KC9Hpx9//NE8MjIyTyAQIDQ0tEQqlerdunXrsb8hLSoqEvTo0cNb+/X+4YcfzLWPLVy40MHd3T2gZ8+eXsOHD3dftmyZHQBcvXrVsHfv3l4BAQF+nTt39rly5YpRXffftm2bpZeXV8CyZcvs7t2716S0cOfOndaffPJJNgAIhUI4ODioGrrmSWu7sSep1/fx34OBYVLwpJZeykNFRcCBA3wQdfIkPyi9a1fgiy+A8eMBO7uWXmGbxnHAiRP8rn5nzxYhJCQBM2fGw9AwFwKBAF5e3ggODoaXl1eb/okHIYQQQgh5TgkEwJYtdwAA27bZVlRTAZMnP6y0aoL4+HhRSEiIvCnXGhkZaS5fvpwKAB999JGT9vOsrCy94cOHe5w5c+aaRCLRvP/++/YrVqywW7t2bRYAWFtbq5KSkpJXrlxps3LlSrvdu3ffeu2113JNTU3VH3/8cU59z5mUlGRw584dQ39/fwUA3Lhxw+jcuXPX9PT04O3t7b9+/frbYWFhxXPnzm333nvvtdu6desdAJDL5YIrV66kHD9+3HTatGnu169fv9rY15mUlGQcFxeXJBKJNJ6enoELFizI8fT0VJaWlgoCAwNL//Of/9z7+++/jVatWmUfGxubYmhoyE2aNMnlm2++sQoJCSnNysrS1z7fgwcPKgM0lUrFEhISknfv3m328ccftxs8ePC1VatW2QLAtWvXkq5cuWI0dOhQrxs3biRWXc/ixYvb9ejRo3jt2rVZu3btMtu5c6fO9rSwsLD2N27cqBX0zJo1K2fWrFl5VY9lZWXpu7m5lWs/d3BwKL9165a+q6ursub1H330keNnn33m0Lt3b9lXX311VyQS1ZmWGRsba44dO5ZmaWmpycrK0uvWrZtvRERE4Z9//ml85MgRi4SEhCSlUsk6dOjg37FjRzkATJkyxXXTpk23goKCFH/88YfJO++84/K///3vmq77L1q0KDc8PLzw22+/te7Vq5ePt7d36ZQpUx6MGjVKKhQKERcXZzh+/HgPXdf++eefqdpfz5s3r9358+fFrq6uik2bNt3WVu0dP37c3Nvb27R9+/ZlX3311R1PT89a78eTQN+xtgE//fRTwydVoeE0iI6LRmj7UDhJnBq+4EkqL+cHpe/YARw+zA9K9/AAli3jB6V7e7fs+p4BxcXA998DX3+tgJ5eErp0icfcuRlgDHB2dkZwcBgCAgIgErX5VmpCCCGEEPK80wZW2qAKwOMEVY/rtddeK9D1+alTp0xu3Lhh1LVrV18AUCqVrHPnzsXa8yIiIgoAoGvXrvLDhw9bNOa5jhw5YuHr62tqYGCg+c9//nPLzs5ODQDh4eEFenp6yMvLE8pkMmFYWFgxAEydOjVv7Nix7as8Zz4ADBkypLi4uFjw4MEDobW1daPax3r16iW1srJSA4Cnp2fZjRs3DD09PZVCoRBvvPFGAQD8/PPP4sTEROOQkBA/ACgrKxPY2tqqxo8fX3jnzh3D119/3Xn48OFFo0aNkmrvO3bs2AIA6NmzZ8nChQsNAOD8+fOms2fPvg8AHTt2LGvXrl15QkJCtcDpf//7n/jAgQNpADBhwoSi6dOn63wdx44du9mY1wcAuqqzdHUpff7555nOzs5KhULBIiMjXZcuXWqvDSF10Wg0bO7cuU7/+9//TAUCAe7fv29w9+5dvVOnTpkOGTKk0NTUlAPADRw4sBDgK7GuXLliOnbs2MqAqby8vN52KU9PT+WaNWuyVq1albVv3z7JjBkz3DZu3Cj/448/0kJCQhQpKSlJdV2blZWll5OTo9+rV6/iLVu23F2+fLnd7NmznQ8dOpQ+bty4wqlTp+aLRCJu9erVNpMmTXKvKzRrbhRWtQHGxo9UoYlzt88hvTAdH/X96AmtqAEaDXD+PF9BtXcvkJ8PWFsDU6fyc6i6dQNaY2tiG3PzJrBhgxp//HEDnp7xGDkyFUKhChYWlggJ6Yvg4GBYWDTq7z1CCCGEEELaBm3rX1VTpjg/TmAVFBRUeujQIZ3/cNbX1+c0VQa3KxSKat/IiMVija7POY5Dr169pEeOHEnXdV8jIyMOAPT09DiVStWob47qmh1kamraqMnyNYOXRxkXY2BgUJnkCIVCTqlUsorjGm3XBsdxbOzYsXkbNmzIrHl9YmJi0sGDByUbN2603b17t+XevXszgGrvA9RqNau4T6PWJGjE1/tRKqvatWunzMjIMNB+npWVZeDi4lKrikhbaSUSibg333wzb926dfW2CH377beWeXl5egkJCcmGhoaco6NjUGlpqaCu16lWqyEWi1X1BUy6nDx50njLli3WZ8+elQwbNqxgxowZuQAarKyys7NTGRkZaV599dVCAJg0aVL+Dz/8YA0A9vb2lSHgvHnzclesWOH4KGt6HDSzqg3YuHEjNm7c2Ojzo+OiYaJvgnC/8Ce4Kh2SkoD33wfatwd69+Yne7/8MnDsGHDvHj/lu3t3CqoeA9/qx2HixEzMmnUcQuHnGDlyJzp2vInu3TvirbfewuzZs9CnTx8KqgghhBBCyLOl5owqtfpyrRlWTTB8+HBZeXk5q7rD3unTp42PHTtm6uHhoUhLSxOVlpayvLw84Z9//ilpzD379u1bEhsba5qYmGgIADKZTNDQ7oJisVgtk8mE9Z1THysrK7VEIlFrZz999913Vj169Kis5tq5c6cFAPzyyy+mYrFYra2Uai6DBw+WHj161CIzM1MPAHJycoTXrl0zyMrK0lOr1XjjjTcKP/nkk8yEhIR6qzF69epV/MMPP1gCQHx8vGFWVpZBcHBwWdVzunfvLtu6dasVAOzZs0cilUp1vm/Hjh27mZKSklTzo2ZQBQAjRowo3LFjh5VGo8Hvv/9uIhaL1bpaALVzrDQaDQ4cOGDu5+dXCvBh0ahRo9xqnl9UVCS0trZWGhoackeOHBHfu3fPAAD69u1b/Msvv5jJ5XJWVFQkOHHihDkAWFpaapycnMq3bt1qoX2ev/76q842mQMHDki8vb39P/jgA8e+ffvKrl27dnXr1q13unTpUgYA2soqXR/W1tbqihldRceOHRMDwE8//STx8vIqrfpaASAmJsa8ffv2ZbpX0fyosqoN2LNnDwBgxowZDZ5bqizFnqQ9GOM/BiYGOnc9bV737gG7dvFVVFeu8GW5AwcCK1YAI0cC4lqz8EgTlJQA27cX4NSpBNjbx8PXNw8cJ0T79j7o1i0Ynp6eEAqb/PcaIYQQQgghrd8PP5hXBlXaSqqqM6z69pU1ZTdAgUCAw4cP35gxY4bzf/7zH3tDQ0POyclJ8eWXX97x9PRUDh8+vMDPzy/A3d29LCAgoFGzrdq1a6f69ttvMyZMmNBe28L14YcfZta3u+Do0aMLx4wZ43H8+HHz//znP7cHDx5cXNe5ddm2bVv6O++84/ruu+8KXFxcFDt37szQPmZhYaHu2LGjb3FxsXDTpk06K74eR+fOncs++OCDzNDQUG+NRgN9fX0uKirqtrGxseatt95y02g0DAA+/vjju/XdZ9GiRfdfffVVV29vb3+hUIhvv/02o+ZMqJUrV94bPXp0e39/f78ePXoUOzg4lNd1v8YaN25c0bFjx8xcXV0DRSKRZsuWLRnax/r06eP53//+95abm5ty/Pjx7vn5+XocxzF/f395dHT0LQDIyMgw1DW7asqUKflDhgzxDAwM9AsICJC7u7uXVdxTPnjw4CJ/f/8AR0dHRXBwcImZmZkaAHbu3Hlz6tSprqtWrXJQqVRs1KhR+T169CjVtW4bGxvV0aNH07y9vZv8Hnz++ed3IyIi3BcsWCC0srJSRUdHZwDA6tWrbX/55RdzoVDImZubq7Zv355R/52aD2uOqfktrUuXLlxsbGxLL+OJ6du3LwDg1KlTDZ67K3EXJu6fiD9e+wP93Ps9mQVJpfyg9B07gN9/58t9unQBJk3iB6Xb2z+Z530OpaaWYvv2JOTlxcPRka/4NTR0Rb9+wQgJ8YeRUZ2bQhBCCCGEkOcIY+wyx3FdWnodTREXF5cREhLyoMETNRo+sJo0qbBay19dxwl5iqZPn+705ptv5nXr1k1nqKRLUVGRwMzMTCOTyQQ9evTw+eabb2716tWrScP+26q4uDjrkJAQt5rHqbLqGfPfuP/CWeKMPm59Gn8RxwGHDvGVUFVb9KoeVyqBX37hK6gOHwbKyvh2vw8+4OdQ+fg07wt5jqlUahw8eB3nz8fD1PQajIzUsLa2hodHf4SFBcHCwryll0gIIYQQQsjTJxBAZ+VUXccJeYq+/fbbeivGdJk0aZLr9evXRQqFgk2YMCHveQuq6kNh1TMkS5aFX2/8isUvLoaAPcJPFA4dAsLDgTlz+OqotDTA05PfYi4qip87dekSPyjdygp46y0+oKL5U82G4zikpd3FoUNxKChIgqFhKQwMTMBYF7zySjBCQhweaQAiIYQQQgghhJDWra4B/Lq899579j/++KNl1WOvvPJK/qpVq7Kbf2Utj8KqZ8iOhB3QcBq8FvLao104ciQfVH3xBbBhA2BgAJSW8pVVAHDmDPDKK3xA9fLLgL5+vbcjjZeXl4ezZ+Nx5UoCBIICKJV6uH/fF506BeP11z1gYkJlzIQQQgghhBDyvFu1alX2sxpM6UJhVRvQmFlVHMfhv3H/RTfHbvCxfsSWPMb4iqoNGwCViv/QHv/wQ2DePBqU3ozkcjkSE6/i3Ll4SKV3wXFARoY7DAxeQkSEH/r2NaSCNUIIIYQQQgghzy0Kq54R/2T/g8T7idg4dGPTbpCWBhgaPgyqAMDEhJ9FRUHVY1OpVLh27RquXIlHWtp1ABrk5Nji+vUB6NIlCCtWSODi0tKrJIQQQgghhBBCWh6FVW3A2rVrAQALFiyo85zouGgYCA0wPnB8057E05Nv/auqrIw/TpqE4zjcvn0bcXFxuHo1CeXlChQXmyI+vhtKS4Px+uv2WLcOEIlaeqWEEEIIIYQQQkjrQWFVG3D06FEAdYdVSrUSMYkxGO49HJYiS53n1Ivj+F3+NBr+cxMTQKHgq6x++AHo3JkGqT+CBw8eIC4uDgkJCSgqKoJarY+rV/0QHx+M4GB3/PvfArz0Er2lhBBCCCGEEEKILjS9+Rnwy41fcL/k/qMPVtc6dIgfrq6nB4wZA2zZAvz118Oh64cONedyn0klJSX43//+h82bN2PDhg34889zuHbNGvv3j8I33yyAp+conDjhgf37BejTh4IqQgghhBBCWpMbN27oh4aGeri6ugY6OzsHTp482bmsrKzef7U/ePBAuHLlShvt5xkZGfqDBw9u3xzrmTdvXrtly5bZ6Tpua2sb7Ovr6+/l5RWwY8cOs0e5r6OjY1BWVladRStffPGFla+vr7+vr6+/vr5+J29vb39fX1//GTNmONa1psfV0JpqioqKsnrttdd0DlExNjbu+LjrKS0tZWFhYe1dXFwCg4ODfVNTUw10nde7d28vHx8ff09Pz4CIiAgXVcVIndWrV9to37fOnTv7XL582QgArl27ZhAQEODn6+vr7+npGbB69WobXfd9WmQymaBv376e7u7uAZ6engEzZsxwrPr4li1bLDw8PAI8PT0Dhg8f7q7rHnW9VgB45513HL28vAK8vLwCNm/ebPGo66Ow6hkQHRcNa2NrDPEc0rQbjBwJzJ3LV1LNmQNMmAB06QKsXw8cOMA/TmpRKpVITExETEwM1q1bh19++QV372pw9uwgrF07D2fPTsLs2cHIyDDAqlWAq2tLr5gQQgghhJBnw9mzMN60CRZnz8L4ce+l0WgwcuRIzxEjRhTeunUrMT09PbGkpEQwZ84cx/quy8vLE3733Xe22s/d3NyUP//8883HXU9D3n777ZyUlJSk3bt335g1a5abWq2u9rhS+f/s3XlcVGX7P/DPmRmGRRZZRPadYRg2DaNwzy3NoBRJRXPLpchyy8ynslKf1NK+hsmDWWpkKabmgmW/rNwel8SFxWEYQDYRkX1xYNbz+2McHkSWAUSRrvfrxeth7nPOfa4zjH1fc32v676VHZ570aJFZRKJRCyRSMS2trbKU6dOSSUSiTg2NrZQn+s1Gg2axvOk+fLLL20sLCxU+fn5aQsXLixeunSpU3PnHT58ODsjI0MslUqvl5WVGezYscMSAObOnVsmlUrFEolEvHTp0tuLFy92BgAXFxdlUlKSRCKRiC9fvpz+5Zdf2uXm5ho8ymdratmyZcU5OTnX09LSxBcvXjTdt2+fOQCkpqYabtq0yf7ChQuSrKys63FxcQXNXd/Ss+7du9ciOTnZRCwWX9c9a3l5ebvyT5SsesJV1FXgcMZhRPlHwYDbwc85w2gXWHdyAgYOvH98wgQqA2pEo9EgJycHhw8fxsaNG3HgwAHk5xejpGQg4uLewNq1C2BmFoojR0yRkgLMmweYdPr/fBJCCCGEEEJ03ngDjmPGwGfpUriNGQOf6Gi0mlRqy9GjR80MDQ01ixYtKgMAHo+HuLi4goSEBJuamhpOTEyM9ciRIz2HDBni7ebm5r9s2TJ7AFi2bJlTQUGBoVAoFC1YsMApIyOD7+3t7Qdoq39GjRrlOWLECC9HR8eATz/9tM/HH3/c19fXVxQUFCQsLi7mAsCmTZts/P39fX18fETPP/+8Z01Njd7f0Z966ql6LpeL27dv80JCQnwWLlzo+PTTT/usXbu27+HDh818fX1FAoFAFBkZ6VZXV9fwpW716tV9AwICfAMCAnzT0tIM2/NepaenG4eEhPg4OTkFrF271hYAMjIy+B4eHn7Tp0938fPzE2VnZ/M//PDDvv7+/r4CgUC0ZMkSBwCorq7mDB8+3MvHx0fUtNrms88+sxWJRL4CgUB09epVIwAoLi7mjho1ylMgEIiCgoKEFy9efGC1X4lEwu/Xr5/Q39/fd9GiRQ7teZaWJCYm9p4zZ04ZAMyePbvi3LlzZhrdkjmNWFlZaQBAqVQySqWSYe59b9aNA0BtbS1XN25kZMQaGxuzgLZ6q7k5m/rxxx8tAgMDhb6+vqKBAwcKCgoKeABw69Yt3sCBA71FIpFvVFSUq4ODQ0N1WmxsrFVAQICvUCgURUVFuaoab6LWiJmZmSYsLKxGF1tgYKCsoKCADwBbt27tM2/evDt9+vRRA4Cjo2Ozk7T0rNevXzcaPHhwrYGBAczNzTUikUh28ODBdlUBUrLqCWBsbAzjFlbh3nd9HxRqRcdbAAGgvBz47TdtRRWHPhLNuXPnDn7//Xds3rwZ8fHxEIvF4PNF+O9/Z+Bf/1qM3btHYfp0W2RlAT//DDz3HOX4CCGEEEIIedjOnIHJrl2wra8H5+5dcOrrwdm5E7adqbBKTU01DgoKkjUes7Ky0tjb2yvEYrEhAKSkpPT66aefbqSlpV0/cuSI1enTp002bdp009nZWS6RSMTbtm272XReqVRqfODAgRuXLl1KX7dunaOJiYkmPT1dPGDAgLvbtm2zBoBp06ZVpKWlpWdkZIh9fHzqYmJibPSN+88//+zF4XBYe3t7FQBUVlZyL126lLFixYo7CxYscE9ISMiWSqVilUqFzz//vKHlzNzcXJ2ampq+YMGCO2+99ZZze96rrKwso1OnTkkvXbqUvnHjRge5XM4AQG5urtHs2bPL0tPTxWlpaUZZWVlGKSkp6enp6eJr166Z/Prrr6YHDx40t7OzU2ZkZIgzMzOvT5w4sVo3r42NjUosFqfPmTOnZP369X0B4N1333UICgqSSaVS8Zo1awpnzpz5QCtadHS0y9y5c0vS0tLS7ezsWiwpCw4O9tG1Nzb+OXTokFnTc4uLi/nu7u4KADAwMICpqam6uLi42TbFwYMHe/fp0yeoV69e6tmzZ1foxtetW9fH2dnZ/6OPPnLaunVrfqP3z0AgEIjc3d0D33777dtubm6tlsGNHj269tq1a5L09HTxpEmTylevXm0HAO+9957DsGHDasRicfrEiRMrioqK+ABw5coVo/3791vpKrg4HA4bFxdn3do9AG1L6++//9573Lhx1ffiNJRKpUZPPfWUMCgoSLh//37zlq5t7ln79+9fd+LECYuamhpOUVER79y5c+a6RJi+aIH1J8Cvv/7a4rHvkr+DXx8/PGX/VMdvcPAgoFQCU6d2fI4eqKamBqmpqUhJSUFxcTE4HA4cHb1QWTkGMTE+uH3bACIR8J//ANOna9elJ4QQQgghhHSd9HQYcrn3j3G52vEhQyBr/qrWsSwLhmHYFsYBAIMHD662s7NTA8D48eMrTp48aTp58uTK1uYdOHBgjaWlpcbS0lJjamqqjoyMrASAgIAAWUpKigkAXL582XjVqlWONTU13Lt373KHDRtW1Va8cXFxffft22fdq1cvdXx8/A3OvYKDqVOnlgNAcnKykZOTkzwwMFAOALNmzSrbunWrLYA7ADBz5sxyAJg3b175Bx980K5k1ZgxYyqNjY1ZY2NjlZWVlfLmzZs8ALC3t1eMHDnyLgAcP37c/PTp0+YikUgEADKZjCORSIxGjhxZ8/777zu/8cYbji+99FLV2LFja3XzRkVFVQBASEiI7MiRI5YA8Pfff5sdOHAgCwDCw8Nr5s+fzysrK7vvr3/lyhXTX3/9NRsAFixYULZmzZpmW/YuX76coe8zsuwDH4VmPx8AcPbs2UyZTMZMmDDB4+jRo+YTJkyoBoCVK1eWrFy5siQuLs7qo48+sj948GAuAHh5eSmlUqk4NzfXICwszGv69OkVzs7OzZc+AcjJyeG//PLLTiUlJQYKhYLj7OwsB4C///7b9NChQ1kAMGnSpGpzc3M1ABw/ftwsLS3NJCgoyBcA6uvrOba2ti3OD2jbRidOnOgxf/78YpFIpAAAtVrNZGdnG54/fz4jJyfHYNiwYcLhw4dft7GxeaDHs7lnnThxYvXFixdNnn76aaGVlZXyqaeequXxeM2+hy2hZNUTLLMsE+dvnseGURsa/iPaIXv2AAIB0L/Ta9E98RQKBdLT05GSkoKcnBywLAsHBwcIhWNx9Kg/Vq/uBbUaCAsD3n4bGDGCKqgIIYQQQgh5VHx9IW+6JJJarR3v6JwBAQF1hw8fvm8B6PLycs7t27f5vr6+8gsXLpg0/b6lz/cvPp/f8OWcw+HAyMiI1f2uUqkYAJg/f777/v37s0JDQ+tiYmKsT5069UClT1Ovv/568erVq4ubjpuZmWmA5pMtjXEaddO0lIRpiaGhYcP5XC634TlMTEwa2sFYlsXixYuLli9fXtr0+itXrogPHDhg8f777zueOHGieuPGjUUAGt4bHo/H6ubUN2nE4XDafIbg4GCfu3fvcpuOr1+/vuDll1+uaTxmZ2enyMnJ4Xt6eiqVSiVqa2u5tra2LS7EZWJiwr744ouVP//8c29dskpn3rx55cuXL39gMXg3Nzelj49P3YkTJ8waV2Q1tXDhQpdFixbdnjZtWlViYqLZ6tWrHYCW/8YsyzKRkZFlW7du1WuNMQCIiopy8/DwqF+1atUd3Zi9vb3i2WefvWtoaMgKhUKFh4dH/fXr1w33799v+fvvv1sAgEQiEbf2rBs2bLi9YcOG2wAQFhbmLhAI2vVvlHq+ngBr1qzBmjVrHhj/PuV7cBgOpgdO7/jkRUXAX39pWwD/oVkXjUaDrKws/Pzzz9i4cSMOHTqE8vJyhIYOhpPTm/j663mYMuUZJCb2wttva5f3OnwYGDnyH/uWEUIIIYQQ8lgMGQLZ7Nm4Y2QETa9e0BgZQTN7Nu50tKoK0Fbt1NfXc7766itrAFCpVIiOjnaOjIws1SWAzp49a15cXMytra1lfvnll97Dhg2rtbCwUN+9e7dT36llMhnHxcVFKZfLmb1791p1Zi6dfv361RcWFvJ161HFx8dbDxkypCEhEx8fbwUA3377rWX//v3vPox7NjZu3Ljq77//3qaqqooDADk5OQaFhYW83NxcAzMzM010dHT54sWLi69du9Zq6+azzz5bs3PnTmsASExMNLO0tFQ1XiMJAJ566qna7du3WwHA9u3bW2x3u3z5coZu4fjGP00TVQAwfvz4yh07dlgDwM6dOy1DQ0NrOE2Wy6mqquLk5eUZANrKpOPHj1sIhcI6QLs4ue68hIQEC1dXVzmg3XGytraWAYCSkhJuUlKSqZ+fXz0AvPnmm47x8fG9m8ZSU1PDdXFxUQLArl27Gp4vJCSk9vvvv7cCgIMHD5pXV1dzAWDs2LHViYmJloWFhTxAu+6XVCptsf3u7bffdqiuruZ+++239y2gPnHixMqTJ0+aAUBRUREvJyfHyMfHR75ly5ZC3XvX2rOqVCrcvn2bCwAXL140lkgkJhMnTmyzarAxqqx6Avzxxx8AgA8//LBhTMNqEJ8cj1Eeo+Bg1ol15PbtA1j2H9cCyLIsiouLkZycjLS0NNTW1sLIyAgBAQFwcgrCoUPOmD6dwZ07gFAIxMYCr74KmJo+7sgJIYQQQgj5Z4uNReHUqahIT4ehry/knUlUAdpKo0OHDmXNnz/f9fPPP7fXaDQYMWJEVUxMTEN1yoABA2onT57snpubaxQREVE2dOhQGQAEBwfXent7+40YMaJq6dKld1q+S/Pee++9WyEhIb6Ojo4KX19fWW1t7QPVP+1lYmLCxsXF5UZGRnqq1WoEBQXJ3nnnnRLdcblczgQGBgo1Gg2zd+/eh7574cSJE6uvX79u9PTTTwvvxaP54YcfciQSieHKlSudOBwOeDweGxsbm9faPBs2bLgVFRXlJhAIRMbGxppdu3blND0nNjY2f8qUKR6xsbF9w8PDW6xQao9FixaVRkREuLu4uPhbWFioExISsnXHhEKhSCKRiKurqznjx4/3UigUjEajYQYNGlS9fPnyEgD44osvbM+cOWPO4/FYCwsLlS7ulJQU4xUrVjgxDAOWZbFw4cLbISEhdQAgFouNJ0yYUNk0lvfff//W1KlTPfv27asYMGDA3fz8fEMAWL9+/a1JkyZ5iEQiy9DQ0No+ffooe/furba3t1d98MEHhSNHjhRoNBoYGBiwMTEx+QKBQNF07uzsbIMtW7bYu7u71/v5+YkAYP78+XeWLl1aOnHixOrjx4+be3p6+nG5XHb16tUFujbYxlp6VoVCwQwaNEgIAKampurvvvvuhoFB+zaEY9oqEXwSDBgwgE1KSnrcYXSZ4cOHAwBOnjzZMHYq9xSGfzccP0z8AVEBUR2fPDQUqK8Hrl7tVIxPiurqaqSkpCAlJQUlJSXgcDgQCAQICAhAZaUAW7fysG+ftpR4/Hhtq9+oUVRBRQghhBBCujeGYS6zLDvgccfREcnJyblBQUEPtIx1FzExMdZJSUm94uPj89s+m5D2Gzx4sPfZs2cz9T2/rq6O4fF4rIGBAU6cONFr4cKFrk3b8p4UycnJNkFBQW5Nx6my6gn1XfJ3MOWb4mXhyx2fJCcHuHAB2LDhocXVHcnlcojFYqSmpiInR5uMd3JywgsvvABvbz8kJppg1izg0iXA3BxYuBB4803Ay+vxxk0IIYQQQgghpOdrT6IKALKysvivvPKKp656atu2bbldFNpjQ8mqJ5BMKcNP4p8QKYqEiUGHd2gF9u7V/u/kyQ8nsG5ErVYjOzsbqampkEgkUKlUsLS0xLBhwxAYGAiFwgrbtml38isuBnx8gK1bta1+Zm0uaUgIIYQQQgj5p3j77bfLAJQ97jgI0QkICJCnp6frXUkVGBgoVCgU9y28FR8fn6NrQ+yOKFn1BLC2vn+duJ/Tf0atohYzg2Z2buI9e4CBAwFX187N002wLItbt24hJSUFaWlpkMlkMDY2Rr9+/RAUFARHR0ckJTFYtAhISACUSuCFF7StfqNHAxzaboAQQgghhBBCSA+TkpIiedwxtBclq54ABw4cuO91fEo8XC1cMcR1SMcnvX4dSE0FtmzpZHSPX2VlZcM6VGVlZeByufDx8UFgYCC8vLygVnNx4AAQE6PtejQzA954Q9vu5+39uKMnhBBCCCGEEEJIY5SsesIUVhfixI0TeH/I++AwnSgF2rtXW0oUGfnwgnuE6uvrcf36daSkpCA/X7vOoaurK0JDQ+Hn5wcjIyMUFwP//jcQFwcUFWkTUzExwMyZ2rWpCCGEEEIIIYQQ0v1QsuoJsHLlSgDAunXr8EPqD9CwGrwa+GrHJ2RZbQvgiBFA374PKcqup1arkZmZiZSUFEilUqjValhbW+O5555DYGAgevfuDQBIStImpRISAIUCGDsW+PZb4PnnqdWPEEIIIYQQQgjp7uir+xPg/PnzOH/+PFiWxXfJ32Gg80B4W3eify0pCcjOBqZOfXhBdhGWZVFQUIBjx45h06ZNSEhIQF5eHoKDgzFv3jy8+eabGDp0KHr16o29e7VLcD39NPDzz8CCBYBEAvz6KzBuHCWqCCGEEEIIIc3Lz8/nvfjiix7Ozs7+np6efsOGDfNKSUkxfJQxJCYmmv3++++9mjsWExNjbWlpGSQUCkWenp5+mzZtsmnP3CEhIT6nT59ucXeuAwcOmAuFQpFQKBSZmJj0d3Nz8xcKhaIJEya4xcTEWM+YMcOlvc/T2ZiaSkxMNHvuueea3bPd0dExoKioqFPFOBqNBrNmzXJ2cXHxFwgEorNnzzYbW0REhJujo2OA7v06d+6ccWfu21kff/xxX09PTz+BQCAKDQ0VSKVSvu5YZmYmf9CgQd4eHh5+np6efhkZGfym10ulUr6fn5+vUCgUeXl5+X322Wd9dMeOHDliJhKJfL29vf0mTpzoplQqH9VjUbLqSXKl6ArEJWLMCJzRuYn27AH4fGDixIcTWBcoLy/HyZMn8dVXX2HHjh24du0aPD09ERUVhaVLl2LcuHFwcHBASQmDtWsBNzdt7q2kBPjyS6CwUFtd5ePzuJ+EEEIIIYQQ8jBoNEB8PHprNPqN6z+vBuHh4V5Dhw6tKSgoSMvOzr6+bt26wlu3bhnoO4dKpWr1tT7+/PNPszNnzpi2dDwsLKxCIpGIT58+nbF27VrHgoKC+5IznUkkREREVEskErFEIhH7+/vL4uPjb0gkEvHPP/+cq+8cHXnm7uSnn36yuHHjhlFubm7af/7zn7zo6OgWE3Rr1669qXu/Bg4c+Fh31AsODpZdu3YtXSqVil9++eWKJUuWOOmOTZs2zf2dd94pvnHjxvUrV66kOzg4PPBHcnFxUSYlJUkkEon48uXL6V9++aVdbm6ugVqtxvz589337t17IzMz87qLi4viq6++aleStDMoWfUEiU+OhyHXEK/4vdLxSTQabX/cuHHAvba57kImk+HSpUv49ttvsWXLFpw6dQoWFhZ46aWX8M477yAiIgLe3t7gcrm4cgWYNQtwdgY+/BDw9weOHQMyMrS7+9GaVIQQQgghhPQsu3ej98yZ8Jw7F866xJRGA8ydC+eZM+G5ezd6d2TexMREMx6Px7777rslurGBAwfWjR07trZpNc+MGTNcYmJirAFtNc8777xjHxwc7LNjxw7Lpq8PHjxo3q9fP6FIJPIdN26cR1VVFUd33ZIlSxxEIpGvQCAQXb161SgjI4MfHx/fJy4urq9QKBQdP368xaSVo6OjysXFRZ6VlcWPiIhwmzt3rtMzzzwjiI6Odjp37pxxUFCQUCAQiEaPHu1ZUlLC1V23a9cu6/79+wu9vb39/vrrL70rmgDg9u3bBkOGDPF2dXX1f/311xuSISYmJv0XL17sEBgYKPzjjz9MY2NjrQICAnyFQqEoKirKVaVSQaVSISIiws3b29tPIBCIPvnkE1vd9Xv27LEMCAjwdXNz89c9s0wmYyZNmuQmEAhEvr6+oqNHj5o1Ew930KBB3r6+vqKoqChXlmXb8zjNOnz4cO9p06aVcTgcjBw58m51dTUvLy9P74RlS6qqqjihoaEC3d979+7dvXXHli9fbu/u7u43cOBA77CwMPdVq1b1BYDr168bDhkyxNvPz883ODjY5+rVq0YtzR8WFlZjZmamAYDBgwfXFhUV8QHg8uXLRmq1GhMmTKgGAAsLC43uvMaMjIxYY2NjFgDq6uoYzb1/XMXFxTw+n68JDAyUA8DYsWOrDx061Lvp9V2F1qx6QrAsix/TfkS4TzgsjS07PtGZM8CtW8CUKQ8vuE5QqVSQSqVISUlBZmYmNBoNbG1tMWrUKAQEBMC8UdZJqdS298XEAP/9L9CrFzB3rnZXP1/fx/gQhBBCCCGEkC43fToqT57EnZ07YQsA33yDgrlz4bxzJ2xnz8ad6dNR2ZF5U1JSjIOCgmQdudbIyEhz+fLlDAD45JNPnHSvi4qKeGFhYZ6nT5+Wmpuba95//327NWvW9N24cWMRANjY2KjEYnH6+vXr+6xfv75vQkJC3owZM0pMTU3Vq1evLm7tnmKxmF9QUGAoEonkAJCdnW303//+V8rj8SAQCET/93//lz9+/PjaxYsXO6xYscJhx44dBQAgk8k4V69elfz666+m8+fPd8/MzLyu73OKxWKT5ORksbGxscbLy8v/nXfeKfby8lLW1dVx/P396zZv3nzrypUrRhs2bLBLSkqSGBoastOnT3eJi4uzDgoKqisqKjLQ3a+0tLQhgaZSqZjU1NT0hIQEi9WrVzuMHTtWumHDBlsAkEql4qtXrxq98MIL3tnZ2WmN43nvvfccQkNDazdu3Fi0d+9eiz179jRb8TN+/HiP7OzsBxI9CxcuLF64cGFZ47GioiIDNzc3he61vb29Ii8vz8DV1fWBkrVPPvnEcd26dfZDhgyp+eqrr27qkj3NMTEx0Rw7dizLyspKU1RUxHvmmWeEUVFRlWfPnjU5evSoZWpqqlipVDL9+vUT9e/fXwYAc+fOdf3666/zAgIC5H/++WevN954w+XChQvSlu6hs23btj6jRo2qAgCxWGxkbm6uHjNmjGdBQYHh0KFDq7du3XqTx3swDZSVlWXwwgsveBcUFBiuWrXqppubm1Kj0UClUjGnT582GTp0qCwhIcFSlwh7FChZ9QRwcnLCzeqbKJWVYkbQQ2gBNDEBwsIeTnAdwLIs8vPzkZKSArFYjPr6epiamiIkJARBQUHo27cvGIZpOL+kBNi+HYiN1bb3eXgA//d/2sqqblYcRgghhBBCCOkiHI42QQUAO3fCVpe0mj0bd775BgWPY43aGTNmVDT3+uTJk72ys7ONQkJChACgVCqZ4ODgWt15UVFRFQAQEhIiO3LkiF7VCEePHrUUCoWmfD5fs3nz5ry+ffuqAWDixIkVPB4PZWVl3JqaGu748eNrAWDevHllkZGRHo3uWQ4A48aNq62treWUlpZybWxs1Prce/DgwdXW1tZqAPDy8qrPzs429PLyUnK5XMyaNasCAI4fP26WlpZmEhQU5AsA9fX1HFtbW9XkyZMrCwoKDGfOnOkcFhZWpav0AYDIyMgKABg4cODd5cuX8wHg3Llzpm+99dYdAOjfv3+9g4ODIjU19b6E04ULF8wOHjyYBQBTpkypWrBgQbPPcezYsRv6PB+g/Z7aVOPvpTpffPFFobOzs1IulzPTpk1z/fDDD+10ScjmaDQaZvHixU4XLlww5XA4uHPnDv/mzZu8kydPmo4bN67S1NSUBcCOHj26EtBWYl29etU0MjLSUzeHQqF4MJAmYmNjrZKTk022bduWAWgTgUlJSaYXL14Ue3t7K1588UXPLVu22CxZsqS06bVeXl5KqVQqzs3NNQgLC/OaPn16hbOzsyo+Pv7GkiVLnBUKBee5556r4nK5D964i1Cy6gmwe/duTNo3Cbb5tnje8/mOT6RUAvv3Ay+9pC1LesRKS0uRkpKC1NRUVFZWwsDAAL6+vggMDIS7uzs4Tf6vy7Vr2iqqH38E5HJg9GggLk7bwfgI/40QQgghhBBCugldwkqXqAK0rzuTqAoICKg7dOhQswkjAwMDVtNoMSy5XH5f0qBpW5XuNcuyGDx4cPXRo0dzmpvXyMiIBQAej8eqVKo2ExGAds2q+Pj4/Kbjpqameq3W1TTx0lwipiV8Pr8hk8PlclmlUsncG9foKnVYlmUiIyPLtm7dWtj0+rS0NPHPP/9sHhsba5uQkGD1008/5QL3vQ9Qq9XMvXn0iqnp98fmtKeyysHBQZmbm9tQOVRUVMR3cXF5oKpKV2llbGzMzpkzp2zTpk19W4th27ZtVmVlZbzU1NR0Q0ND1tHRMaCuro7T0nOq1WqYmZmpJBKJuM0HvOfQoUNmGzdutD9z5kyGrsrLxcVF4evrWycSiRQAEB4eXnHhwgXTP//8s1d0dLQrAHz44YeF06ZNq9LN4+bmpvTx8ak7ceKE2ezZsytGjRp1V1c5ePDgQfOsrKwW2xEfNlqz6glQXleOo9KjiPKPggG3Ey2zJ04AZWWPdBfAu3fv4uLFi9i+fTu2bt2Ks2fPwtraGhMmTMA777yDCRMmwNPTs+E/NCqVNp82dCjQv792ea05c4Dr14H/9/+AF1+kRBUhhBBCCCH/VLo1qhqPNV7DqiPCwsJqFAoF03iHvVOnTpkcO3bM1NPTU56VlWVcV1fHlJWVcc+ePavX6rjDhw+/m5SUZJqWlmYIADU1NZy2dhc0MzNT19TUdPjbjrW1tdrc3FytW/vp22+/tQ4NDW2o5tqzZ48lAPz222+mZmZmal2l1MMyduzY6sTERMvCwkIeABQXF3OlUim/qKiIp1arMWvWrMq1a9cWpqamtrpe1uDBg2t3795tBQApKSmGRUVF/MDAwPrG5zz77LM1O3bssAaAffv2mVdXVzf7vh07duyGbiH0xj9NE1UAEB4eXvnDDz9YazQa/PHHH73MzMzUzbUA6tax0mg0OHjwYG9fX986APjrr79MJkyY4Nb0/KqqKq6NjY3S0NCQPXr0qNmtW7f4ADB8+PDa3377zUImkzFVVVWcEydO9AYAKysrjZOTk2LHjh2WuvucP3++xR0H//vf/xq/9dZbrocPH85ydHRsWEB92LBhd6uqqri3bt3i3YvPXCQS1Y0YMeKu7n2YNm1aVXZ2tkFtbS0DACUlJdykpCRTPz+/egDQ/S3r6uqYzz//3O71118vaS6GrkCVVU+ASXMmQZGjwMy5Mzs30Z492r655ztRnaUHpVKJjIwMpKSkICsrCyzLws7ODmPGjIG/vz/MzB5YHw+lpcA332hb/QoKtLv7bdoEzJ4NWHZiiS5CCCGEEEJIz6BLVOnWqGq8ZhXQ8QorDoeDI0eOZEdHRztv3rzZztDQkHVycpJv2bKlwMvLSxkWFlbh6+vr5+7uXu/n56fX2lYODg6qbdu25U6ZMsVD18L10UcfFeoWq25ORERE5aRJkzx//fXX3ps3b84fO3ZsbUvntmTnzp05b7zxhuvbb7/NcXFxke/ZsydXd8zS0lLdv39/YW1tLffrr79utuKrM4KDg+s/+OCDwpEjRwo0Gg0MDAzYmJiYfBMTE81rr73mptFoGABYvXr1zdbmeffdd++8+uqrrgKBQMTlcrFt27bcpmtCrV+//lZERISHSCTyDQ0NrbW3t1e0NJ++Xnnllapjx45ZuLq6+hsbG2u++eabXN2xYcOGeX333Xd5bm5uysmTJ7uXl5fzWJZlRCKRLD4+Pg8AcnNzDZtbu2ru3Lnl48aN8/L39/f18/OTubu719+bUzZ27NgqkUjk5+joKA8MDLxrYWGhBoA9e/bcmDdvnuuGDRvsVSoVM2HChPLQ0NBmdx1cvny5s0wm4+raBh0cHBR//vlnFo/Hw/r1628OHz5cAAABAQGy5loAU1JSjFesWOHEMAxYlsXChQtvh4SE1AHA6tWr7X7//XcLjUbDzJkz5054eHhNZ99nfTEPY9X8x23AgAFsUlLS4w6jy5j7mEPDalCTUdOuUs371NUBtrbA5MnarNBDxrIscnNzG9ahUigUMDc3R0BAAAIDA2Fra9vsdSkp2la/H34A6uuBESO0u/lRBRUhhBBCCCH6YxjmMsuyAx53HB2RnJycGxQU9MCX6Kbi47W7ATZeo6pxAuu775A9Y0bHFlknpLMWLFjgNGfOnLJnnnmm2aRSc6qqqjgWFhaampoaTmhoqE9cXFze4MGDO7TY/5MqOTnZJigoyK3pOFVWdXMZpRmokdfAw8qj44kqADh2DKitfegtgHfu3GlYh6q6uhp8Ph8ikQiBgYFwdXVtto9YpQKOHNEmqU6dAoyNgZkztbv6+fs/1PAIIYQQQgghPcS93f6yp09Hpe5rhm4Nq+HDUdPR3QAJeRi2bdvWasVYc6ZPn+6amZlpLJfLmSlTppT90xJVraFkVTcXnxwPMEDfXq2u2da2vXsBOztg+PBOx1RTU4O0tDSkpKTg9u3bYBgGXl5eGD16NHx8fGBg0Py6WuXl2qKurVuB/HzA1RX4/HPtmlRWVp0OixBCCCGEENKDcThAc5VTLY0T0t21tAB/c1asWGF3+PDh+745v/TSS+UbNmy4/fAje/woWdWNaVgNvk/5HpZGluBz+W1f0JLqaiAxEViw4IHeOpZlIZFIIBQK76vcajquUCggkUiQkpKCGzdugGVZODg4YOzYsfD390evVnYXTE0FtmwBdu/WdiM+9xzw5ZdAWBi1+hFCCCGEEEIIIW3ZsGHD7Z6amGoOJau6sVO5p1BQXYARfiPgaeXZ8YkOHQLkcmDKlAcOSSQS7Nu3D8888wwCAgJQUVEBS0tLpKam4uLFixg6dCgqKyuRnp4OpVIJCwsLDB48GIGBgbCxsXnwXveo1cDRo9pWv7/+AoyMgFdfBd56CwgI6PijEEIIIYQQQgghpGejZFU39l3ydzA3NEfinkQYG7S4U2Xb9uzRbq/37LMPHBIKhXjmmWdw8eJFXLp0CVwuFyqVCizLwsDAAKdPn4ahoWHDQukuLi6trp1VUQF8+6221S83F3B2BjZsAF57DbC27vgjEEIIIYQQQggh5J+BklXd1F3FXewX78dU/6mdS1SVlgK//w4sXw40k2RiGAYBAQG4dOkSNBoNNBpNwzEHBweEhIRAIBCAx2v9o3L9urbV7/vvAZkMGDYM2LQJCA8H2riUEEIIIYQQQgghpAGlEbqpg+kHcVd5FzOCZmD+/PkAgK+//rr9E+3fr+3Ja2UXwIqKCnC53PsSVTweDwMGDIBIJGrxOrVau8lgTAzwxx/aVr9p07StfkFB7Q+VEEIIIYQQQgghhNOekxktZ4ZhBjIM0/KK2qTT4lPi4d7bHYNdBkMqlUIqlXZsoj17AF/fVheKsrS0hEqlum9Mo9HA0tKy2fMrK4EvvgC8vYGXXgIyMoB164CCAu1uf5SoIoQQQgghhDxJsrOzDUaOHOnp6urq7+zs7D979mzn+vr6ltc/AVBaWspdv359H93r3Nxcg7Fjx3o8jHiWLl3qsGrVqge2hF+6dKmDra1toFAoFHl7e/v98MMPFu2Z19HRMaCoqKjFopUvv/zSWigUioRCocjAwOApgUAgEgqFoujoaMeWYuqstmJqKiYmxnrGjBkuzR0zMTHp39l46urqmPHjx3u4uLj4BwYGCjMyMprd7WzIkCHePj4+Ii8vL7+oqCgX3Xfqzz77rI/ufQsODva5fPmyEQBIpVK+n5+fr1AoFHl5efl99tlnfZqb93EYMWKEl7e3t5/utb7vAQB88803lp6enn5eXl5+YWFh7o2PlZeXc2xtbQNb+nu1Ru9kFcMw0QAKAeQBOAPA5974QYZhFrf3xqRlBVUF+OPGH5gRNKPV9aHadPMmcOaMtqqqhXlYlkVqaipYlgUAcLlccDgcaDQapKamQqNh8fPPAMsC6elAdDTg6AgsWwY4OQE//QTk5ADvvQe0st46IYQQQgghhHRLGo0GL7/8sld4eHhlXl5eWk5OTtrdu3c5ixYtcmzturKyMu63335rq3vt5uamPH78+I2ujvf1118vlkgk4oSEhOyFCxe6qdXq+44rlcoOz71o0aIyiUQilkgkYltbW+WpU6ekEolEHBsbW6jP9RqNBk3jedJ8+eWXNhYWFqr8/Py0hQsXFi9dutSpufMOHz6cnZGRIZZKpdfLysoMduzYYQkAc+fOLZNKpWKJRCJeunTp7cWLFzsDgIuLizIpKUkikUjEly9fTv/yyy/tcnNzDR7lszXnu+++692rV6/7/mj6vgepqamGmzZtsr9w4YIkKyvrelxcXEHj48uWLXN85plnajoSl17JKoZhlgP4AsB2ACMANM58nAQwuSM3J837IfUHsGDxauCrnZto3z5tlqmVFkCJRIKLFy+Cz7fC3bsmqKp6CaGhc2BpqV10/d13JZg4EejfHxCJgB07gMmTgStXgNOngUmTaE0qQgghhBBCyKOVl5dncvnyZcu8vDyTzs519OhRM0NDQ82iRYvKAO2SKHFxcQUJCQk2NTU1nJiYGOuRI0d6DhkyxNvNzc1/2bJl9gCwbNkyp4KCAkOhUChasGCBU0ZGBl9XnRITE2M9atQozxEjRng5OjoGfPrpp30+/vjjvr6+vqKgoCBhcXExFwA2bdpk4+/v7+vj4yN6/vnnPWtqavQuKHnqqafquVwubt++zQsJCfFZuHCh49NPP+2zdu3avocPHzbz9fUVCQQCUWRkpFtdXV3Dd/jVq1f3DQgI8A0ICPBNS0szbM97lZ6ebhwSEuLj5OQUsHbtWlsAyMjI4Ht4ePhNnz7dxc/PT5Sdnc3/8MMP+/r7+/sKBALRkiVLHACgurqaM3z4cC8fHx+Rt7e33/bt2xtaeT777DNbkUjkKxAIRFevXjUCgOLiYu6oUaM8BQKBKCgoSHjx4sUHFnOWSCT8fv36Cf39/X0XLVrk0J5naUliYmLvOXPmlAHA7NmzK86dO2fWeMkcHSsrKw0AKJVKRqlUMrpCE904ANTW1nJ140ZGRqyxsTELaCuXmpuzqR9//NEiMDBQ6OvrKxo4cKCgoKCABwC3bt3iDRw40FskEvlGRUW5Ojg4NFSnxcbGWgUEBPgKhUJRVFSUa9Muqsaqqqo4MTExfT/++OOijrwHW7du7TNv3rw7ffr0UQOAo6Njw83OnDljUlJSYjB69OjqNh+0Gfr+Q3gTwCqWZT+CtqqqsQwAgo7cnDyIZVnEJ8djsMtgeFp5dm6yPXuAAQMAL68WTxEKhYiIiABQCx5PiI0bAzBunCP+9a/nERe3AJs2CQFo12n/97+1rX47dmiTV4QQQgghhBDyqB07dsxx9+7dPr/99pvb7t27fY4dO9ZqBVRbUlNTjYOCgmSNx6ysrDT29vYKsVhsCAApKSm9fvrppxtpaWnXjxw5YnX69GmTTZs23XR2dpZLJBLxtm3bbjadVyqVGh84cODGpUuX0tetW+doYmKiSU9PFw8YMODutm3brAFg2rRpFWlpaekZGRliHx+fupiYGL37Vf78889eHA6Htbe3VwFAZWUl99KlSxkrVqy4s2DBAveEhIRsqVQqVqlU+PzzzxtazszNzdWpqanpCxYsuPPWW285t+e9ysrKMjp16pT00qVL6Rs3bnSQy+UMAOTm5hrNnj27LD09XZyWlmaUlZVllJKSkp6eni6+du2aya+//mp68OBBczs7O2VGRoY4MzPz+sSJExuSGDY2NiqxWJw+Z86ckvXr1/cFgHfffdchKChIJpVKxWvWrCmcOXOme9N4oqOjXebOnVuSlpaWbmdn12JJWXBwsI+uvbHxz6FDh8yanltcXMx3d3dXAICBgQFMTU3VxcXFzZZoDB482LtPnz5BvXr1Us+ePbtCN75u3bo+zs7O/h999JHT1q1b8xu9fwYCgUDk7u4e+Pbbb992c3NrtQxu9OjRtdeuXZOkp6eLJ02aVL569Wo7AHjvvfcchg0bViMWi9MnTpxYUVRUxAeAK1euGO3fv99KV8HF4XDYuLg465bmX7p0qeOiRYuKTU1N78tE6fseZGVlGUqlUqOnnnpKGBQUJNy/f785AKjVaixbtsx58+bNBU2v0Ze+ySo7AJdbOKYBYNTRAMj9km4lIb00HTMCZzSM9evXD/369WvfRJmZQFISMGVKq6cxDAMTExMoFAoMGiQAlwuoVMDduwxu37YDwODTT7Wtfv/6F9Cn23TVEkIIIYQQQv5p8vLyTK5du2arUqk4SqWSo1KpONeuXbPtTIUVy7JgGIZtYRwAMHjw4Go7Ozu1qakpO378+IqTJ0+atjXvwIEDaywtLTUODg4qU1NTdWRkZCUABAQEyHJzcw0B4PLly8bBwcE+AoFAdODAAevr16+3+d06Li6ur1AoFC1fvtwpPj7+Boej/Vo/derUcgBITk42cnJykgcGBsoBYNasWWVnz55tSMrMnDmzHADmzZtXfvXq1Tafo7ExY8ZUGhsbs/b29iorKyvlzZs3eQBgb2+vGDly5F0AOH78uPnp06fNRSKR6F6llZFEIjF66qmn6s6cOWP+xhtvOB4/ftzU2tq6ofUsKiqqAgBCQkJkBQUFhgDw999/m7322mtlABAeHl5TWVnJKysr4zaO58qVK6bz5s0rB4AFCxaUtRT35cuXM3TtjY1/Xn755Qda1HRL5DTW3OcDAM6ePZt5+/btZIVCwTl69Ki5bnzlypUlBQUFaR9//PHNjz76yF437uXlpZRKpeL09PS0H3/80UZXKdWSnJwc/pAhQ7wFAoEoJibGTiKRGN97b0x1f8dJkyZVm5ubqwHg+PHjZmlpaSZBQUG+QqFQdPbsWfMbN240Wz137tw545ycHMMZM2ZUdvQ9UKvVTHZ2tuH58+czEhISbrz55ptupaWl3A0bNvQZM2ZMpZeXV4d7UvVt4MoCMAzAH80cGwpA3NEAyP3ik+NhyDXEK36vNIxt3ry5/RPt3atdp2py2x2aGRkZ4PF4qKrygIGBdpc/HVNTwN0dMHjsnbSEEEIIIYSQf7rS0lLDpuv6MgyD0tJSQ1dXV1kLl7UqICCg7vDhw/ftLlVeXs65ffs239fXV37hwgWT5u7ZFj6f3/DlnsPhwMjIiNX9rlKpGACYP3+++/79+7NCQ0PrYmJirE+dOvVApU9Tr7/+evHq1auLm46bmZlpgOYTDY3pklv3nqP1k5swNDRsOJ/L5TY8h4mJSUNlDsuyWLx4cdHy5ctLm15/5coV8YEDByzef/99xxMnTlRv3LixCEDDe8Pj8VjdnPomTDgcTpvPEBwc7HP37l1u0/H169cXNE1Y2dnZKXJycvienp5KpVKJ2tparq2tbYsLcZmYmLAvvvhi5c8//9x7woQJ97W8zZs3r3z58uUPLC7u5uam9PHxqTtx4oRZ44qsphYuXOiyaNGi29OmTatKTEw0W716tQPQ8t+YZVkmMjKybOvWrW2uMXbmzBnTtLQ0E0dHxwCVSsWUl5fzQkJCfP7++++Mlt6Dt956y/H333+3AACJRCK2t7dXPPvss3cNDQ1ZoVCo8PDwqL9+/brhhQsXTC9dumS6c+dOW5lMxlEqlRxTU1O1vmufAfpXVm0G8B7DMB8A8L43ZsswzGsAlgL4P31vSFqmUCuwJ20PXha+DAujdm3qcD+W1bYADhmiXQW91VNZSKVSuLu7QyAwgFx+//H6+la7CAkhhBBCCCHkkbGxsZE3/aLOsixsbGzkLVzSpvDw8Jr6+nrOV199ZQ0AKpUK0dHRzpGRkaW6BNDZs2fNi4uLubW1tcwvv/zSe9iwYbUWFhbqu3fv6r3GVHNkMhnHxcVFKZfLmb1791p1Zi6dfv361RcWFvJ161HFx8dbDxkypCEhEx8fbwUA3377rWX//v3vPox7NjZu3Ljq77//3qaqqooDADk5OQaFhYW83NxcAzMzM010dHT54sWLi69du9ZqNdyzzz5bs3PnTmsASExMNLO0tFQ1Xg8KAJ566qna7du3WwHA9u3bW2x3a09l1fjx4yt37NhhDQA7d+60DA0NrWmc4AO0az3l5eUZANoF7Y8fP24hFArrAO2i47rzEhISLFxdXeWAdsfJ2tpaBgBKSkq4SUlJpn5+fvUA8OabbzrGx8f3bhpLTU0N18XFRQkAu3btani+kJCQ2u+//94KAA4ePGheXV3NBYCxY8dWJyYmWhYWFvIA7bpfUqm02Z38VqxYUXLnzp2UwsLC1NOnT0vc3Nzkf//9d0Zr78GWLVsKde8dAEycOLHy5MmTZgBQVFTEy8nJMfLx8ZEfOXIkp6ioKLWwsDD1k08+uTlx4sSy9iSqAD0rq1iW/YZhGEsAqwB8cm/4FwAyAB+zLPtje25KmvdL5i8oqyvDzKCZ941Pnz4dALB79279JkpN1W7d9/bbbZ5aUlKCyspKDBo0CN99p81zMQzQq5c2UaVSAbt3A8HBLW4oSAghhBBCCCGPhKurq6xfv353rl27ZsswDFiWRb9+/e50tKoK0FYaHTp0KGv+/Pmun3/+ub1Go8GIESOqYmJiGr5cDxgwoHby5Mnuubm5RhEREWVDhw6VAUBwcHCtt7e334gRI6qWLl16p733fu+9926FhIT4Ojo6Knx9fWW1tbUPVP+0l4mJCRsXF5cbGRnpqVarERQUJHvnnXdKdMflcjkTGBgo1Gg0zN69ex/67oUTJ06svn79utHTTz8tvBeP5ocffsiRSCSGK1eudOJwOODxeGxsbGxea/Ns2LDhVlRUlJtAIBAZGxtrdu3aldP0nNjY2PwpU6Z4xMbG9g0PD2+xQqk9Fi1aVBoREeHu4uLib2FhoU5ISMjWHRMKhSKJRCKurq7mjB8/3kuhUDAajYYZNGhQ9fLly0sA4IsvvrA9c+aMOY/HYy0sLFS6uFNSUoxXrFjhpPvcLly48HZISEgdAIjFYuMJEyZUNo3l/fffvzV16lTPvn37KgYMGHA3Pz/fEADWr19/a9KkSR4ikcgyNDS0tk+fPsrevXur7e3tVR988EHhyJEjBRqNBgYGBmxMTEy+QCBQPKz3oLGJEydWHz9+3NzT09OPy+Wyq1evLrCzs3so20EybZUI3ncyw5gBCAVgA6AcwHmWZaseRiCdMWDAADYpKelxh9FpExIm4MLNCyhYUgAe5395xOHDhwMATp48qd9EK1cCn38OFBW1ucjU2bNn8ccff8DXdwkmT9a22H7xBWBvr62o2r0b+PJL4OBBYMKEjjwVIYQQQgghpKsxDHOZZdkBjzuOjkhOTs4NCgp6oGWsNXl5eSalpaWGNjY28s4kqvQRExNjnZSU1Cs+Pj6/7bMJab/Bgwd7nz17NlPf8+vq6hgej8caGBjgxIkTvRYuXOiqq3Z60iQnJ9sEBQW5NR3Xq7KKYZgZAI6xLFsG4P81OWYF4EWWZeMfRqD/VKWyUhyTHsPbz7x9X6Kq3VhWu17V6NF6rYYulUphb2+PyEhzxMUBly8D0dGA4b3CxeBgYNgw4OWXOx4SIYQQQgghhDxMrq6usq5OUhHyqLQnUQUAWVlZ/FdeecVTVz21bdu23C4K7bHRNyuyE9qKquZW13e/d5ySVZ2QkJYApUaJGUEz2j65NRcuALm5wCeftHmqTCbDzZs3MWTIECiVwNWrwEsv/S9RBWhb/6iiihBCCCGEEPJP9fbbb5eh+e/ChDwWAQEB8vT0dL0rqQIDA4UKheK+hbfi4+NzdG2I3ZG+yarWViuyBlDdynGih++Sv0NQ3yAE9g3s3ER79wJGRnqVQmVmZoJlWfj4+OCPP4DKSiAysnO3J4QQQgghhBBCSPeRkpIiedwxtFeLySqGYV4C8FKjoQ8ZhilpcpoRgCEALnVBbP8Y6SXpuHTrEr4Y80Wzx0NDQ/WbSK0G9u0Dxo8HzM3bPF0qlcLU1BT29vb44APtJWPGtCdyQgghhBBCCCGEkIertcoqWwABjV57ArBrco4C2jWs1j7kuP5R4pPjwWW4iAqIavb4unXr9Jvo5Eng9m1gypQ2T1Wr1cjKyoK/vz9UKgaHDgHh4fe3ABJCCCGEEEIIIYQ8ai0mq1iW3Q5gOwAwDPMXgDdYln3iSse6O7VGjd2puzHWayz6mvbt3GR79gBmZtrKqjbk5eVBoVBAIBDgjz+AigpqASSEEEIIIYQQQsjjx2n7FIBl2ecoUdU1/sr9Czerb7a6sHpERAQiIiJan0ihAA4c0K5VZWzc5n0zMjLA4/Hg4eGBn37S5rioBZAQQgghhBBCCCGPm17JKgBgGMaMYZjpDMOsZhjms6Y/XRlkTxafHA8LQwuE+4S3eE5ZWRnKytrYfOK337QrpE+d2uY9WZaFVCqFu7s7AIOGFkAjo3aFTgghhBBCCCGPDMuySE5O7s2yrF7j7ZGfn8978cUXPZydnf09PT39hg0b5pWSkvJIF0lJTEw0+/3333s1dywmJsba0tIySCgUijw9Pf02bdpk0565Q0JCfE6fPm3S0vEDBw6YC4VCkVAoFJmYmPR3c3PzFwqFogkTJrjFxMRYz5gxw6W9z9PZmJpKTEw0e+6557yaO+bo6BhQVFSk7wZyzdJoNJg1a5azi4uLv0AgEJ09e7bZ2CIiItwcHR0DdO/XuXPn2q4WeQR27txpyTBMcOP3dMuWLdaurq7+rq6u/lu2bLFu6drMzEz+oEGDvD08PPw8PT39MjIy+I2Pz5w509nExKR/V8bflF5/TIZhPAH8F4AJgF4ASgBY3bu+AkAVgHe7KMYeq1ZRiwPpBzA9YDqMeJ3MFO3ZA1hbA6NGtXlqaWkpKisrMWjQIPz5J1BeTi2AhBBCCCGEkO4tJSWl96FDhzxzc3PvhIeHFzAMA5ZlceTIEedr167ZAsgOCgqqbO+8Go0G4eHhXlFRUWWJiYk3AODcuXPGt27dMggMDJTrM4dKpQKPx2vxtT7+/PNPM1NTU/Xo0aPvNnc8LCysIj4+Pr+wsJDn7+/v98orr1Q6OzurdMeVSiUMDAzadU+diIiI6oiICDGgTSJt3LixYOjQoTJAmyjTZ46OPHN38tNPP1ncuHHDKDc3N+2vv/7qFR0d7dLSLnpr1669OXv27IpHHWNLKioqOFu3brUNDAxs+OwUFxdzN2zY4HD58mUxh8NB//79RVOmTKns06ePuun106ZNc1+5cmXRhAkTqquqqjgczv/qmk6fPm1SVVX1yP+w+lZW/R+AJAB9ATAAXgBgDGA6gFoAk7skuh7ugPgAZEpZqy2Aerl7Fzh8GJg0CdDjP04ZGRkAAIFA0NAC+PzznQuBEEIIIYQQQrpSYGBgZb9+/e5cu3bN9siRI86NE1X9+vW7ExgYWNmReRMTE814PB777rvvlujGBg4cWDd27NjaptU8M2bMcNElbxwdHQPeeecd++DgYJ8dO3ZYNn198OBB8379+glFIpHvuHHjPKqqqji665YsWeIgEol8BQKB6OrVq0YZGRn8+Pj4PnFxcX2FQqHo+PHjpi3F6+joqHJxcZFnZWXxIyIi3ObOnev0zDPPCKKjo53OnTtnHBQUJBQIBKLRo0d7lpSUcHXX7dq1y7p///5Cb29vv7/++kvviiYAuH37tsGQIUO8XV1d/V9//XUn3biJiUn/xYsXOwQGBgr/+OMP09jYWKuAgABfoVAoioqKclWpVFCpVIiIiHDz9vb2EwgEok8++cRWd/2ePXssAwICfN3c3Px1zyyTyZhJkya5CQQCka+vr+jo0aNmzcTDHTRokLevr68oKirKtTNVdTqHDx/uPW3atDIOh4ORI0fera6u5uXl5XUs+9dIVVUVJzQ0VKD7e+/evbu37tjy5cvt3d3d/QYOHOgdFhbmvmrVqr4AcP36dcMhQ4Z4+/n5+QYHB/tcvXq11eqWZcuWOS5btuy2oaFhwxtx6NAhi6FDh1b37dtX3adPH/XQoUOrDx48aNH02suXLxup1WpMmDChGgAsLCw0ZmZmGkCbgFy+fLnTl19+ebOz70N76ZusCgEQB0CXVeazLKtmWfZHAJsAfNkVwfV08Snx8LT0xEDngZ2bKDERkMn0agEEAKlUCjs7Oxgbm+Pnn4GwMGoBJIQQQgghhHRvDMMgPDy8QJewWr16dbAuUaWrtOqIlJQU46CgIFlHrjUyMtJcvnw5Y/78+RWNX4eFhdV8+umn9qdPn5aKxeL0p556SrZmzZqGHbVsbGxUYrE4fc6cOSXr16/v6+Pjo5gxY0bJ66+/XiyRSMRjx46tbemeYrGYX1BQYCgSieQAkJ2dbfTf//5Xun379puzZs1y//TTT29KpVKxn59f3YoVKxx018lkMs7Vq1clMTExefPnz3dvz3OKxWKTQ4cO3UhPT79+5MgRy6ysLAMAqKur4/j7+9elpKRI+vTpo9q/f79VUlKSRCKRiDkcDhsXF2d9/vx5k6KiIoPMzMzrUqlU/OabbzascaNSqZjU1NT0DRs2FKxevdoBADZs2GALAFKpVPzjjz/emD9/vptMJrvvj/vee+85hIaG1qanp4vDw8Mri4qK7mtb0xk/fryHrl2v8c9XX331QLVYUVGRgZubm0L32t7eXtFSsuqTTz5xFAgEotdee825rq6u1Q+eiYmJ5tixY1lisTj91KlT0n/9619OGo0Gp0+fNjl69Khlamqq+NixY9kpKSkNLaBz5851jY2Nzb9+/Xr6559/fvONN95osQ3zv//9r3FhYSF/6tSpVY3HCwsLDZycnBqex9HRUVFYWPjA84jFYiNzc3P1mDFjPH19fUULFixwUqm0BXvr1q2zfeGFFypdXV2VrT1jV9C3lMsIQDXLshqGYcoBODQ6lgYg6KFH1sPlV+Xjr5y/8PHwj9HWf1RHjhzZ+mR79gAODsCQIW3eVyaT4ebNmxgyZAj++otaAAkhhBBCCCFPDl3C6l7bHwCgM4mqzpoxY0ZFc69PnjzZKzs72ygkJEQIAEqlkgkODm5IQEVFRVUAQEhIiOzIkSOW+tzr6NGjlkKh0JTP52s2b96c17dvXzUATJw4sYLH46GsrIxbU1PDHT9+fC0AzJs3rywyMtKj0T3LAWDcuHG1tbW1nNLSUq6Njc0DLWHNGTx4cLW1tbUaALy8vOqzs7MNvby8lFwuF7NmzaoAgOPHj5ulpaWZBAUF+QJAfX09x9bWVjV58uTKgoICw5kzZzqHhYVV6Sp4ACAyMrICAAYOHHh3+fLlfAA4d+6c6VtvvXUHAPr371/v4OCgSE1Nva+84sKFC2YHDx7MAoApU6ZULViwoNnnOHbs2A19ng/Qrn3WVHOfqy+++KLQ2dlZKZfLmWnTprl++OGHdhs3bixqaV6NRsMsXrzY6cKFC6YcDgd37tzh37x5k3fy5EnTcePGVZqamrIA2NGjR1cC2kqsq1evmkZGRnrq5lAoFM1+wNVqNZYsWeLy/fff53T0eVQqFZOUlGR68eJFsbe3t+LFF1/03LJli82ECROqDh06ZHnhwoWMlp6tK+mbrJICcL33+1UArzMM8wsANYDXANzqgth6tN0pu8GCxauBr7Z57ocfftjywcpK4NdfgTffBDhtF8plZmaCZVn4+Pjgo48AU1NqASSEEEIIIYQ8GXStf43Hjhw54tyZhFVAQEDdoUOHmk0YGRgYsBqNpuG1XC6/7ya6dqmmr1mWxeDBg6uPHj36QBIBAIyMjFgA4PF4rEql0itw3ZpVTcdNTU01zZ3fVNP3pz3vF5/Pb8h8cLlcVqlUMvfGNbp1qliWZSIjI8u2bt1a2PT6tLQ08c8//2weGxtrm5CQYPXTTz/lAve9D1Cr1cy9efSKiaPH99/x48d7ZGdnP9BHtHDhwuKFCxfet4uZg4ODMjc3t6FCq6ioiO/i4vJARZGuysjY2JidM2dO2aZNm/o2Paexbdu2WZWVlfFSU1PTDQ0NWUdHx4C6ujpOS8+pVqthZmamkkgk4raer7KykpuZmWk0YsQIHwAoLS01mDRpktf+/fuznJyclKdOnWpooSwsLOQPGzas5s8//+wVHR3tCgAffvhhoYuLi8LX17dOJBIpACA8PLziwoULpvb29sq8vDwjNze3AECbfHRxcfHPz89Payuuh0HfNsC9APrd+/1DAM8AqAZQA+16VZ/oe0OGYcYyDJPBMEwWwzDvtXDOcIZhrjEMc51hmFP6zv2kYFkW3yV/h6GuQ+Fu2a7qywcdPAgoFO1qATQ1NYWNjX1DC6Bxt9i7gBBCCCGEEEJa1nSNqlWrVl1uuoZVR4SFhdUoFAqm8Q57p06dMjl27Jipp6enPCsry7iuro4pKyvjnj171lyfOYcPH343KSnJNC0tzRAAampqOG3tLmhmZqauqanhtnZOa6ytrdXm5uZq3dpP3377rXVoaGhDNdeePXssAeC3334zNTMzU+sqpR6WsWPHVicmJloWFhbyAO0C31KplF9UVMRTq9WYNWtW5dq1awtTU1NbXS9r8ODBtbt377YCgJSUFMOioiJ+YGBgfeNznn322ZodO3ZYA8C+ffvMq6urm33fjh07dkMikYib/jRNVAFAeHh45Q8//GCt0Wjwxx9/9DIzM1M31/6maw3UaDQ4ePBgb19f3zoA+Ouvv0wmTJjg1vT8qqoqro2NjdLQ0JA9evSo2a1bt/gAMHz48NrffvvNQiaTMVVVVZwTJ070BgArKyuNk5OTYseOHZa6+5w/f77Zb+3W1tbqioqK5MLCwtTCwsLUoKCgu/v3788aOnSo7OWXX646deqUeUlJCbekpIR76tQp85dffrlqxIgRd3Xvw7Rp06qGDRt2t6qqinvr1i3evecwF4lEdVOmTKkqLS1tmNvIyEjzqBJVgJ6VVSzLftHo9wsMw/gDGAdte+CfLMvqFTDDMFwAWwGMBnATwCWGYY6wLCtudE5vALEAxrIsm88wjG2zkz3B/i78G9IyKVYMWqHX+ePGjQMA/Prrrw8e3LsX8PQEBgxocx61Wo2srCz4+/vj1CkGZWXUAkgIIYQQQgh5MqSkpPRuukZVeHh4AQBcu3bN1s3NraYjuwFyOBwcOXIkOzo62nnz5s12hoaGrJOTk3zLli0FXl5eyrCwsApfX18/d3f3ej8/P73WtnJwcFBt27Ytd8qUKR66Fq6PPvqosLXdBSMiIionTZrk+euvv/bevHlzfmvrVrVk586dOW+88Ybr22+/zXFxcZHv2bMnV3fM0tJS3b9/f2FtbS3366+/brbiqzOCg4PrP/jgg8KRI0cKNBoNDAwM2JiYmHwTExPNa6+95qbRaBgAWL16dauLdb/77rt3Xn31VVeBQCDicrnYtm1brrGx8X2ZyPXr19+KiIjwEIlEvqGhobX29vaKlubT1yuvvFJ17NgxC1dXV39jY2PNN998k6s7NmzYMK/vvvsuz83NTTl58mT38vJyHsuyjEgkksXHx+cBQG5urmHTOAFg7ty55ePGjfPy9/f39fPzk7m7u9ffm1M2duzYKpFI5Ofo6CgPDAy8a2FhoQaAPXv23Jg3b57rhg0b7FUqFTNhwoTy0NDQuvY8T9++fdXLly+/FRwc7AsA77777i1d62hjPB4P69evvzl8+HABAAQEBMiWLFlS2p57dQWms6vmM9rawVdYlk3Q49xQAB+zLPv8vdcrAYBl2XWNzokG4MCy7Af6xjBgwAA2KSmp3bE/Lm8eexM7ru1A8TvFMDdsOzE/fPhwAMDJkyfvP1BcrF2r6l//AtasaXOeGzdu4Pvvv8eUKVOwaZMP9uwB7tyhyipCCCGEEEKedAzDXGZZtu3/D3Y3lJycnBsUFNTml2OWZZGSktI7MDCwsnELW0vjhDxKCxYscJozZ07ZM888o3dSqaqqimNhYaGpqanhhIaG+sTFxeUNHjy4Q4v9P6mSk5NtgoKC3JqO61VZxTBMHwClbKPMFsMwxtCuV7UEgBuANpNVABwBFDR6fRPalsLGBAAMGIY5CcAMwJcsy8brE+eTQK6SY0/aHkwQTtArUdWqn34CNBpgyhS9Ts/IyACPx4OLiwd+/hl48UVKVBFCCCGEEEKeDAzDoLnKqZbGCXmUtm3b1mrFWHOmT5/umpmZaSyXy5kpU6aU/dMSVa1pMVnFMIwJgM0ApgMwBFDDMMxalmU3MgyzAMBqAH0A/A5glp73ay7N3bS0iwcgGMBIAMYAzjMMc4FlWWmT+OYDmA8ALi4t7uLY7RzLPIaK+grMDJrZ+cn27AECAgA/vzZPZVkWUqkU7u7u+O9/DVBaSi2AhBBCCCGEEELI49LSAvzNWbFihd3hw4etGo+99NJL5Rs2bLj98CN7/FqrrFoFYCaAHQCSod0N8F8MwzwLYCKAPwGsZFn2UjvudxNA450bnPDgToI3oa3iugvgLsMwpwEEQbsjYQOWZb8G8DWgbQNsRwyPVXxyPOxN7THKY1TnJsrLA86dAz79VK/TS0tLUVlZiUGDBmH7dqBXL+DeUliEEEIIIYQQQgjpxjZs2HC7pyammtNasmoigNUsy/5bN3BvZ75fAOxgWXZuB+53CYA3wzDuAAoBTAEQ1eScwwC+YhiGB4APbZvg/3XgXt3S1dtXMdJjJLgc/Td5ePHFFx8cTLjXddmOFkAA8PAQ4OBBagEkhBBCCCGEEEJI99RassoVwKkmY7rX33XkZizLqhiGWQjgNwBcaJNe1xmGef3e8TiWZdMZhjkOIAWABsA3+u42+CRQqBUw4bW6U+cD3nnnnQcH9+wBnnkGcHfXaw6pVAo7OztcvWpOLYCEEEIIIYQQQgjptlpLVhkAaLr9o+713Y7ekGXZX6Ctzmo8Ftfk9ecAPu/oPbozhVoBPpffuUkkEuDaNWDzZr1Ol8lkuHnzJoYMGYKEBMDEhFoACSGEEEIIIYQQ0j21tRvgWwzDFDV6rVsgfRHDMMWNxlmWZVc83NB6po4kq4YPHw4AOHnypHZg716AwwFeeUWv6zMzM8GyLDw9fRpaAE3aV9xFCCGEEEIIIYQQ8khwWjmWD2AwgMhGP5MA5AEY2mScmsr0JFfJO1dZxbLaFsDhwwF7e70ukUqlMDU1RWamPUpKqAWQEEIIIYQQQhrLzs42GDlypKerq6u/s7Oz/+zZs53r6+ub282+QWlpKXf9+vV9dK9zc3MNxo4d6/Ew4lm6dKnDqlWr+jY3bmtrGygUCkXe3t5+P/zwg0V75nV0dAwoKipqsWjlyy+/tBYKhSKhUCgyMDB4SiAQiIRCoSg6OtqxpZg6q62YmoqJibGeMWOGS3PHTExM+nc2nrq6Omb8+PEeLi4u/oGBgcKMjIxmv8APGTLE28fHR+Tl5eUXFRXlolKpAACfffZZH937Fhwc7HP58mUjAJBKpXw/Pz9foVAo8vLy8vvss8/6NDfvk+Tnn3829/Pz8xUIBCI/Pz/fI0eOmOmOhYSE+Li5ufnrPk+FhYV6/42BVpJVLMu6sSzrrufPQ/kH2dOxLAulRglDnmHHJ7l6FZBK9V5YXa1WIysrC97e3ti/n4GJCfDCCx2/PSGEEEIIIYQ8bmfyzph8fflryzN5ZzrdM6LRaPDyyy97hYeHV+bl5aXl5OSk3b17l7No0SLH1q4rKyvjfvvtt7a6125ubsrjx4/f6Gw8bXn99deLJRKJOCEhIXvhwoVuarX6vuNKpbLDcy9atKhMIpGIJRKJ2NbWVnnq1CmpRCIRx8bGFupzvUajQdN4njRffvmljYWFhSo/Pz9t4cKFxUuXLnVq7rzDhw9nZ2RkiKVS6fWysjKDHTt2WALA3Llzy6RSqVgikYiXLl16e/Hixc4A4OLiokxKSpJIJBLx5cuX07/88ku73Nxcg0f5bPpQq9UoKyvTa0c4W1tb5bFjx7KkUql4165dOXPnzr1vUe34+Pgbus+To6Ojqj1xtFZZRR4ypUb7H41OVVbt2QMYGAAREXqdnpeXB4VCAW9vbQvg+PHUAkgIIYQQQgh5cr1x7A3HMbvH+Cz9banbmN1jfKKPRbeaVGrL0aNHzQwNDTWLFi0qAwAej4e4uLiChIQEm5qaGk5MTIz1yJEjPYcMGeLt5ubmv2zZMnsAWLZsmVNBQYGhUCgULViwwCkjI4Pv7e3tB2irf0aNGuU5YsQIL0dHx4BPP/20z8cff9zX19dXFBQUJCwuLuYCwKZNm2z8/f19fXx8RM8//7xnTU2N3t/Rn3rqqXoul4vbt2/zQkJCfBYuXOj49NNP+6xdu7bv4cOHzXx9fUUCgUAUGRnpVldX11Altnr16r4BAQG+AQEBvmlpae2qpEhPTzcOCQnxcXJyCli7dq0tAGRkZPA9PDz8pk+f7uLn5yfKzs7mf/jhh339/f19BQKBaMmSJQ4AUF1dzRk+fLiXj4+PyNvb22/79u2Wunk/++wzW5FI5CsQCERXr141AoDi4mLuqFGjPAUCgSgoKEh48eLFB/azl0gk/H79+gn9/f19Fy1a5NCeZ2lJYmJi7zlz5pQBwOzZsyvOnTtnptFoHjjPyspKAwBKpZJRKpUMwzD3jQNAbW0tVzduZGTEGhsbs4C2equ5OZv68ccfLQIDA4W+vr6igQMHCgoKCngAcOvWLd7AgQO9RSKRb1RUlKuDg0NDdVpsbKxVQECAr1AoFEVFRbnqKr7akpmZyV+6dKmDh4eH/++//26qzzWDBg2qc3NzUwJAcHBwvUKh4DT+rHUGJaseIYVauz59h5NVGg2QkAA8/zxgZaXXJVKpFDweD4WFHrhzh1oACSGEEEIIIU+uM3lnTHZd22Vbr6rn3FXe5dSr6jk7r+207UyFVWpqqnFQUJCs8ZiVlZXG3t5eIRaLDQEgJSWl108//XQjLS3t+pEjR6xOnz5tsmnTppvOzs5yiUQi3rZt282m80qlUuMDBw7cuHTpUvq6descTUxMNOnp6eIBAwbc3bZtmzUATJs2rSItLS09IyND7OPjUxcTE2Ojb9x//vlnLw6Hw9rb26sAoLKyknvp0qWMFStW3FmwYIF7QkJCtlQqFatUKnz++ecNLWfm5ubq1NTU9AULFtx56623nNvzXmVlZRmdOnVKeunSpfSNGzc6yOVyBgByc3ONZs+eXZaeni5OS0szysrKMkpJSUlPT08XX7t2zeTXX381PXjwoLmdnZ0yIyNDnJmZeX3ixInVunltbGxUYrE4fc6cOSXr16/vCwDvvvuuQ1BQkEwqlYrXrFlTOHPmTPem8URHR7vMnTu3JC0tLd3Ozq7FkrLg4GAfXTta459Dhw6ZNT23uLiY7+7urgAAAwMDmJqaqouLi5ttYRs8eLB3nz59gnr16qWePXt2hW583bp1fZydnf0/+ugjp61bt+Y3ev8MBAKByN3dPfDtt9++rUv0tGT06NG1165dk6Snp4snTZpUvnr1ajsAeO+99xyGDRtWIxaL0ydOnFhRVFTEB4ArV64Y7d+/30pXwcXhcNi4uDjrluavr69nduzYYTl48GDv8PBwr969e6suXLggmTJlShUAfPjhh32be99mzZr1wOfmu+++sxSJRDJdQg4A5s6d6yYUCkXLly+31yc511i7egZJ53Q0WfWKbiH1c+eAggJg/Xq9rmNZFlKpFO7u7jh40ADGxtQCSAghhBBCCHlypZemG3KZ+zuUuAwX6aXphkNch8hauKxVLMuCYRi2hXEAwODBg6vt7OzUADB+/PiKkydPmk6ePLmytXkHDhxYY2lpqbG0tNSYmpqqIyMjKwEgICBAlpKSYgIAly9fNl61apVjTU0N9+7du9xhw4ZVtRVvXFxc33379ln36tVLHR8ff4PD0dagTJ06tRwAkpOTjZycnOSBgYFyAJg1a1bZ1q1bbQHcAYCZM2eWA8C8efPKP/jgg3Ylq8aMGVNpbGzMGhsbq6ysrJQ3b97kAYC9vb1i5MiRdwHg+PHj5qdPnzYXiUQiAJDJZByJRGI0cuTImvfff9/5jTfecHzppZeqxo4dW6ubNyoqqgIAQkJCZEeOHLEEgL///tvswIEDWQAQHh5eM3/+fF7T9rQrV66Y/vrrr9kAsGDBgrI1a9Y027J3+fLlDH2fkWUf+Cg0+/kAgLNnz2bKZDJmwoQJHkePHjWfMGFCNQCsXLmyZOXKlSVxcXFWH330kf3BgwdzAcDLy0splUrFubm5BmFhYV7Tp0+vcHZ2brH0KScnh//yyy87lZSUGCgUCo6zs7McAP7++2/TQ4cOZQHApEmTqs3NzdUAcPz4cbO0tDSToKAgXwCor6/n2Nratjh/YGCgr1qtZrZv3547YsSIu02Pr1mzpnjNmjXFzV3bWFJSktGqVascjx8/nqkbS0hIuOHu7q6sqKjgvPjii56xsbHWCxcuLGtrLh2qrHqEOpqsio6ORnR0tLYF0NgYCA/X67rS0lJUVFTAy0vQ0ALYq1e7wyaEEEIIIYSQbsHXxleuZu9fE0nNquFr4yvv6JwBAQF1165du++bUnl5Oef27dt8X1/tvLqklU7T183h8/kNCQ4OhwMjIyNW97tKpWIAYP78+e5fffVVvlQqFa9YseKWXC5v8zu6bs2qy5cvZzRO+JiZmWmA5pMtjemSW/eeo/WTmzA0NGw4n8vlNjyHiYlJQ9kMy7JYvHhxkW6tovz8/LQlS5aUBgYGyq9cuSIOCAioe//99x3feeedhh3DdO8Nj8djdXPqmzTicDhtPkN7Kqvs7OwUOTk5fEC7/ldtbS3X1ta2xYW4TExM2BdffLHy559/7t302Lx588p///33B8bd3NyUPj4+dSdOnHjg/o0tXLjQJTo6+o5UKhV/9dVXebrPR0t/Y5ZlmcjIyIZ1x3Jzc9O++OKLWy3NHxcXlxccHFw7e/Zs99dff93pypUrRo2P61NZlZ2dbTBp0iSvb7/9NsfPz6/h36G7u7sSACwtLTWTJ08u//vvv9uVjaBk1SPU0WSVTCaDrLoa+OknICwMMNWrfRQZGdrkcUWFAMXF1AJICCGEEEIIebINcR0im91v9h0jnpGml0EvjRHPSDO73+w7Ha2qArRVO/X19ZyvvvrKGgBUKhWio6OdIyMjS3UJoLNnz5oXFxdza2trmV9++aX3sGHDai0sLNR3797t1HdqmUzGcXFxUcrlcmbv3r36rfXShn79+tUXFhbydetRxcfHWw8ZMqRGdzw+Pt4KAL799lvL/v37P1BN01njxo2r/v77722qqqo4AJCTk2NQWFjIy83NNTAzM9NER0eXL168uPjatWuttm4+++yzNTt37rQGgMTERDNLS0tV4/WgAOCpp56q3b59uxUAbN++vcV2t8uXL2foEjiNf15++eWapueOHz++cseOHdYAsHPnTsvQ0NCaxgk+AKiqquLk5eUZANqE1vHjxy2EQmEdAKSmpjasA5aQkGDh6uoqB7RJndraWgYASkpKuElJSaZ+fn71APDmm286xsfH924aS01NDdfFxUUJALt27Wp4vpCQkNrvv//eCgAOHjxoXl1dzQWAsWPHVicmJlrqdt4rLi7mSqXSFhMQI0aMuLtv3768lJQUsY+PT/1rr73mFhQUJDx79qwJoK2sau5927VrVwGg3RHzhRde8P74449vjhkzpuGzpFQqoVtDSy6XM7/88ouFv79/XUtxNKfdbYD3Vg2zB3CHZdl2reb+TydXaZOM7U1WvfDCC0B5OU6WlABTp+p9XWZmJuzs7HDkiDmMjbWVVYQQQgghhBDyJIsdH1s41X9qRXppuqGvja+8M4kqQFtpdOjQoaz58+e7fv755/YajQYjRoyoiomJadgBb8CAAbWTJ092z83NNYqIiCgbOnSoDACCg4Nrvb29/UaMGFG1dOnSO+2993vvvXcrJCTE19HRUeHr6yurra3Vaxe21piYmLBxcXG5kZGRnmq1GkFBQbJ33nmnRHdcLpczgYGBQo1Gw+zdu/eh7144ceLE6uvXrxs9/fTTwnvxaH744YcciURiuHLlSicOhwMej8fGxsbmtTbPhg0bbkVFRbkJBAKRsbGxZteuXTlNz4mNjc2fMmWKR2xsbN/w8PCK5uZpr0WLFpVGRES4u7i4+FtYWKgTEhKydceEQqFIIpGIq6urOePHj/dSKBSMRqNhBg0aVL18+fISAPjiiy9sz5w5Y87j8VgLCwuVLu6UlBTjFStWODEMA5ZlsXDhwtshISF1ACAWi40nTJhQ2TSW999//9bUqVM9+/btqxgwYMDd/Px8QwBYv379rUmTJnmIRCLL0NDQ2j59+ih79+6ttre3V33wwQeFI0eOFGg0GhgYGLAxMTH5AoFA0dozW1hYaJYsWVK6ZMmS0qbVVa357LPPbPPz8w3Xr1/vsH79egcA+OOPP6RmZmaaUaNGeSuVSkaj0TBDhgypXrp0aUlb8zXGtFUi2HAiw7wA4CMA/QBwAYSwLHuFYZivAZxmWXZ3e278MA0YMIBNSkp6XLfX2/U71+H/H3/sm7QPkX76lzkNHz4ckEhwsr4eKC4GDNvesEEmk2Hjxo0YPHgIoqKew+DBwP79nQieEEIIIYQQ0m0xDHOZZdkBjzuOjkhOTs4NCgoqfdxxtCQmJsY6KSmpV3x8fH7bZxPSfoMHD/Y+e/ZsZttnatXV1TE8Ho81MDDAiRMnei1cuNBVIpGIuzLGrpKcnGwTFBTk1nRcr8oqhmFmANgB4AcAsQB2NjqcCeA1AI8tWfWk6PBugBoNUFoKzJihV6IK0FZVsSyLu3d9qAWQEEIIIYQQQgjpptqTqAKArKws/iuvvOKpq57atm1bbheF9tjo2wb4PoDPWZZdyTAMF/cnq64DeOehR9YDdThZVV4OqNXAlCl6XyKVSmFqaorffrOHkRG1ABJCCCGEEEJIR7z99ttlAPTexYyQrhYQECBPT0/Xu5IqMDBQqFAo7lt4Kz4+PkfXhtgd6ZuscgXwewvH6gGYP5xwerYOJ6vu3AEMDIARI/Q6Xa1WIysrCyKRHzZuZPDCC3qvyU4IIYQQQgghhJAeJCUlRfK4Y2gvfZNVBQD6A/izmWMDAGQ9tIh6sA4lq2pqMKuyEhgyBODp9+fKy8uDQqGAWu2D27eBV17pQLCEEEIIIYQQQgghj4G+yapvAXzEMEwxgEP3xhiGYUYCeBfA6i6IrcfpULLqyBHMUiqB1fq/xVKpFDweD3/95UEtgIQQQgghhBBCCHmi6Jus2gDAGcB3ANT3xs5BuyvgNpZlY7ogth5HrpYDaGeyas8elDo4AN7esNHjdJZlIZVK4e7ujq1bDagFkBBCCCGEEEIIIU8UTtunAKzWmwB8ACwE8AGARQBE98aJHnSVVYY8/Xb0Q1kZ8NtvmMTlYpKevXylpaWoqKgAhyNAURHtAkgIIYQQQgghhJAni17JKoZhTACAZdkslmW/Zln2U5Zl41iWlXZteD1Lu9sADx4EVCrA1lbve0il2j/JhQsCGBkBL77Y7jAJIYQQQgghpNvRsBrEJ8f31rAavcbbIz8/n/fiiy96ODs7+3t6evoNGzbMKyUlRc8qg4cjMTHR7Pfff+/V3LGYmBhrS0vLIKFQKPL09PTbtGmTPo03DUJCQnxOnz5t0tLxAwcOmAuFQpFQKBSZmJj0d3Nz8xcKhaIJEya4xcTEWM+YMcOlvc/T2ZiaSkxMNHvuuee8mjvm6OgYUFRUpG/nWLM0Gg1mzZrl7OLi4i8QCERnz55tNraIiAg3R0fHAN37de7cOePO3Pdxq6mp4QwfPtzL3d3dz8vLyy86OtpRd6zx504oFIq++OKLdn3uOkOvZBWAUoZhEhiGmcAwzCP9B9uTtDtZtWcP4OPTrj4+qVQKOzs7/PSTOcaNoxZAQgghhBBCSM+wO2V375mHZnrOPTLXWZeY0rAazD0y13nmoZmeu1N29+7IvBqNBuHh4V5Dhw6tKSgoSMvOzr6+bt26wlu3bhnoO4dKpWr1tT7+/PNPszNnzrT4DS4sLKxCIpGIT58+nbF27VrHgoKC+5IzSqWy3ffUiYiIqJZIJGKJRCL29/eXxcfH35BIJOKff/45V985OvLM3clPP/1kcePGDaPc3Ny0//znP3nR0dEtJujWrl17U/d+DRw4sO5Rxqmv4uJirr7nLlu2rDgnJ+d6Wlqa+OLFi6b79u0z1x3Tfe4kEol46dKlpV0T7YP0TVa9C8AOwH4AdxiG+Z5hmPEMw3Qqc/lP065k1a1bwMmTwJQpes8vk8lQUFAAY2MBbt2iFkBCCCGEEEJIzzE9cHrl7H6z7+y8ttNWl7Cae2Su885rO21n95t9Z3rg9MqOzJuYmGjG4/HYd999t0Q3NnDgwLqxY8fWNq3mmTFjhktMTIw1oK3meeedd+yDg4N9duzYYdn09cGDB8379esnFIlEvuPGjfOoqqri6K5bsmSJg0gk8hUIBKKrV68aZWRk8OPj4/vExcX1FQqFouPHj7eYtHJ0dFS5uLjIs7Ky+BEREW5z5851euaZZwTR0dFO586dMw4KChIKBALR6NGjPUtKShoSFrt27bLu37+/0Nvb2++vv/7Su6IJAG7fvm0wZMgQb1dXV//XX3/dSTduYmLSf/HixQ6BgYHCP/74wzQ2NtYqICDAVygUiqKiolxVKhVUKhUiIiLcvL29/QQCgeiTTz5paB3as2ePZUBAgK+bm5u/7pllMhkzadIkN4FAIPL19RUdPXrUrJl4uIMGDfL29fUVRUVFubIs257Hadbhw4d7T5s2rYzD4WDkyJF3q6ureXl5eXonLFtSVVXFCQ0NFej+3rt3/y+punz5cnt3d3e/gQMHeoeFhbmvWrWqLwBcv37dcMiQId5+fn6+wcHBPlevXjXS514ymYz5z3/+Y/XMM88I5s+fr1c1nJmZmSYsLKwGAIyMjNjAwEBZQUFBOxba7hr6rln1Fcuyw6BdZP0jAJ4AjkCbuPqWYZjRXRhjj9GuZNW+fQDLAlOn6j1/ZmYmWJbFtWsCGBpSCyAhhBBCCCGk5+AwHHwT/k2BLmHFXc0N1iWqvgn/poDD6FuLcb+UlBTjoKAgWUeuNTIy0ly+fDlj/vz5FY1fh4WF1Xz66af2p0+florF4vSnnnpKtmbNmr6662xsbFRisTh9zpw5JevXr+/r4+OjmDFjRsnrr79eLJFIxGPHjq1t6Z5isZhfUFBgKBKJ5ACQnZ1t9N///le6ffv2m7NmzXL/9NNPb0qlUrGfn1/dihUrHHTXyWQyztWrVyUxMTF58+fPd2/Pc4rFYpNDhw7dSE9Pv37kyBHLrKwsAwCoq6vj+Pv716WkpEj69Omj2r9/v1VSUpJEIpGIORwOGxcXZ33+/HmToqIig8zMzOtSqVT85ptvlunmValUTGpqavqGDRsKVq9e7QAAGzZssAUAqVQq/vHHH2/Mnz/fTSaTMY3jee+99xxCQ0Nr09PTxeHh4ZVFRUXNfskeP368h66FrfHPV199Zd303KKiIgM3NzeF7rW9vb2ipWTVJ5984igQCESvvfaac11dHdPcOTomJiaaY8eOZYnF4vRTp05J//WvfzlpNBqcPn3a5OjRo5apqaniY8eOZaekpDS0gM6dO9c1NjY2//r16+mff/75zTfeeKPVxNP58+eNZ86c6SwUCv3Onz9vunHjxpuHDx/OAYDk5GTD5t4DoVAoKi0tva/6qrS0lPv777/3HjduXLVu7Ndff+0tEAhEY8eO9dD93R+FdlVGsSx7C8BmAJsZhnEB8AqAJQBmtneufyK5qh27Ae7dC/TvD/j44I033tBrfqlUClNTU3z9tQPGjQPMHsg/E0IIIYQQQsiTS5ew2nltZ0N1TmcSVZ01Y8aMiuZenzx5sld2drZRSEiIEACUSiUTHBzckICKioqqAICQkBDZkSNHLPW519GjRy2FQqEpn8/XbN68Oa9v375qAJg4cWIFj8dDWVkZt6amhjt+/PhaAJg3b15ZZGSkR6N7lgPAuHHjamtrazmlpaVcGxsbtT73Hjx4cLW1tbUaALy8vOqzs7MNvby8lFwuF7NmzaoAgOPHj5ulpaWZBAUF+QJAfX09x9bWVjV58uTKgoICw5kzZzqHhYVVTZgwoSEREhkZWQEAAwcOvLt8+XI+AJw7d870rbfeugMA/fv3r3dwcFCkpqbeV1l04cIFs4MHD2YBwJQpU6oWLFjQ7HMcO3bshj7PBwDNVWcxzIN5qC+++KLQ2dlZKZfLmWnTprl++OGHdhs3bixqaV6NRsMsXrzY6cKFC6YcDgd37tzh37x5k3fy5EnTcePGVZqamrIA2NGjR1cC2kqsq1evmkZGRnrq5lAoFC0mxD7++OO+69atc1y1atXNuLi468bGxvc9SFBQkFwikYjben6lUomJEyd6zJ8/v1gkEikA4JVXXqmcN29eubGxMfvZZ5/1mT59uvuFCxceydrlHUowMQzjBWDyvR97AAUPM6ieSu/Kqhs3gIsXgc8+AwBMnjy5zbnVajWys7NhbS3CrVsMtQASQgghhBBCehxd61/jsblH5jp3JmEVEBBQd+jQoWYTRgYGBqxG87+F2+Vy+X1JAzMzM01zr1mWxeDBg6uPHj2a09y8RkZGLADweDxWpVK1WpmjExYWVhEfH5/fdNzU1FSvleWbJl6aS8S0hM/nNyRAuFwuq1QqmXvjGh5Pm1ZgWZaJjIws27p1a2HT69PS0sQ///yzeWxsrG1CQoLVTz/9lAvc9z5ArVYz9+bRKyYOp+2/9/jx4z2ys7MfaKFbuHBh8cKFC8sajzk4OChzc3MbvqwXFRXxXVxcHlgIzNXVVQkAxsbG7Jw5c8o2bdrUt+k5jW3bts2qrKyMl5qamm5oaMg6OjoG1NXVcVp6TrVaDTMzM5U+CSZAm5RUKpXMrl27+pw6dcps1qxZpZGRkVUGBtoiqOTkZMPJkyd7Nnft2bNnM3QJy6ioKDcPD4/6VatW3dEdt7Oza0gCLl26tGTNmjWOzc3TFfT+18wwjBvDMO8yDHMZQAaANwGcBDCEZVnXLoqvR9Elqww4bVTO7d2r/d97SaqCggIUFLSeD8zLy4NcLodU6gNDQyAsrNPhEkIIIYQQQki30XSNKvUq9eWma1h1RFhYWI1CoWAa77B36tQpk2PHjpl6enrKs7KyjOvq6piysjLu2bNnzVubS2f48OF3k5KSTNPS0gwB7Y5rbe0uaGZmpq6pqdF7UeymrK2t1ebm5mrd2k/ffvutdWhoaEM11549eywB4LfffjM1MzNT6yqlHpaxY8dWJyYmWhYWFvIA7QLfUqmUX1RUxFOr1Zg1a1bl2rVrC1NTU1tdL2vw4MG1u3fvtgKAlJQUw6KiIn5gYGB943OeffbZmh07dlgDwL59+8yrq6ubfd+OHTt2Q7c4eOOfpokqAAgPD6/84YcfrDUaDf74449eZmZmal1iqjFda6BGo8HBgwd7+/r61gHAX3/9ZTJhwgS3pudXVVVxbWxslIaGhuzRo0fNbt26xQeA4cOH1/72228WMpmMqaqq4pw4caI3AFhZWWmcnJwUO3bssNTd5/z58y3uOOjo6Kj697//fTszM/P6kiVLivfv32/p7u4e8PHHH/cF/ldZ1dyPLlH19ttvO1RXV3O//fbb+xIPjdsgf/zxx94eHh71eET0qqxiGOYigAEAygEcBPAOgJPsw1jF7B9EoVaAz+W3ncHeswcYNAhw0balvvrqqwCAkydPtniJVCoFj8fDvn0eGDuWWgAJIYQQQgghPcvulN29m65R9U34NwUAsPPaTtvhbsNrZgTNqGzvvBwOB0eOHMmOjo523rx5s52hoSHr5OQk37JlS4GXl5cyLCyswtfX18/d3b3ez89Pr7WtHBwcVNu2bcudMmWKh66F66OPPioMDAyUt3RNRERE5aRJkzx//fXX3ps3b85vbd2qluzcuTPnjTfecH377bc5Li4u8j179uTqjllaWqr79+8vrK2t5X799dfNVnx1RnBwcP0HH3xQOHLkSIFGo4GBgQEbExOTb2JionnttdfcNBoNAwCrV6++2do877777p1XX33VVSAQiLhcLrZt25bbtLVt/fr1tyIiIjxEIpFvaGhorb29vaKl+fT1yiuvVB07dszC1dXV39jYWPPNN9/k6o4NGzbM67vvvstzc3NTTp482b28vJzHsiwjEolk8fHxeQCQm5tr2DROAJg7d275uHHjvPz9/X39/Pxk7u7u9ffmlI0dO7ZKJBL5OTo6ygMDA+9aWFioAWDPnj035s2b57phwwZ7lUrFTJgwoTw0NLTNXQfHjRtXO27cuNry8nLO6dOne7V1PgBkZ2cbbNmyxf7e51sEAPPnz7+zdOnS0s8++8z2t99+683lctnevXurdu3aldvGdA8No0++iWGYXQD2AvidZdmHmn19GAYMGMAmJSU97jDatOy3Zfj6yteoWVnT8klpaUBAAPDVV8CbbwIAhg8fDqDlZBXLstiyZQu4XBssXBiF3buBadMecvCEEEIIIYSQbothmMssyw543HF0RHJycm5QUFBpW+dpWA12p+zuPT1wemXjlr+Wxgl5lBYsWOA0Z86csmeeeabNpJJOVVUVx8LCQlNTU8MJDQ31iYuLyxs8eHCHFvt/UiUnJ9sEBQW5NR3Xq7KKZdlZDzugfyJdZVWr9u4FuFy0Z9Gp0tJSVFRUQCYbSC2AhBBCCCGEkB6Jw3DQXOVUS+OEPErbtm1rtWKsOdOnT3fNzMw0lsvlzJQpU8r+aYmq1rSYrGIY5gUAZ1mWrb73e6tYlv3loUbWA7WZrGJZbQvgyJGArW3L5zUhlWoX4z90SIDnnwfM9eqiJoQQQgghhBBCyOPS0gL8zVmxYoXd4cOHrRqPvfTSS+UbNmy4/fAje/xaq6xKBPAsgL/v/d4aFkCHF4L7p5Cr5a0nqy5d0u4E+MEH7ZpXKpXCzMwOUqk5Pvywk0ESQgghhBBCCCGkW9mwYcPtnpqYak5rySp3AEWNfied1GZl1d69AJ8PTJhw3/CyZctavEQmk6GgoAB1dUPA51MLICGEEEIIIeSJo9FoNAyHw6ENvAj5B7m36H6z23i2mKxiWTav8UsARSzLPrBtI8MwPAAOnQ3yn0ChVsCQ28JupWo1kJAAvPAC0Lv3fYfCWslAZWZmgmVZ/PabtgXQwuIhBkwIIYQQQgghXS+tpKRE1KdPnypKWBHyz6DRaJiSkhILAGnNHddrgXUAOQBCoW0JbCro3ji1Abah1cqqM2eAW7eAqVMfOJSRkQEA8PHxeeBYZmYm+HxTXLvmgCVLHmq4hBBCCCGEENLlVCrV3Nu3b39z+/ZtfwC0nR8h/wwaAGkqlWpucwf1TVYxrRwzAiBvb1T/RK0mq/bsAXr1Al588YFDCxYsAACcPHnyvnG1Wo2srCzU1opgYMAgPPxhR0wIIYQQQgghXSs4OPgOAPo2Qwhp0NpugIEA+jUaeoFhGGGT04wAvAJA+vBD63laTFYplcD+/cBLLwEmJnrPl5eXB7lcjlOnfDBmDLUAEkIIIYQQQggh5MnXWmXVBAAf3fudBbCqhfNyACx4mEH1VAq1AkY8owcP/P47UF7ebAtga6RSKTgcLv7+2x3ffPOQgiSEEEIIIYQQQgh5jFrrB/4UgBkAc2jbAEfce934x5BlWU+WZU90daA9gVwtb76yas8ewNISGDNG77lYloVUKoVC4QGATy2AhBBCCCGEEEII6RFa2w1QCUC3+x8tcvcQNNsGKJMBhw4BU6YA/BbWs2pGaWkpKioq8PffAzFmzAMbCBJCCCGEEEIIIYQ8kVpbs0oEIJtlWfm931vFsqz4oUbWAynUChjyDO8fPHYMqK1ttQXwgw8+eGBMKtUuE3bhggAxMQ81TEIIIYQQQgghhJDHprU1q9IAPAvg73u/sy2cx9w7xn24ofU8zVZW7d0L2NsDw4a1eN2oUaMeGJNKpVCr7VBXZ46XXnrYkRJCCCGEEEIIIYQ8Hq0lq54DIG70O+kkhVoBPqdRsqqqSltZ9frrALflXN+1a9cAAP369QMAyGQyFBQUIDV1CEaPphZAQgghhBBCCCGE9BytrVl1qrnfScc9UFl16BAgl2vXq2rF4sWLAQAnT54EAGRlZYFlWfz9twD//nfXxEoIIYQQQgghhBDyOOi15K1eVwAAKopJREFUcDrDMLYMw7g3es0wDDOfYZjNDMOEdV14PcsDyao9ewB3d+CZZ9o1j1QqhUZjipISB2oBJIQQQgghhBBCSI+i7y5/uwAsafT6EwCxAMYC+JlhmFkPN6yeSa6S/y9ZVVICnDihrapiGL3nUKvVyMrKQlaWN0aNYmBp2UXBEkIIIYQQQgghhDwG+iarngLwJwAwDMMB8AaAf7EsKwTwbwCLuyS6Hua+yqr9+wG1utVdAJuTl5cHuVyOy5cFiIzsgiAJIYQQQgghhBBCHiN9k1UWAMru/R4MwArAD/de/wnA6yHH1eOoNWqoWTUMeYbagT17AJEI8Pdv1zxSqRQsy0V+vge1ABJCCCGEEEIIIaTHaW03wMZuAhABOANgPAAJy7KF945ZAKjvgth6FKVGCQDayqqCAuDMGWDNGr1aAD/99FMAAMuykEqlKCz0wLBhfFhZdWnIhBBCCCGEEEIIIY+cvsmqHQA+YxhmFLTJqpWNjj0LIP1hB9bTKNQKAPeSVfv2aQfb2AVQZ+DAgQCAkpISVFRU4Nq1gXjjjS4JkxBCCCGEEEIIIeSx0itZxbLsOoZhCgE8DeAtaJNXOlYAvumC2HqU+5JVe3YBTz8NeOnXPXnu3DkA2soqAMjOFuDll7siSkIIIYQQQgghhJDHS9/KKrAsGw8gvpnx1x9qRD1UQ7KqrAK4fBnYtEnva//1r38BAGbMmInycjuEhJhTCyAhhBBCCCGEEEJ6JL2TVQzD8ABEABgMbTVVObRrWB1kWVbVNeH1HHKVHADA//uKdp2qyZPbdb1Go0FBQQFSU4dg2rSuiJAQQgghhBBCCCHk8dMrWcUwjC2A/wcgEEAugGIAoQDeBJDMMMwYlmVLuirInqChsur8RWDoUMDRsV3X19XVAWCRmUktgIQQQgghhBBCCOm5OHqe9wUAawDPsCzrwbJsKMuyHgCeuTf+RVcF2FPoklWG+UXA1Kntvl4mk0EmM4VI5ABr64cdHSGEEEIIIYQQQkj3oG+y6gUAK1iWvdR48N7rldDuEEha0VBZBQ4QEdGua1mWhUxWh/R0b0RGMl0RHiGEEEIIIYQQQki3oG+yyhBATQvHagDwH044PZdCt2ZV0FOAjU27rn333Xfx/PNjkJVFLYCEEEIIIYQQQgjp2fRNVl0AsIJhmF6NB++9XnHvOGmFojAPAMAPHdLua7lcLmxtneDi4tHePBchhBBCCCGEEELIE0Xf3QCXAfgLQAHDMP8P2gXWbQE8D4ABMLxLoutBFDJtYRrfwrJd17Esi4MHjyI72wJTplABGyGEEEIIIYQQQno2vSqrWJa9BsAbwNcA+gAYDW2yKg6AN8uyyV0VYE8hV8gAAHy+SbuuKy0txf/7f8dw6dJvmDChKyIjhBBCCCGEEEII6T7arKxiGMYagBuA2yzLvtflEfVQCkU9AIDPN27XdRkZUgCAgYExtQASQgghhBBCCCGkx2uxsophGDOGYfYBuAPgbwD5DMNcYBjG85FF14Mo5NrKKkPD9lVWXbsmhULBh42Nvh2bhBBCCCGEEEIIIU+u1toAPwEwDsAqAOMBLATgCGDHI4irx1Eo71VWtSNZJZPJUFpagLo6E6qqIoQQQgghhBBCyD9Ca+U64QA+YFn2S90AwzBpAE4yDGPBsmxVl0fXg3QkWZWZmQWGYcHlGsPAoKsiI4QQQgghhBBCCOk+WktWuQK41GTsIrS7/7kCSOmqoHqihmSVUS+9r7l0SYqaGlMsXLgTU6cyXRUaIYQQQgghhBBCSLfRWrKKC0DZZEzd6Bhph/Ymq9RqNW7ezEJmpgjbtwtha9uV0RFCCCGEEEIIIYR0D22t2r2OYZjyRq915T2fMQxT0WicZVl28sMNrWeRq+QA9E9W5eXlg2HkMDQU4OLFowCAsLCwLouPEEIIIYQQQgghpDtoLVl1GtoKqj5Nxk/du67pOGmFop3JqvPnM6BScfHccx7YtOl1AJSsIoQQQgghhBBCSM/XYrKKZdnhjzCOHk+hkoOjAXhGbS+wzrIsMjOlyMnxwFtv8ZGQ8AgCJIQQQgghhBBCCOkGOI87gH8KhVoOvhqAoWGb55aUlIJhKsCy3rRWFSGEEEIIIYQQQv5RKFn1iCjUCm2yis9v89wzZ6QAgNBQQRdHRQghhBBCCCGEENK9ULLqEWlPsio1VYqiIjtERlp0fWCEEEIIIYQQQggh3UhbuwGSh0ShUWqTVVxuq+fJZDKwbAHk8iHo21c79v3333d9gIQQQgghhBBCCCHdwCOvrGIYZizDMBkMw2QxDPNeK+c9zTCMmmGYSY8yvq4iVyvA1zBtnnfyZBY4HBb9+v2vBdDZ2RnOzs5dGR4hhBBCCCGEEEJIt9CuZBWj5cwwzECGYXq192YMw3ABbAUwDoAIwFSGYUQtnLcBwG/tvUd3pWBVMNQjWfX331LU1JjilVccGsYSEhKQQFsCEkIIIYQQQggh5B9A72QVwzDRAAoB5AE4A8Dn3vhBhmEW6zlNCIAslmVvsCyrALAXwEvNnPcWgAMA7ugbX3en0CjbrKxSq9VQKrNQU+MNe/v/nfuf//wH//nPf7o6REIIIYQQQgghhJDHTq9kFcMwywF8AWA7gBEAGmddTgKYrOf9HAEUNHp9895Y43s5ApgAIE7POZ8IClYFPtv6233mTD74fDl8fGgXQEIIIYQQQgghhPwz6bvA+psAVrEs+9m9Fr3GMgDom11prrSIbfJ6M4AVLMuqGablSiSGYeYDmA8ALi4uet7+8dEnWXXqVAZUKi4iIz0eUVSEEEIIIYQQQggh3Yu+ySo7AJdbOKYBYKTnPDcBNF4p3AnArSbnDACw916iygbACwzDqFiWPdT4JJZlvwbwNQAMGDCgacKr21GwKvBbKWRjWRa1tVLU13vA2Zn/CCMjhBBCCCGEEEII6T70XbMqC8CwFo4NBSDWc55LALwZhnFnGIYPYAqAI41PYFnWnWVZN5Zl3QDsBxDdNFH1JNJWVjUtSvufv/8ug6lpBVxdvR9hVIQQQgghhBBCCCHdi76VVZsBxDIMo4A2gQQAtgzDvAZgKYB5+kzCsqyKYZiF0O7yxwWwg2XZ6wzDvH7veI9ap6oxOaOGFVpOVh0/ngEAeOmlBzsq9+/f/8AYIYQQQgghhBBCSE+kV7KKZdlvGIaxBLAKwCf3hn8BIAPwMcuyP+p7Q5Zlf7l3beOxZpNULMvO0nfe7k4BNQxb6ZYsKZHCyMgO3t4WDxyzsbHpytAIIYQQQgghhBBCug19K6vAsuznDMPEARgIwBpAOYDzLMtWdVVwPYkCGvAfWJteKzlZBmvrApiYDGn2+K5duwAAs2bN6qLoCCGEEEIIIYQQQroHvZNVAMCybA20LXyknRSMGnym+bf78OEscDgsnn+++U0VKVlFCCGEEEIIIYSQfwq9klUMw0S3dQ7LsrGdD6fnUjBsi8mq/HwpbG1NERTk8IijIoQQQgghhBBCCOle9K2s+qqVY+y9/6VkVSsUjAZ8xuCB8fR0Nfr0yYKZmQgMwzyGyAghhBBCCCGEEEK6D44+J7Esy2n6A8AKwFQAyQBEXRlkT6DgsOBzHkxW7d+fDyMjOYYNa74FkBBCCCGEEEIIIeSfRK9kVXNYlq1kWTYBQByAbQ8vpJ5JztGAz3mwkC0jIwNqNRcDBng8hqgIIYQQQgghhBBCupd2LbDeghwAAx7CPD0Wy7JQcAFDDv++cYmEhbW1FIaG7uDz+S1cDfzyyy9dHSIhhBBCCCGEEEJIt9CpZBXDMPYAlkGbsCItULNqsAzA596fkPrppzJYWVUgJCS01etNTEy6MjxCCCGEEEIIIYSQbkPf3QBL8L+F1HX4AMwA1AOY+JDj6lEUagWAB5NVyckZCAgAQkJaX68qNla7dn10dJubMhJCCCGEEEIIIYQ80TqzG2A9gJsAjrMsW/bwQup5mktWSaWAubkUHI4dLCwsWr1+3759AChZRQghhBBCCCGEkJ6vzWQVwzAGAE4AyGFZ9lbXh9TzKJT1AAA+73/Jqn376uDsXIDAwMGPKyxCCCGEEEIIIYSQbkef3QDVAP4E4NvFsfRYirpaAACfZ9QwduFCJjgcFgMG+DyusAghhBBCCCGEEEK6nTaTVSzLagBkAujb9eH0TPJ6XbLKEACQmQkYG0vBMKZwcHB4nKERQgghhBBCCCGEdCv6VFYBwPsAVjEME9CVwfRUinoZAMDwXrJq3z41vLyy4O3tDYZhHmdohBBCCCGEEEIIId1Ki2tWMQwzFMAVlmVrAXwAwBrANYZhCgEUo8nugCzLhnRloE8yRf1dAADfQNsGeO1aPvz95ejfv/VdAHVOnjzZVaERQgghhBBCCCGEdCutLbD+F4BQAH8DSLv3QzpAIb8/WWVqKoVGw4WHh8fjDIsQQgghhBBCCCGk22ktWdXQn8ay7OxHEEuPpZDXAQD4BsZgWRbW1lLU1rqDz+e3caXWxo0bAQDvvPNOl8VICCGEEEIIIYQQ0h3ou2YV6YSGyiq+EcrKymBmVg6FQr8WQABITExEYmJiV4VHCCGEEEIIIYQQ0m20VlkFAC8wDCPUZyKWZeMfQjw9kkJxr7KKb4KMjAwAAMPon6wihBBCCCGEEEII+adoK1m1Ss95WACUrGqBXK7dDZDPN0ZqZiZu37ZD794WjzkqQgghhBBCCCGEkO6nrTbA5wCY6fFj3oUxPvEUynoAAMsxQH5+PjIyvGFq+piDIoQQQgghhBBCCOmG2qqsqmNZ9u4jiaQH07UBltQrwbIsMjO98fLL+l9vbGzcNYERQgghhBBCCCGEdDNtJavIQ6CrrFIz2re7utqiXZVVv/76a1eERQghhBBCCCGEENLt0G6Aj4AuWYV7ySql0gBmZo8xIEIIIYQQQgghhJBuqsXKKpZlKZH1kDSXrGpPZdWaNWsAAB9++OHDDo0QQgghhBBCCCGkW6GE1COgUMm1v9xLVqlU3HZVVv3xxx/4448/uiAyQgghhBBCCCGEkO6FklWPgFx1r7IKXHA4BgAY2g2QEEIIIYQQQgghpBmUrHoEdJVVLLgADACA1qwihBBCCCGEEEIIaQYlqx4BhUoBnhpQs4AuWUWVVYQQQgghhBBCCCEPanGBdfLwKNQK8NWAUqMBy7a/ssra2rqLIiOEEEIIIYQQQgjpXihZ9QgoNPeSVWo1NBoDcDiAsbH+1x84cKDrgiOEEEIIIYQQQgjpRqgN8BFoqKxSKqFSGcDUFGCYxx0VIYQQQgghhBBCSPdDyapHQKFWgq9hGpJV7V1cfeXKlVi5cmXXBEcIIYQQQgghhBDSjVAb4CMgZ/+XrFIqzdu9uPr58+e7JjBCCCGEEEIIIYSQboYqqx4BhUYJw3vJKoWi/ZVVhJD/3969R1t+lvUB/z7nMjNJJgk2CZUSIlQTWmwxrQMKtcsg2JJISDFIsFyEquHiLQqIoqBLWYAXXKFKwEizoqImKYImJYJEHWgNUIIGKJekEZCMUCHAApKZOftc3v7x20MOkzMzZ87ev332mfl81pqV2Wf/zrufPftdM2d98zzvDwAAgOOFsGoCBm0x29pMFhcXs7Awd9SdVQAAAADHC2HVBAza0lfDqv37dVYBAAAAHIozqyZg0Ja/Glbt3Tt/1J1VZ555Zj+FAQAAAEwZYdUEDNpS5jOblZWV7Ns3n9NOO7rvf+Mb39hPYQAAAABTxhjgBAyynPnqcsG77z76zioAAACA44WwagIWspy5YVh1zz1Hf2bVZZddlssuu2z8hQEAAABMGWOAEzCoezurFhePvrPq1ltvHX9RAAAAAFNIZ9UEDGolczPzSbqwyt0AAQAAANYmrJqAQa1ktu4Nq5xZBQAAALA2YdUEdJ1V944B6qwCAAAAWJszqyZgUG2kzqpzzjmnh6oAAAAApo+wagIWZltm28bPrLryyit7qAoAAABg+hgDnIDBTMuMM6sAAAAAjkhY1bPWWhZnk9kR7gZ46aWX5tJLL+2hOgAAAIDpYgywZ4sri0mSmZmNd1bdfvvt4y4LAAAAYCrprOrZYHmQ5N6wamnJGCAAAADAoQirejYY7EuSzMzMpbXZbN8+kzn9bAAAAABrElb1bLD3K0mSqvm0pqsKAAAA4HD0+PRsYf/dSbrOqpUNHK6eJOeee+54iwIAAACYUsKqng32703SdVZt9Lyqyy+/fLxFAQAAAEwpY4A9GxzorKq5LC1trLMKAAAA4HghrOrZYKHrrErNZXFxY51VT3/60/P0pz99vIUBAAAATCFjgD37aliV2QwGG+us2rNnz1hrAgAAAJhWOqt6NljYN/zdXBYW3A0QAAAA4HCEVT27t7NqJvv3O7MKAAAA4HCEVT1bGAzDqpWZ7NunswoAAADgcJxZ1bPBoBsDXGkzWViY21Bn1aMe9agxVwUAAAAwnYRVPTsQVmVlZsN3A3zlK1853qIAAAAAppQxwJ4NFvcnSVpLFhedWQUAAABwOMKqnh0Iq2Yzm8XFbRvqrLr44otz8cUXj7kyAAAAgOljDLBnXxtWbayz6vOf//yYqwIAAACYTjqrejZYWkhyb1jlboAAAAAAhyas6tnC0uidVQAAAADHC2FVzwZLgyQ6qwAAAADWw5lVPTt4DHAjnVWPfexjx1wVAAAAwHSaeFhVVY9P8poks0ne0Fp71UHPPy3Ji4cP707yvNbaByZb5fgMlgeZX05qtjYcVr30pS8df2EAAAAAU2iiY4BVNZvktUnOT/KwJN9fVQ876LJPJPnO1trDk/xykisnWeO4DVYGmV/p/piXl+ezffsmFwQAAAAwxSZ9ZtUjk9zRWvt4a22Q5JokF62+oLV2c2vti8OH70ly5oRrHKvB8iDzrZIk27bNp+ro1zj//PNz/vnnj7kyAAAAgOkz6bDqgUnuXPV4z/Brh/KDSf6s14p6NlhezFzr/pi3bZvf0Br79u3Lvn37xlkWAAAAwFSa9JlVa/UVtTUvrHpMurDqOw7x/KVJLk2Ss846a1z1jd1CW8z8MBM84YSNhVUAAAAAx4tJd1btSfKgVY/PTPLpgy+qqocneUOSi1prn19rodbala21Xa21XWeccUYvxY7DYGUxc5lNkuzYIawCAAAAOJxJh1XvS3J2VT2kqrYleWqS61dfUFVnJXlzkme01m6fcH1jN1hZzFybTWvJSSfNbnY5AAAAAFNtomOArbWlqvrRJG9PMpvkqtbah6vqucPnX5/kZUlOS3JFdaeRL7XWdk2yznEatKXM1WyWl+ezc+cGTldP8oQnPGHMVQEAAABMp0mfWZXW2o1Jbjzoa69f9fsfSvJDk66rL4MsZTZzWVqaz8knb2yNF77wheMtCgAAAGBKTXoM8LgzaMuZzWwGg/ns3LnZ1QAAAABMN2FVzwZZzmzNZTDYeGfVeeedl/POO2+sdQEAAABMI2FVzxaynJlhWKWzCgAAAODwhFU9G9RyKnNZXNx4ZxUAAADA8UJY1bNBljNT81lc1FkFAAAAcCTCqp4NaiVVOqsAAAAA1mNusws41g2qZWY4BrjRzqqnPOUp4y0KAAAAYEoJq3o2mBm9s+r5z3/+eIsCAAAAmFLGAHs2mGmZqdmROqv27t2bvXv3jrcwAAAAgCmks6pnC6vCqo12Vl1wwQVJkt27d4+vMAAAAIAppLOqZ4PZZHbEsAoAAADgeCGs6tHyynKWZ5LZjDYGCAAAAHC8EFb1aHF5kOTesOqkkza5IAAAAIApJ6zq0WChOxR9NrOpms/s7CYXBAAAADDlHLDeo8HeryTpwqq5ufkNr/OsZz1rTBUBAAAATDdhVY8G++9JIqwCAAAAWC9jgD1aWBVWbd++8bDqrrvuyl133TWusgAAAACmls6qHg0W7g2rtm3beFj15Cc/OUmye/fucZQFAAAAMLV0VvXowBjgXOayY8fGwyoAAACA44XOqh6tvhvgnLAKAAAA4IiEVT1aHVbtOFFYBQAAAHAkxgB7tDqsOlFYBQAAAHBEOqt6NBjsS9KFVSefvPGw6nnPe964SgIAAACYasKqHi0Mw6oszWfnzo03sV1yySVjqggAAABguhkD7NGBzqq2tD0nn7zxde68887ceeedY6oKAAAAYHrprOrRYHF/kqQt7cjOnRtf5xnPeEaSZPfu3WOoCgAAAGB66azq0YGwamVxx0idVQAAAADHC2FVj1aHVaN0VgEAAAAcL4RVPdJZBQAAAHB0hFU9GiwtJBFWAQAAAKyXA9Z7tLDchVXLgxNGGgN8wQteMKaKAAAAAKabsKpHBzqrlgcnjNRZdeGFF46pIgAAAIDpZgywR4OlQapVlkc8YP22227LbbfdNr7CAAAAAKaUzqoeDVYGma3ZLC/PZfv2ja/znOc8J0mye/fu8RQGAAAAMKV0VvVosDzIbGZTNb/ZpQAAAABsCcKqHi0sL2a2ZjMzI6wCAAAAWA9hVY8WVhYzm9nMzgqrAAAAANZDWNWjfenCqrk5YRUAAADAejhgvUcLbWksYdXP//zPj6kiAAAAgOkmrOrRQlvObGazbdtoYdXjHve4MVUEAAAAMN2MAfZoIV1YtX37aGHVrbfemltvvXU8RQEAAABMMZ1VPerCqvns2DFaWHXZZZclSXbv3j16UQAAAABTTGdVjw50Vo0aVgEAAAAcL4RVPVqolcxmNieeKKwCAAAAWA9hVY/2VxNWAQAAABwFYVWPFtKFVTt3CqsAAAAA1sMB6z0a1Ep2Zi4nnzxaWPWKV7xiTBUBAAAATDdhVY8WZ7rOqlNOGS2sevSjHz2migAAAACmmzHAHi3WSmbabE45ZbRM8Oabb87NN988pqoAAAAAppfOqh4t1UpqZT4nn1wjrfOSl7wkSbJ79+4xVAUAAAAwvXRW9WhpZnkYVm12JQAAAABbg7CqR0u1nCxvy86dm10JAAAAwNYgrOpJay3LtZxa3qazCgAAAGCdhFU9WV5eTKsky9ty4ombXQ0AAADA1uCA9Z4M9t+TJKnl+cyMGAlefvnloxcEAAAAsAUIq3oy2Hd3kmRmZdvIa5177rkjrwEAAACwFRgD7Mk4w6qbbropN91008jrAAAAAEw7nVU9OTAGONtGD6te/vKXJ0ke97jHjbwWAAAAwDTTWdWTha+GVfObXAkAAADA1iGs6smBzqr5jN5ZBQAAAHC8EFb1ZLCwN0kyP4YxQAAAAIDjhbCqJ/uGnVXbZrZvciUAAAAAW4cD1nuyb3g3wO0zo3dW/fZv//bIawAAAABsBcKqntyzr+us2jE7emfVQx/60JHXAAAAANgKjAH25Et79yVJTti2Y+S1brjhhtxwww0jrwMAAAAw7XRW9eSL9+xPkpw4P3pn1atf/eokyYUXXjjyWgAAAADTTGdVT76yb5Ak2bl99M4qAAAAgOOFsKonX97fhVUnn3jiJlcCAAAAsHUIq3py92AxSXLKScIqAAAAgPUSVvVk71IXVp16ykmbXAkAAADA1jHxA9ar6vFJXpNkNskbWmuvOuj5Gj5/QZK9SZ7VWvubSdc5qgNh1dfdb+fIa/3+7//+yGsAAAAAbAUTDauqajbJa5N8d5I9Sd5XVde31j6y6rLzk5w9/PVtSV43/O+Wsm+lO7PqtNNOGXmtBz3oQSOvAQAAALAVTHoM8JFJ7mitfby1NkhyTZKLDrrmoiS/1zrvSXK/qnrAhOsc2f6V5STJ6WeMHlZde+21ufbaa0deBwAAAGDaTXoM8IFJ7lz1eE/u2zW11jUPTPKZfksbr0HrxgDPuP+pI6/1ute9LklyySWXjLwWAAAAwDSbdGdVrfG1toFrUlWXVtUtVXXL5z73ubEUN06nz56Rrx88OCedvGOzSwEAAADYMibdWbUnyeoDmM5M8ukNXJPW2pVJrkySXbt23SfM2mzXvfp3NrsEAAAAgC1n0p1V70tydlU9pKq2JXlqkusPuub6JM+szrcn+VJrbUuNAAIAAACwMRPtrGqtLVXVjyZ5e5LZJFe11j5cVc8dPv/6JDcmuSDJHUn2Jnn2JGsEAAAAYPNUa1M3QXfUdu3a1W655ZbNLqM3d911V5Lk9NNP3+RKAACAaVRV72+t7drsOgDGYdJnVrEBQioAAADgeDHpM6vYgKuvvjpXX331ZpcBAAAA0Dth1RYgrAIAAACOF8IqAAAAAKaGsAoAAACAqSGsAgAAAGBqCKsAAAAAmBpzm10AR3bjjTdudgkAAAAAEyGs2gJOPPHEzS4BAAAAYCKMAW4BV1xxRa644orNLgMAAACgd8KqLeC6667Lddddt9llAAAAAPROWAUAAADA1BBWAQAAADA1hFUAAAAATA1hFQAAAABTo1prm13DyKrqc0n+frPrWMPpSe7a7CI4Ztlf9M0eo0/2F32yv+jTtO6vb2itnbHZRQCMwzERVk2rqrqltbZrs+vg2GR/0Td7jD7ZX/TJ/qJP9hdA/4wBAgAAADA1hFUAAAAATA1hVb+u3OwCOKbZX/TNHqNP9hd9sr/ok/0F0DNnVgEAAAAwNXRWAQAAADA1hFVjUFWPr6rbquqOqvqZNZ6vqvqvw+c/WFX/djPqZGtax/562nBffbCqbq6qb9mMOtmajrS/Vl33iKparqonT7I+trb17K+qOq+qbq2qD1fVOyddI1vbOv6NPLWqbqiqDwz32LM3o062nqq6qqo+W1X/5xDP+/keoEfCqhFV1WyS1yY5P8nDknx/VT3soMvOT3L28NelSV430SLZsta5vz6R5Dtbaw9P8stxjgLrtM79deC6X0ny9slWyFa2nv1VVfdLckWSJ7bWvjnJ9026Traudf4d9iNJPtJa+5Yk5yV5dVVtm2ihbFVXJ3n8YZ738z1Aj4RVo3tkkjtaax9vrQ2SXJPkooOuuSjJ77XOe5Lcr6oeMOlC2ZKOuL9aaze31r44fPieJGdOuEa2rvX8/ZUkP5bkj5N8dpLFseWtZ3/95yRvbq19Kklaa/YYR2M9e6wlObmqKsnOJF9IsjTZMtmKWmvvSrdfDsXP9wA9ElaN7oFJ7lz1eM/wa0d7DazlaPfODyb5s14r4lhyxP1VVQ9M8qQkr59gXRwb1vP31zlJvq6qdlfV+6vqmROrjmPBevbYbyX5l0k+neRDSX6itbYymfI4xvn5HqBHc5tdwDGg1vjawbdYXM81sJZ1752qeky6sOo7eq2IY8l69tflSV7cWlvuGhNg3dazv+aSfGuSxyY5Icm7q+o9rbXb+y6OY8J69th/THJrku9K8o1J3lFV/7O19uWea+PY5+d7gB4Jq0a3J8mDVj0+M93/vTvaa2At69o7VfXwJG9Icn5r7fMTqo2tbz37a1eSa4ZB1elJLqiqpdban0ykQray9f77eFdr7Z4k91TVu5J8SxJhFeuxnj327CSvaq21JHdU1SeS/Isk/3syJXIM8/M9QI+MAY7ufUnOrqqHDA/sfGqS6w+65vokzxzeNeTbk3yptfaZSRfKlnTE/VVVZyV5c5Jn6EbgKB1xf7XWHtJae3Br7cFJ3pTk+YIq1mk9/z7+aZJ/X1VzVXVikm9L8tEJ18nWtZ499ql0nXupqn+a5KFJPj7RKjlW+fkeoEc6q0bUWluqqh9Nd5es2SRXtdY+XFXPHT7/+iQ3JrkgyR1J9qb7v3xwROvcXy9LclqSK4bdL0uttV2bVTNbxzr3F2zIevZXa+2jVfW2JB9MspLkDa21NW8TDwdb599hv5zk6qr6ULqxrRe31u7atKLZMqrqj9LdQfL0qtqT5BeSzCd+vgeYhOq6ogEAAABg8xkDBAAAAGBqCKsAAAAAmBrCKgAAAACmhrAKAAAAgKkhrAIAAABgagirADhqVfWLVdXW+HXTOr//wcPrnzCBWj+5qr5BVX2sql5aVdvG+BrPGq6/c/j4/sM/owcfdN15w+v+1bhe+wh1rf5s9lXVR6vqxVU1t4G1frqqzht/lQAA8LWO+odVABj6UpLHr/G1afSHSX4zyfYkj0nyC0lOTfLCMa3/1iSPSrJ3+Pj+w9fYneSTq677m+F1fzem112PVyd5U5ITkjwhyauSzCd5+VGu89NJfivdewIAgN4IqwDYqKXW2ns2u4h1+syqWt9ZVWcmeW5Vvai11kZdvLX2uSSfW8d1X04y6T+zT656739VVd+c5Jk5+rAKAAAmwhggAGNVVQ+oqquq6uPD0bPbq+rlRxq7q6onVtX7q+qeqvpiVb23qr5z1fMzVfUzVXVHVS0M1/2BDZb5/iQnJTl9uPZ3DV9vf1X9Y1VdcWCkb/j8fFX9elV9avjan66qtxx4T6vHAIejfx8afutfHRjDG173NWOAVfXOqrpujT+LA69Vw8c7qupXq+rO4et/oKou2OB7/0CSBx30eq+qqg9V1d1Vtaeq/qCqvn7V859MclqSX1g1Vnje8Llxfi4AAKCzCoCNW+Pso+V0AdAXkvxUki8mOSfJLyY5I8lzDrHON6YbVXtNkhcl2ZHkW5P8k1WX/WaSH0jyS+nG6b47yVVV9fnW2v84ytIfnGSQ5AtV9bAkb0vyjiQXpwtyXpXkn+feMcefTfK0JD+T5BNJvj7JBUlm11j7M8Nr/yDJjwxrPZRrkry6qk5qrd2TJMOA6vuSXLeq6+tNSR6ZbrTw75I8Jcn1VbWrtXbrUb73s4bvYbX7J3lFkk+n+5xekOQvq+pft9aWkzwpyV8N63jD8Hs+MvzvOD8XAAAQVgGwYaclWTzoa9/dWrspq86Cqqq/TnJPugDjx1prgzXW+jdJvtJae9Gqr924ao1vSvK8JM9urf3u8Ms3VdUD0gU4RwpFahisbUvyXUmem+SG1tpyVb0syd8neeIwmElVfSHJtVX1qNbau9MFRX+46rWT5D4dUUnSWluoqg8OH37kCKOSb0oX9lyYLrhKkm9PFyhdM6zlsUm+J8l5rbV3Dq/586o6J8nPpQu2Dmdm+N4PnFn1venCpdU1/5cDv6+q2STvTrInyb9L8q7W2t9W1VKSPavfzxg+FwAAuA9jgABs1JeSPOKgX++tzmVV9ZGq2pcu0PqDdIebn3WItT6U5NSq+t2q+g9VddJBzz82yUqSt1TV3IFfSf4iybnDgOVwfmpYxz1JbkjyrnRdT0kXRL3lQFA19MdJlpJ8x/DxrUmeNbwj3sMPjOeNanjW1V8muWTVly9J8nettVuGjx+X5P8l+es13vuudbzMa9K99y+nO2j+ta21a1ZfUFXnV9XNVfWldO97z/Cpc46w9qifCwAA3IfOKgA2amlVoPJVVfWTSX493SjdO9ONAj4iyWvTjffdR2vttqq6KN2Y3Y1JFqvqLUl+YhjonJ5u5O5Qdxt8QO4NWNbyxnShzUK6A8e/ctD3/uNB9SxX1edz7xjiy9OFMs9P8itJ/qGqfq219prDvOZ6XZPkiqo6Jcnd6Tqlrl71/Onpxg4P7mJLurHLI/m1dF1gpya5LMlPVtVNrbUbk6SqHpHk+iRvSfeZfTZJS3cQ/Jqf10G1jfK5AADAfQirABi370vy31trP3fgC8NzoQ6rtfbWJG+tqlPTjb1dnm5E7qnpzsBaSjeWtrLGt3/2CMv/41rB2tBn0p3Z9FXDjqDThq+b1tr+JC9L8rKqOjvdGOHlVXVba+1tR3pvR/CWJK9LclG6ccR/luTaVc9/Ick/JPlPG1z/Uwfee1W9K10X269V1Z8Nz8R6Uro7GV5y4IysqvqGda496ucCAAD3IawCYNxOSNfBtNrT1vvNrbUvJfnD6u4E+Kjhl/8yXQfPqa21d4ylynu9N8mTquolq0YBvzfdv5H/a436/m9VvTDdGOGBw9kPduBcriN1JqW19sWq+vN0439/n+SjrbUPrrrkL9IdeH53a+1j63xPh3qtxap6abpOqwvTdVSdkGRx1WHuydqf1yD3fT99fi4AABynhFUAjNs7kvx4Vb033Z3rnpbkmw73DVX1nHTB1NvS3ZHu7HQdWr+XfHVM8PVJrqmqX01yS7rg5JuTnNNa+6ER6n15kr9N8idV9bokZ6Yb9Xv78HD1DEcS3z+8bl+SJ6f7N/Rdh1jzU8PrfmB4DtTiYTq7kq6T6qp043S/ddBz70jy9iTvqKpfSfLhJKckOTfJjtbazx7Vu+3O4/pYursuXj9c/7KqujzdeV6PTvL0Nb7vY0m+p6relm5c8baePxcAAI5TwioAxu2XkpyRLgRKkjcn+fF0QcihfDDJE5P8Rrpzoj6T5HfSjd4d8CNJbk/yw8PX+HKSjyT5b6MU21r7cFWdn+QVw1q/nOSPkvz0qstuTtf59KJ0Nyf5SJKLDxVAtdb2V9UPp7sj3juTzCc53KHsf5punO703HtXwANrtar63iQvSXfm1Fnpxu9uTTcmeVRaaytV9cokvzu82+GNVfXiJD+W7s/23enuGnj7Qd/6onTnjr01yYlJHpNkd3r6XAAAOH7V13b9AwAAAMDmmdnsAgAAAADgAGEVAAAAAFNDWAUAAADA1BBWAQAAADA1hFUAAAAATA1hFQAAAABTQ1gFAAAAwNQQVgEAAAAwNYRVAAAAAEyN/w8OQcN3uYx3FAAAAABJRU5ErkJggg==\n", "text/plain": [ "
    " ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAskAAAF1CAYAAAAa1Xd+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAgSUlEQVR4nO3de/htdV0n8PdHjuQNxeRk3AQb0TxjmQ7ircsxuwiaOM+YqRijXRgaMW3oMbRJHWecoZoyyQs5pmmKZGoNoxTaJFpjIKBEElIMF0FwBJWbpoh+5o+1jmy+/X7n7IPnnN/hnNfreX4Pe6/vunzW2uuw3/u7v2vt6u4AAAC3uctaFwAAADsbIRkAAAZCMgAADIRkAAAYCMkAADAQkgEAYCAkA6mqM6vq59a6js2pqqOq6gObaf+Bqrp4R9bErqGq/qCq/sta1wHsXIRk2MVU1eVV9U9VdfPC335rUMeZVfWVefvXVdV7q2rfO7q+7n5Hd//Ywvq7qh600P5X3f2Qb7XuUVW9oqq+Nu/H9VX10ap67FYsf7s6AbhzEJJh1/QT3X2vhb+r16iO47r7XkkenGTvJK9eozq+VX8078c+ST6U5I/XuJ5tpqr2WOsadiVVtW6tawC2DSEZdgNVdd+qel9VXVtVX5wfH7DKvA+qqg9X1Q1zD/AfLbR9d1V9sKq+UFUXV9Uzltl+d38hyXuSPGxez+Oq6px5G+dU1eMWtvHcqrq0qm6qqsuq6qiF6X89P/7IPPvfzj28P1VVG6vqqrn9hKp697Bfr6mqk+bH96mq36+qa6rqM1X1X5YJi919a5J3JNm/qtbP6zqsqv5m7mW+pqpeW1V7rlbnPP0pVXX+Qs/09y7U+StzTTfNx/iJK9VSVU+uqk9U1Y1VdWVVvWJo//553dfP7c+dp/9BVb2hqk6vqi8leUJVPXTu+b++qi6sqqcurOeIqvr7uZ7PVNUvz9P3mc+j6+fz4a+qasX3lPnYXznXel5V/cBC292r6q3zeXlRVb140+s4t+9XVe+Zz93LquoXV3t9NlPrN8+dhXnHHv595nP7pvn8P2hh3h+bX4sbqur1c/vPLaz7/1TVq6vqC0leMZ9fb5trvqKq/uOmY1PTNxNvX1j3wXMt6+bnZ1bVf6uqj83b+59V9e1z292q6u1V9fn5uJ9TVfdf7XgA3xohGXYPd0nyliQHJXlAkn9K8tpV5v3PST6Q5L5JDkjyu0lSVfdM8sEkpyT5jiTPSvL6qvqXW9p4Ve2T5N8k+cT8hv/+JCcluV+S307y/qq637yNk5Ic3t17JXlckvPH9XX3D84PHz73lP/RMMs7kxxRVfeet79HkmfMtSfJW5PcmuRBSR6R5MeSbHFM9hx+j07y+SRfnCd/PckvZeplfmySJyb596vVWVWPTPLmJP9u3v/fS3JaVX1bVT0kyXFJHjXv/48nuXyVcr4017J3kicn+YWqetpc5wOS/Fmm1259ku/L7Y/js5O8KsleSc5O8r8yvebfkeQFSd4x15Ikv5/k3831PCzJX87Tj09y1bz++yd5aZJepdZz5hq+PdNr8MdVdbe57eVJDk7yXUl+NMlzNi00B8v/leRvk+yf6di+qKp+fJXtrFbrMo7KdO7vk+lYvWOuYZ8k707ykkyv18WZzstFj05yaabj96pMx/0+8z79UKbX6XlbUcvRSX4myX6ZztOT5un/dl7vgXMtx2b6twxsB0Iy7Jr+dO5pur6q/rS7P9/d7+nuL3f3TZneyH9olWW/lilM79fdX+nuTT1wT0lyeXe/pbtv7e6PZ+odfvpm6jipqq7PFHKuSfIfMgW6f+zuP5zX884kn0ryE/My30jysKq6e3df090Xbu3Od/cVST6e5GnzpB9O8uXuPmvueTs8yYu6+0vd/blMw0CeuZlVPmPej39K8vNJnj73Kqe7z+vus+Z9uTxT6F3t2GZe/ve6++zu/np3vzXJV5M8JlPg/rYkG6rqrt19eXf/31X28czu/rvu/kZ3X5Dpg8Gm7R6V5C+6+53d/bX59T9/YfH/2d3/p7u/kSm83ivJid19S3f/ZZL3ZfoQlEznw4aqund3f3F+3TdN3zfJQfM2/qq7VwzJ3f32uYZbu/u35n3cFMKfkeS/zuu+KrcFwiR5VJL13f3KubZLk/yPrP5arVbrMt7f3R/p7q8m+dUkj62qA5MckeTC7n7v/JqflOSzw7JXd/fvzu23JPmpJC/p7pvmc+K3kvz0VtTyh939ye7+UpJfy3T+7THv3/2SPGg+d87r7hu3Yr3AVhCSYdf0tO7ee/57WlXdo6p+b/7q98YkH0myd608xODFSSrJx+av3n9mnn5QkkcvhO/rM4Wx79xMHb8417B/dx/V3ddm6h27YpjviiT7z6HgpzL1kF1TVe+vqu++g8fglNwW9J6d23qRD0py13n9m/bj9zL1Aq7mXd29d6Ye008m+VebGqrqwfOwg8/Ox/a/ZuqNXM1BSY4fjuOBmT6UXJLkRUlekeRzVXVqrXLRZVU9uqo+NH+lf0OmY7ZpuwcmWTFcz65ceLxfkivnwLzJFZl6bpPpG4AjklwxDzPYdNHibya5JMkHahoec8JqG6uq4+ehFDfM+3ufhVr3G+pZfHxQkv2GY/XSTK/DSlardRnf3G5335zkC3Nt+w1tnakHfcVlM+3Xnrn9Ob54PLeqlnnZu87r/cMkZyQ5taqurqrfqKq7bsV6ga0gJMPu4fhMPXeP7u57J9k0DKDGGbv7s9398929X6YhAa+fx25emeTDC+F773kIwS9sZS1XZwo/ix6Q5DPz9s/o7h/N1Ev5qUw9h3fEHyfZWNPY63+d20LylZl6bvdZ2I97d/cWh41093WZjskr6rY7dbxhrvOQ+di+NCsc1wVXJnnVcBzvMfeop7tP6e7vz3SMOsmvr7KeU5KcluTA7r5PkpMXtntlkn+xuV1ZeHx1kgPr9uOJF1+Pc7r7yEwfIv40ybvm6Td19/Hd/V2ZvgX4D7XC+Omaxh//SqYe4/vOHzZuWKj1mkzDejY5cOHxlUkuG47VXt19xIo7tUqtmYam3GOhppU+2B240H6vTENDrh7rq6oa6k1ufzyvy23fxmzyzeM51pKVP2QuHoMHzOu7bu6x/0/dvSHTkI+nZBqaAWwHQjLsHvbKNFTg+nlM8MtXm7GqfrJuu6jvi5kCwNczfQX/4Kr66aq66/z3qKp66FbWcvq8nmdX1bqaLmbbkOR9VXX/qnrqPDb5q0lunre9kv+XaczniuZe6zMzjcW+rLsvmqdfk2n87W9V1b2r6i5V9S+qanNDJBbX+6lMvXkvniftleTGJDfPvd7jh4axzv+R5Ni5J7iq6p41XYS3V1U9pKp+uKq+LclXMr1mq+3/Xkm+0N1fqarDMvWWb/KOJD9SVc+Yj/H9qur7VlnP2ZmC24vn13RjptB7alXtWdP9qe/T3V+b9/PryTcvPnzQHBo3TV+p1r0yjau9Nsm6qnpZknsvtL8ryUtqurh0/0xjsjf5WJIba7qY8e5VtUdVPayqHjVuZHO1Zhru8y+r6vtqGgv9ihXqPKKmix33zDQ2+ezuvjLT+Pnvqaqn1XRx3fOzmW9Puvvr8z69an5ND8o0zGjTxXrnJ/nBqnpAVd0n01jn0XOqakNV3SPJK5O8u7u/XlVPqKrvmb8BujFTeF7t/AC+RUIy7B5+J8ndM/VynZXkzzcz76OSnF1VN2fqqXxhd1/W01jmH8s0HvTqTOMyfz3T+NKldffnM/WAHZ/pArgXJ3nK3Et7l3n61Zm+7v6hzBfBreAVSd46fw2/2l02TknyI7mtF3mTozN9Jf73mT4IvDtTz/WyfjPJMVX1HUl+OVNAvSlTAB4vIrxdnd19bqZxya+dt31JkufO835bkhMzvU6fzdQj+tJVavj3SV5ZVTcleVlu6zVNd38607CD4zMdx/OTPHyllXT3LUmemmmc9nVJXp/k6PnDQDKNpb18HkpybG67sO6QJH+R6YPM3yR5fXefucImzsh0EeE/ZBo68JXcfjjBKzMNX7hsXt+7M31A2hQ4fyLTuOnL5vrelGm4xkpWrLW7/2Hezl8k+cckf73Csqdk+vD4hUzDaY6al70uyU8m+Y1M5+uGJOduqnEVL8j0wePSeVunZLpYM939wUznyAVJzsv04XP0h0n+INM5cLckm+7o8Z2Zjs+NSS5K8uHcFr6BbaxWuc4CAHa4qvqFJM/s7qV69ne0eVjKVUmO6u4PbYf1n5nk7d39pm29bmDr6EkGYM1U1b5V9fh52MtDMvV+/8la17Woqn68qvaeh8FsGnN+1hqXBWxnfhkIgLW0Z6a7izwwyfVJTs005GNn8thMQyY2DdF5Wne7PzHs4gy3AACAgeEWAAAwEJIBAGCwU45J3mefffrggw9e6zIAANiFnXfeedd19/qV2nbKkHzwwQfn3HPPXesyAADYhVXVFau1GW4BAAADIRkAAAZCMgAADIRkAAAYCMkAADAQkgEAYCAkAwDAQEgGAICBkAwAAAMhGQAABkIyAAAMhGQAABgIyQAAMBCSAQDW0MaNG7Nx48a1LoOBkAwAAAMhGQAABkIyAAAMhGQAABgIyQAAMBCSAQBgICQDAMBASAYAgIGQDAAAAyEZAAAGQjIAAAyEZAAAGAjJAAAwEJIBAGAgJAMAwEBIBgCAgZAMAAADIRkAAAZCMgAADIRkAAAYCMkAADAQkgEAYCAkAwDAQEgGAICBkAwAAAMhGQAABkIyAAAMhGQAABgsFZKr6klVdXFVXVJVJ6zQXlV10tx+QVU9cqHtl6rqwqr6ZFW9s6ruti13AAAAtrUthuSq2iPJ65IcnmRDkmdV1YZhtsOTHDL/HZPkDfOy+yf5xSSHdvfDkuyR5JnbrHoAANgOlulJPizJJd19aXffkuTUJEcO8xyZ5G09OSvJ3lW179y2Lsndq2pdknskuXob1Q4AANvFMiF5/yRXLjy/ap62xXm6+zNJ/nuSTye5JskN3f2BlTZSVcdU1blVde611167bP0AALDNLROSa4Vpvcw8VXXfTL3MD0yyX5J7VtVzVtpId7+xuw/t7kPXr1+/RFkAALB9LBOSr0py4MLzA/LPh0ysNs+PJLmsu6/t7q8leW+Sx93xcgEAYPtbJiSfk+SQqnpgVe2Z6cK704Z5Tkty9HyXi8dkGlZxTaZhFo+pqntUVSV5YpKLtmH9AACwza3b0gzdfWtVHZfkjEx3p3hzd19YVcfO7ScnOT3JEUkuSfLlJM+b286uqncn+XiSW5N8Iskbt8eOAHdeGzduTJKceeaZa1oHAGyyxZCcJN19eqYgvDjt5IXHneT5qyz78iQv/xZqBACAHcov7gEAwEBIBgCAgZAMAAADIRkAAAZCMgAADIRkAAAYCMkAADAQkgEAYCAkAwDAQEgGAICBkAwAAAMhGQAABkIyAAAMhGSSJBs3bszGjRvXugwAgJ2CkAwAAAMhGQAABkIyAAAMhGQAABgIyQDs1ly4DKxESAYAgIGQDAAAAyEZAAAGQjIAAAyEZAAAGAjJAAAwEJIBAGAgJAMAwEBIBgCAgZAMAAADIRkAAAZCMgAADIRkAAAYCMkAADAQkgEAYCAkAwDAQEgGAICBkAwAAAMhGQAABkIyAAAMhGQAABgIyQAAMBCSAQBgICQDAMBASAYAgIGQDAAAAyEZAAAGQjIAAAyEZAAAGAjJAAAwEJIBAGAgJAMAwEBIBgCAgZAMAAADIRkAAAZCMgAADIRkAAAYCMkAADAQkgEAYCAkAwDAQEgGAICBkAwAAIN1y8xUVU9K8pokeyR5U3efOLTX3H5Eki8neW53f3xu2zvJm5I8LEkn+Znu/ptttQOwqzj4hPevdQlr5rOXfj7J7n0MLj/xyWtdAgALttiTXFV7JHldksOTbEjyrKraMMx2eJJD5r9jkrxhoe01Sf68u787ycOTXLQN6gYAgO1mmZ7kw5Jc0t2XJklVnZrkyCR/vzDPkUne1t2d5Kyq2ruq9k3ypSQ/mOS5SdLdtyS5ZduVv23tzr1YevL05AEAt1lmTPL+Sa5ceH7VPG2Zeb4rybVJ3lJVn6iqN1XVPVfaSFUdU1XnVtW511577dI7AAAA29oyIblWmNZLzrMuySOTvKG7H5GpZ/mElTbS3W/s7kO7+9D169cvURYAAGwfy4Tkq5IcuPD8gCRXLznPVUmu6u6z5+nvzhSaAQBgp7XMmORzkhxSVQ9M8pkkz0zy7GGe05IcN49XfnSSG7r7miSpqiur6iHdfXGSJ+b2Y5kB2AnsztcjuCZj4roMuL0thuTuvrWqjktyRqZbwL25uy+sqmPn9pOTnJ7p9m+XZLoF3PMWVvGCJO+oqj2TXDq0AQDATmep+yR39+mZgvDitJMXHneS56+y7PlJDr3jJQIAwI7lF/cAAGAgJAMAwEBIBgCAgZAMAAADIRkAAAZCMgAADIRkAAAYCMkAADAQkgEAYCAkAwDAQEgGAICBkAwAAAMhGQAABkIyAAAMhGQAABgIyQAAMBCSAQBgICQDAMBASAYAgIGQDAAAAyEZAAAGQjIAAAzWrXUBAAAHn/D+tS5hzXz20s8n2b2PweUnPnmtS/hn9CQDAMBASAYAgIGQDAAAAyEZAAAGQjIAAAyEZAAAGAjJAAAwEJIBAGAgJAMAwEBIBgCAgZAMAAADIRkAAAZCMgAADIRkAAAYCMkAADAQkgEAYCAkAwDAQEgGAICBkAwAAAMhGQAABuvWugB2Dt/57BPXugQAgJ2GnmQAABgIyQAAMBCSAQBgYEwyALs112QAK9GTDAAAAyEZAAAGQjIAAAyEZAAAGAjJAAAwEJIBAGDgFnDAmnMLLgB2NnqSAQBgICQDAMBASAYAgIGQDAAAAyEZAAAGS4XkqnpSVV1cVZdU1QkrtFdVnTS3X1BVjxza96iqT1TV+7ZV4QAAsL1sMSRX1R5JXpfk8CQbkjyrqjYMsx2e5JD575gkbxjaX5jkom+5WgAA2AGW6Uk+LMkl3X1pd9+S5NQkRw7zHJnkbT05K8neVbVvklTVAUmenORN27BuAADYbpYJyfsnuXLh+VXztGXn+Z0kL07yjTtWIgAA7FjLhORaYVovM09VPSXJ57r7vC1upOqYqjq3qs699tprlygLAAC2j2VC8lVJDlx4fkCSq5ec5/FJnlpVl2capvHDVfX2lTbS3W/s7kO7+9D169cvWT4AAGx7y4Tkc5IcUlUPrKo9kzwzyWnDPKclOXq+y8VjktzQ3dd090u6+4DuPnhe7i+7+znbcgcAAGBbW7elGbr71qo6LskZSfZI8ubuvrCqjp3bT05yepIjklyS5MtJnrf9SgYAgO1riyE5Sbr79ExBeHHayQuPO8nzt7COM5OcudUVAgDADuYX9wAAYCAkAwDAQEgGAICBkAwAAAMhGQAABkIyAAAMhGQAABgIyQAAMBCSAQBgICQDAMBASAYAgIGQDAAAAyEZAAAGQjIAAAyEZAAAGAjJAAAwEJIBAGAgJAMAwEBIBgCAgZAMAAADIRkAAAZCMgAADIRkAAAYCMkAADAQkgEAYCAkAwDAQEgGAICBkAwAAAMhGQAABkIyAAAMhGQAABgIyQAAMBCSAQBgICQDAMBASAYAgIGQDAAAAyEZAAAGQjIAAAyEZAAAGAjJAAAwEJIBAGAgJAMAwEBIBgCAgZAMAAADIRkAAAZCMgAADIRkAAAYCMkAADAQkgEAYCAkAwDAQEgGAICBkAwAAAMhGQAABkIyAAAMhGQAABgIyQAAMBCSAQBgICQDAMBASAYAgIGQDAAAAyEZAAAGS4XkqnpSVV1cVZdU1QkrtFdVnTS3X1BVj5ynH1hVH6qqi6rqwqp64bbeAQAA2Na2GJKrao8kr0tyeJINSZ5VVRuG2Q5Pcsj8d0ySN8zTb01yfHc/NMljkjx/hWUBAGCnskxP8mFJLunuS7v7liSnJjlymOfIJG/ryVlJ9q6qfbv7mu7+eJJ0901JLkqy/zasHwAAtrllQvL+Sa5ceH5V/nnQ3eI8VXVwkkckOXuljVTVMVV1blWde+211y5RFgAAbB/LhORaYVpvzTxVda8k70nyou6+caWNdPcbu/vQ7j50/fr1S5QFAADbxzIh+aokBy48PyDJ1cvOU1V3zRSQ39Hd773jpQIAwI6xTEg+J8khVfXAqtozyTOTnDbMc1qSo+e7XDwmyQ3dfU1VVZLfT3JRd//2Nq0cAAC2k3VbmqG7b62q45KckWSPJG/u7gur6ti5/eQkpyc5IsklSb6c5Hnz4o9P8tNJ/q6qzp+nvbS7T9+mewEAANvQFkNyksyh9vRh2skLjzvJ81dY7q+z8nhlAADYafnFPQAAGAjJAAAwEJIBAGAgJAMAwEBIBgCAgZAMAAADIRkAAAZCMgAADIRkAAAYCMkAADAQkgEAYCAkAwDAQEgGAICBkAwAAIN1a10AAMDu7DuffeJal8AK9CQDAMBASAYAgIGQDAAAAyEZAAAGQjIAAAyEZAAAGAjJAAAwEJIBAGAgJAMAwEBIBgCAgZAMAAADIRkAAAZCMgAADIRkAAAYCMkAADAQkgEAYCAkAwDAQEgGAICBkAwAAAMhGQAABkIyAAAMhGQAABgIyQAAMBCSAQBgICQDAMBASAYAgIGQDAAAAyEZAAAGQjIAAAyEZAAAGAjJAAAwEJIBAGAgJAMAwEBIBgCAgZAMAAADIRkAAAZCMgAADIRkAAAYCMkAADAQkgEAYCAkAwDAQEgGAICBkAwAAAMhGQAABkIyAAAMlgrJVfWkqrq4qi6pqhNWaK+qOmluv6CqHrnssgAAsLPZYkiuqj2SvC7J4Uk2JHlWVW0YZjs8ySHz3zFJ3rAVywIAwE5lmZ7kw5Jc0t2XdvctSU5NcuQwz5FJ3taTs5LsXVX7LrksAADsVJYJyfsnuXLh+VXztGXmWWZZAADYqaxbYp5aYVovOc8yy04rqDom01CNJLm5qi5eoja2rX2SXLfWRayV+vW1rmC35/xjLe3W51/iHNwJ7Nbn4Bqefwet1rBMSL4qyYELzw9IcvWS8+y5xLJJku5+Y5I3LlEP20lVndvdh651HeyenH+sJecfa805uPNZZrjFOUkOqaoHVtWeSZ6Z5LRhntOSHD3f5eIxSW7o7muWXBYAAHYqW+xJ7u5bq+q4JGck2SPJm7v7wqo6dm4/OcnpSY5IckmSLyd53uaW3S57AgAA20h1rzhEmN1QVR0zD3uBHc75x1py/rHWnIM7HyEZAAAGfpYaAAAGQjIrqqqNVXV+VV1YVR9emH55Vf3d3HbuWtbIzqmqDqyqD1XVRfP588KFthfMP1N/YVX9xirL/+f55+3Pr6oPVNV+8/Q9q+ot8/n3t1W1ccfsEXdGVbVHVX2iqt43P//2qvpgVf3j/N/7bmbZVc/TqnpAVd1cVb+8vfeB3VNVHTX/P/CCqvpoVT18oc178A60zC3guJOpqvt29xe/heX3TvL6JE/q7k9X1XcMszyhu3fbezmyRbcmOb67P15VeyU5r6o+mOT+mX5x83u7+6srnFeb/GZ3/1qSVNUvJnlZkmOT/HySdPf3zMv+WVU9qru/sb13iDulFya5KMm95+cnJPnf3X1iVZ0wP/+VcaGqekI2f56+Osmfbb+y2RXNd/i6a3d/aYnZL0vyQ939xao6PNPtcR+90O49eAfRk7xrOreqTqmqH66qlX7QZUueneS93f3pJOnuz23b8tiVdfc13f3x+fFNmYLK/kl+IcmJ3f3VuW3F86q7b1x4es/c9gNEG5L874Vlr0/inqL8M1V1QJInJ3nTwuQjk7x1fvzWJE9bZfFVz9OqelqSS5O4SxNLqaqHVtVvJbk4yYOXWaa7P7rQ0XVWpt+YYA0IybumByc5JclxSf6+ql666SvrJKmqV89f1Yx/Jywsf9+qOrOqzquqoxfW3Uk+ME8/JrAZVXVwkkckOTvTefUDVXV2VX24qh61meVeVVVXJjkqU09ykvxtkiOral1VPTDJv8rtf6wINvmdJC9Osvgtw/3n+/dn/u9q32SseJ5W1T0z9Tz/p+1WNbuEqrpnVT2vqv460we1izJ9M/GJuX1L78GLfja3/+bCe/AOZLjFLqi7v57kfUneV1Xrk/y3JJ+uqsd198e6+5e2sIp1mQLIE5PcPcnfVNVZ3f0PSR7f3VfPX0F+sKo+1d0f2Y67w51UVd0ryXuSvKi7b6yqdUnum+QxSR6V5F1V9V29wi12uvtXk/xqVb0k04e9lyd5c5KHJjk3yRVJPpppaAd8U1U9Jcnnuvu8OzhufcXzNFM4fnV333zHvqBjN3JNkguS/Fx3f2psXOI9OMk3h/78bJLvX5jsPXgHEpJ3UVV1nyQ/lemHXb6W6R/aBXPbq5M8YYXFTu3uEzP9zPh189ipL1XVR5I8PMk/dPfVyfQVZFX9SZLDkvgHyu1U1V0zBeR3dPd758lXZRrG00k+VlXfSLLPfGHUI5Jc3d1HDKs6Jcn7k7y8u29N8s03l6r6aJJ/3M67wp3P45M8taqOSHK3JPeuqrcn+X9VtW93X1NV+yb5XJJU1Vty+/NvxfM005jQp8/n695JvlFVX+nu1+7oHWSn9/RM77l/UlXvTPLW7r5iU+MS78Gpqu/N1At9eHd/ftMM3oN3LPdJ3gXNbwiPTfLHSX6/u7cqSFTVQ5O8NsmPJ9kzyccy/aT4ZUnu0t03zV89fjDJK7v7z7dl/dy5zePg35rkC939ooXpxybZr7tfVlUPzjS++AFjT3JVHbLpnK2qF2S6gOXpVXWPTP/P+lJV/WiSX+vuH9xBu8Wd0NyT/Mvd/ZSq+s0kn1+4cO/bu/vFKyyzxfO0ql6R5Obu/u87Yj+4c6qq+yV5TqbOqusy9SxfvsRyD0jyl0mO7u6PLky/Z7wH71B6kndN70ry3Lnnbat190VV9eeZep6/keRN3f3J+SvHP5m/alyX5BT/OFnB45P8dJK/q6rz52kvzTRc4s1V9ckktyT5tysNtUhyYlU9JNO5d0WmO1sk0xjSM+aevc/M24BlnZhp6MTPJvl0kp9cZb5lz1PYrLkH+DVJXlNVhyX5+pKLvizJ/ZK8fn6/vbW7D810hyDvwTuQnmQAABi4uwUAAAyEZAAAGAjJAAAwEJIBAGAgJAMAwEBIBgCAgZAMAAADIRkAAAb/H1Rqfq1BbyxwAAAAAElFTkSuQmCC\n", "text/plain": [ "
    " ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAskAAAF1CAYAAAAa1Xd+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAf00lEQVR4nO3df/RlZ10f+veHSSLID2PJqPlJqIxooBJjmsSqNVW0SaAM16pNRFOpNqYmLazS6029rltqadVbr4VcY8ZQg6JARAQ6C1OjLkmRamImNARDSJ3G5M4wgUyAhECAEPjcP/Yec3j4fud7JvnOL3y91jprztnPs/f+7H3OzLzPc56zT3V3AACARz3hYBcAAACHGiEZAAAGQjIAAAyEZAAAGAjJAAAwEJIBAGAgJMOXsKq6vqp+7GDXsTdV9ZKq+v29tH97Vd1xIGvi0FJVJ1dVV9URB7mOV1bVbx7MGoADR0iGw0RV3VVVn6qqTyzcjjsIdVxfVZ+e939fVb21qo59rNvr7jd09/csbL+r6lkL7X/c3c9+vHWP5sDz2fk47q+qP6mqb9mH9b+gTgC+tAjJcHj5B939lIXbroNUx6Xd/ZQkX5fk6CT/6SDV8Xj91nwcxyR5Z5LfPsj1rJuq2nCwazgUHOzR59UcqnUBjxKS4TBWVV9ZVe+oqt1V9bH5/gmr9H1WVf23qnpgHgH+rYW2r6+qP6iqj1bVHVX1A8vsv7s/muR3kjx33s7fqaqb5n3cVFV/Z2EfP1JVd1bVg1X1l1X1koXl757vv2vu/t55hPcfVdXZVbVzbr+sqt4yHNdrqury+f5XVNWvVtU9VfXBqnrVMmGxux9J8oYkx1fVxnlbZ1TVn86jzPdU1S9V1VGr1Tkvf2FV3bIwMv2NC3X+H3NND87n+LtWqqWqXlBV/6OqPl5VO6rqlUP7t83bvn9u/5F5+a9V1ZVVdW1VfTLJ36uqb5hH/u+vqtuq6kUL2zmvqt4/1/PBqvpX8/Jj5tfR/fPr4Y+rasX/K6rqe+ZjeaCqfnl+ff3YQvs/qarb59fmdVX1jIW2rqqLq+ov5vYrqqrmtg1V9Qvz6/TOJC8Y9rvq8zy/nv57Vf2nqvpoki84fwvP7bb5HH+4qn5xXv5Xr7WFvndV1fMXFj2xqn5rPm/vqarnLfQ9bX7uHqyq3577vWpx2/Pr4ENJXldVX1ZVr66qXfPt1VX1ZQvH8e6hlr/69GJ+vrfU9Pf2wfncP2Nuq/n4752fm1ur6rkrPYfAXnS3m5vbYXBLcleS5w/Lnp7kHyb58iRPzTQS+vaF9uuT/Nh8/01J/s9Mb46fmOTb5uVPTrIjyUuTHJHktCT3JXnOKnUsbvOYJH+U5DeS/I0kH0vyw/N2LpgfP33ex8eTPHte79g920/yI0nevbD9TvKshcdnJ9k5339GkoeSPG1+vCHJPUnOmh+/PcmvzPv7qiR/luTHVzmOVyb5zfn+UUl+bj7uI+Zl35zkrPlYTk5ye5KX76XO05Lcm+TMua5/PD9nX5bk2fM5Pm7ue3KSr12lrrOT/K35efrGJB9O8uK57aQkD87n9sj53J46t/1akgeSfOu87lOTbE/yU/Pxfee87p7n4J4k3z7f/8okp833fzbJlnn7Ryb59iS1Qp3HzM/p987n6GVJPptHXxsvnvf/DXP7Tyf5k+H8vSPTJxEnJdmd5Jy57eIkH0hyYqbX1Tvn/kes9Txnej09kuSfz/t90gq1/2mSH57vPyWPvn7OzvxaW+nvXabXzGeTfN98bv5Vkr+c7x+V5O75PBw5n5eHk7xqYduPJPn5TK+JJyX5mSQ3zMewMcmfJPl3K/29GF9z8/P9YJK/O2/vNXv6J/n7SW6ez23Nz8GxB/vfMDe3w+1mJBkOL2+fR/jur6q3d/dHuvt3uvuh7n4wyb9P8h2rrPvZTCHzuO7+dHfvGaV6YZK7uvt13f1Id78n0+jw9+2ljsur6v4k780Utv5lptG+v+ju35i386ZMQecfzOt8Pslzq+pJ3X1Pd9+2rwff3XcneU+mAJZMwe+h7r6hqr46ybmZguwnu/veTNNAzt/LJn9gPo5PJfmnSb6vp1HldPfN3X3DfCx3ZQplq53bzOv/Snff2N2f6+5fT/KZTEH7c5mCzClVdWR339Xd/2uVY7y+u9/X3Z/v7lszvbnZs9+XJPnD7n5Td392fv5vWVj9v3T3f+/uzyc5NVMA/Lnufri7/yhTKL1g7vvZuZ6ndffH5ud9z/Jjkzxj3scfd3evUOp5SW7r7rfO5+zyJB9aaP/xJD/b3bfP7f8hyamLo8lzbfd39/+XKQifOi//gSSv7u4dPX1a8bN7Vljyed7V3f/v/Nx9aoXaP5vkWVV1THd/ortvWKHPam7u7rd092eT/GKmN5xn5dE3VJfP5+2tmcL7os8n+Tfd/Zm5rpck+Znuvre7dyf5t5neZC7rd7v7Xd39mUxvgL+lqk6cj++pSb4+0xuc27v7nn3YLhDTLeBw8+LuPnq+vbiqvryqfqWq7q6qjyd5V5Kja+UpBj+ZaVTpz+aP3v/JvPwZSc5cCN/3Z/rP+2v2Use/mGs4vrtfMv8Hf1ymkbRFdyc5vrs/meQfZRohvKeqfreqvv4xnoM35tGg94Pz4z3HceS8/T3H8SuZRulW8+buPjrJVyf580yjx0mSqvq6edrBh+Zz+x8yjZ6u5hlJXjGcxxMzvSnZnuTlmUYi762qa2qVL11W1ZlV9c6aptA8kOmc7dnviUlWDNezHQv3j0uyYw7Me9yd5Pj5/j/MFHTvnj+q3/Olxf+YaQT492uaHnPZKvs6bnF/c5BenKrwjCSvWTgXH830+jt+oc9iqH4oU6j/om3nC19XyzzPi+uu5Eczzaf/QE3Tgl64Rv9Fi8f8+UzHfNx8++DwhmKsY3d3f3rh8fh35u552WOp5ROZzvFx8xuiX0pyRZIPV9VVVfW0fdguECEZDnevyPRR/pnd/bRMH70mUxj5At39oe7+p919XKZRvl+e5zfuSPLfFsL30T19KfCf7WMtuzIFmEUnJfngvP/ruvu7M41SfiDJa/dx+3v8dpKza5p7/b/l0ZC8I9PI7TELx/G07n7OWhvs7vsynZNX1qNX6rhyrnPTfG5/Kiuc1wU7kvz74Tx++Tyinu5+Y3d/W6Zz1Jk+dl/JG5NsTXJid39FpqkPe/a7I8nX7u1QFu7vSnJifeF84sXn46bu3pwpXL49yZvn5Q929yu6+29m+hTgX9bK86fvSfJX89/n+cSL8+F3ZJoCsXg+ntTdf7KX+he3feJQ9+J213qeVxr5frSx+y+6+4JMx/7zSd5SVU9O8slMU5f2HNOGTNMgFp240P6ETMe8a675+Pk8fFHfVeoa/86cNC/LCrWs9KZ1sZanZJqasms+xsu7+5uTPCfTG4L/fYX1gb0QkuHw9tRMUwXur6q/keTfrNaxqr6/Hv1S38cy/Yf9uUwfwX9dVf1wVR053/52VX3DPtZy7bydH6yqI2r6MtspSd5RVV9dVS+ag8hnknxi3vdKPpzkb662k3nU+vokr0vyl919+7z8niS/n+T/qaqnVdUTquprq2pvUyQWt/uBJNdlGnFPpnP78SSfmEe9xzcNY52vTXLxPBJcVfXkmr6E99SqenZVfef8paxPZ3rOVjv+pyb5aHd/uqrOyDRavscbkjy/qn5gPsdPr6pTV9nOjZmC1k/Oz+nZmULvNVV1VE3Xp/6KedrAx/fUU9OXD581h709y1eq9XeT/K2qenFNV2q4JF/46cOWJP+6qp4zb/crqur7V6l19OYk/6KqTqiqr0zyV6PZj/d5nmv5oaraOI8E3z8v/lyS/5npi3kvqKojM82j/rJh9W+uqu+dj/nlmV7PN2Sa5/y5JJfOz83mJGesUcqbkvx0VW2sqmOS/F9J9lyH+b1JnlNVp1bVE7PCFxCTnFfTFzmPSvLvktzY3Tvmv79nzsfwyUyvudVeb8AqhGQ4vL060xeA7sv0H/Xv7aXv305yY1V9ItNI5cu6+y97msv8PZnmdO7K9BH4ni8XLa27P5JpfvMrknwkU9h84TxK+4R5+a5MHwl/R5KfWGVTr0zy6/NH6atdZeONSZ6fR0eR97gw0xeo3p/pjcBbMo1cL+s/Jrmoqr4q05eyfjDTl6Nem+S3hr5fUGd3b8s0L/mX5n1vz/Tlq2Q6l3u+GPihTCOYP7VKDT+R5Geq6sFMoenNexrmubvnZTqXH01yS5LnrbCNdPfDSV6Uaf7ufUl+OcmF85uBZJr7etc8leTiJD80L9+U5A8zvZH50yS/3N3Xr7D9+5J8f5L/O9PzfUqSbZlCY7r7bZleR9fM+/jzuZZlvDbTG5b3ZpqD/tah/fE+z+ckuW3+u/CaJOf3NE//gUzn/z9nGnH/ZL5wCkmS/JdMU4f2fEn1e+c5yA9n+rLej2YK3j+U6Q3oZ/ZSx6synbNbk7xvPtZXJUl3/89MX+z7wyR/keTdK6z/xkxvjD+aaarQS+blT8t0Dj+WaQrHR5L8whrnBBjUyt/HAIDlzVMPdiZ5SXe/82DXcyioqhuTbOnu1+2Hbf9apitx/PR6bxuYGEkG4DGpqr9fVUfP00j2zNnelytFfEmpqu+oqq+Zp1v840yX8NvbpzvAIcwv/gDwWH1Lpo/890x9ePEql1z76+LZmabHPCXTVUi+z6XX4PBlugUAAAxMtwAAgIGQDAAAg0NyTvIxxxzTJ5988sEuAwCAL2E333zzfd09/mhQkkM0JJ988snZtm3bwS4DAIAvYVV192ptplsAAMBASAYAgIGQDAAAAyEZAAAGQjIAAAyEZAAAGAjJAAAwEJIBAGAgJAMAwEBIBgCAgZAMAAADIRkAAAZCMgAADIRkWMPZZ5+ds88++2CXAQAcQEIyAAAMhGQAABgIyQAAMBCSAQBgICQDAMBASAYAgIGQDAAAAyEZAAAGS4Xkqjqnqu6oqu1VddkK7VVVl8/tt1bVafPyZ1fVLQu3j1fVy9f5GACAQ5gfZeJwdMRaHapqQ5Irknx3kp1Jbqqqrd39/oVu5ybZNN/OTHJlkjO7+44kpy5s54NJ3raeBwAAAOttmZHkM5Js7+47u/vhJNck2Tz02Zzk9T25IcnRVXXs0Oe7kvyv7r77cVcNAAD70TIh+fgkOxYe75yX7Wuf85O8aV8LBACAA22ZkFwrLOt96VNVRyV5UZLfXnUnVRdV1baq2rZ79+4lygIAgP1jmZC8M8mJC49PSLJrH/ucm+Q93f3h1XbS3Vd19+ndffrGjRuXKAsAAPaPZULyTUk2VdUz5xHh85NsHfpsTXLhfJWLs5I80N33LLRfEFMtAAA4TKx5dYvufqSqLk1yXZINSa7u7tuq6uK5fUuSa5Ocl2R7koeSvHTP+lX15ZmujPHj618+AACsvzVDcpJ097WZgvDisi0L9zvJJaus+1CSpz+OGgEA4IDyi3sAADAQkgEAYCAkAwDAQEgGAICBkAwAAAMhGQAABkIyAAAMhGQAABgIyQAAMBCSAQBgICQDAMBASAYAgIGQDAAAAyEZAAAGQjIAAAyEZAAAGAjJAAAwEJIBAGAgJAMAwEBIBgCAgZAMAAADIRkAAAZCMgAADIRkAAAYCMkAADAQkgEAYCAkAwDAQEgGAICBkAwAAAMhGQAABkIyAAAMhGQAABgIyQAAMBCSAQBgsFRIrqpzquqOqtpeVZet0F5VdfncfmtVnbbQdnRVvaWqPlBVt1fVt6znAQAAwHpbMyRX1YYkVyQ5N8kpSS6oqlOGbucm2TTfLkpy5ULba5L8Xnd/fZLnJbl9HeoGAID9ZpmR5DOSbO/uO7v74STXJNk89Nmc5PU9uSHJ0VV1bFU9LcnfTfKrSdLdD3f3/etXPgAArL8jluhzfJIdC493JjlziT7HJ3kkye4kr6uq5yW5OcnLuvuT406q6qJMo9A56aSTlq1/XZ182e8elP1yaPvQnR9J4vXB6u76uRcc7BIAWGfLjCTXCst6yT5HJDktyZXd/U1JPpnki+Y0J0l3X9Xdp3f36Rs3blyiLAAA2D+WCck7k5y48PiEJLuW7LMzyc7uvnFe/pZMoRkAAA5Zy4Tkm5JsqqpnVtVRSc5PsnXoszXJhfNVLs5K8kB339PdH0qyo6qePff7riTvX6/iAQBgf1hzTnJ3P1JVlya5LsmGJFd3921VdfHcviXJtUnOS7I9yUNJXrqwiX+e5A1zwL5zaAPgS4i5+6zEdztYy6H43Y5lvriX7r42UxBeXLZl4X4nuWSVdW9JcvpjLxEAAA4sv7gHAAADIRkAAAZCMgAADIRkAAAYCMkAADAQkgEAYCAkAwDAQEgGAICBkAwAAAMhGQAABkIyAAAMhGQAABgIyQAAMBCSAQBgICQDAMBASAYAgIGQDAAAAyEZAAAGQjIAAAyEZAAAGAjJAAAwEJIBAGAgJAMAwEBIBgCAgZAMAAADIRkAAAZCMgAADIRkAAAYCMkAADAQkgEAYCAkAwDAQEgGAICBkAwAAIOlQnJVnVNVd1TV9qq6bIX2qqrL5/Zbq+q0hba7qup9VXVLVW1bz+IBAGB/OGKtDlW1IckVSb47yc4kN1XV1u5+/0K3c5Nsmm9nJrly/nOPv9fd961b1QAAsB8tM5J8RpLt3X1ndz+c5Jokm4c+m5O8vic3JDm6qo5d51oBAOCAWCYkH59kx8LjnfOyZft0kt+vqpur6qLHWigAABwoa063SFIrLOt96POt3b2rqr4qyR9U1Qe6+11ftJMpQF+UJCeddNISZQEAwP6xzEjyziQnLjw+IcmuZft0954/703ytkzTN75Id1/V3ad39+kbN25crnoAANgPlgnJNyXZVFXPrKqjkpyfZOvQZ2uSC+erXJyV5IHuvqeqnlxVT02Sqnpyku9J8ufrWD8AAKy7NadbdPcjVXVpkuuSbEhydXffVlUXz+1bklyb5Lwk25M8lOSl8+pfneRtVbVnX2/s7t9b96MAAIB1tMyc5HT3tZmC8OKyLQv3O8klK6x3Z5LnPc4aAQDggPKLewAAMBCSAQBgICQDAMBASAYAgIGQDAAAg6WubgEA8Fh9zQ/+3MEuAfaZkWQAABgIyQAAMDDdAtbgY0IA+OvHSDIAAAyEZAAAGAjJAAAwEJIBAGAgJAMAwEBIBgCAgZAMAAADIRkAAAZCMgAADIRkAAAYCMkAADAQkgEAYCAkAwDAQEgGAICBkAwAAAMhGQAABkIyAAAMhGQAABgIyQAAMBCSAQBgICQDAMBASAYAgIGQDAAAAyEZAAAGQjIAAAyWCslVdU5V3VFV26vqshXaq6oun9tvrarThvYNVfU/quod61U4AADsL2uG5KrakOSKJOcmOSXJBVV1ytDt3CSb5ttFSa4c2l+W5PbHXS0AABwAy4wkn5Fke3ff2d0PJ7kmyeahz+Ykr+/JDUmOrqpjk6SqTkjygiT/eR3rBgCA/WaZkHx8kh0Lj3fOy5bt8+okP5nk83vbSVVdVFXbqmrb7t27lygLAAD2j2VCcq2wrJfpU1UvTHJvd9+81k66+6ruPr27T9+4ceMSZQEAwP6xTEjemeTEhccnJNm1ZJ9vTfKiqror0zSN76yq33zM1QIAwAGwTEi+KcmmqnpmVR2V5PwkW4c+W5NcOF/l4qwkD3T3Pd39r7v7hO4+eV7vj7r7h9bzAAAAYL0dsVaH7n6kqi5Ncl2SDUmu7u7bquriuX1LkmuTnJdke5KHkrx0/5UMAAD715ohOUm6+9pMQXhx2ZaF+53kkjW2cX2S6/e5QgAAOMD84h4AAAyEZAAAGAjJAAAwEJIBAGAgJAMAwEBIBgCAgZAMAAADIRkAAAZCMgAADIRkAAAYCMkAADAQkgEAYCAkAwDAQEgGAICBkAwAAAMhGQAABkIyAAAMhGQAABgIyQAAMBCSAQBgICQDAMBASAYAgIGQDAAAAyEZAAAGQjIAAAyEZAAAGAjJAAAwEJIBAGAgJAMAwEBIBgCAgZAMAAADIRkAAAZCMgAADIRkAAAYLBWSq+qcqrqjqrZX1WUrtFdVXT6331pVp83Ln1hVf1ZV762q26rq3673AQAAwHpbMyRX1YYkVyQ5N8kpSS6oqlOGbucm2TTfLkpy5bz8M0m+s7ufl+TUJOdU1VnrUzoAAOwfy4wkn5Fke3ff2d0PJ7kmyeahz+Ykr+/JDUmOrqpj58efmPscOd96vYoHAID9YZmQfHySHQuPd87LlupTVRuq6pYk9yb5g+6+caWdVNVFVbWtqrbt3r17yfIBAGD9LROSa4Vl42jwqn26+3PdfWqSE5KcUVXPXWkn3X1Vd5/e3adv3LhxibIAAGD/WCYk70xy4sLjE5Ls2tc+3X1/kuuTnLOvRQIAwIG0TEi+KcmmqnpmVR2V5PwkW4c+W5NcOF/l4qwkD3T3PVW1saqOTpKqelKS5yf5wPqVDwAA6++ItTp09yNVdWmS65JsSHJ1d99WVRfP7VuSXJvkvCTbkzyU5KXz6scm+fX5ChlPSPLm7n7H+h8GAACsnzVDcpJ097WZgvDisi0L9zvJJSusd2uSb3qcNQIAwAHlF/cAAGAgJAMAwEBIBgCAgZAMAAADIRkAAAZCMgAADIRkAAAYCMkAADAQkgEAYCAkAwDAQEgGAICBkAwAAAMhGQAABkIyAAAMhGQAABgIyQAAMBCSAQBgICQDAMBASAYAgIGQDAAAAyEZAAAGQjIAAAyEZAAAGAjJAAAwEJIBAGAgJAMAwEBIBgCAgZAMAAADIRkAAAZCMgAADIRkAAAYCMkAADAQkgEAYLBUSK6qc6rqjqraXlWXrdBeVXX53H5rVZ02Lz+xqt5ZVbdX1W1V9bL1PgAAAFhva4bkqtqQ5Iok5yY5JckFVXXK0O3cJJvm20VJrpyXP5LkFd39DUnOSnLJCusCAMAhZZmR5DOSbO/uO7v74STXJNk89Nmc5PU9uSHJ0VV1bHff093vSZLufjDJ7UmOX8f6AQBg3S0Tko9PsmPh8c58cdBds09VnZzkm5LcuM9VAgDAAbRMSK4VlvW+9KmqpyT5nSQv7+6Pr7iTqouqaltVbdu9e/cSZQEAwP6xTEjemeTEhccnJNm1bJ+qOjJTQH5Dd791tZ1091XdfXp3n75x48ZlagcAgP1imZB8U5JNVfXMqjoqyflJtg59tia5cL7KxVlJHujue6qqkvxqktu7+xfXtXIAANhPjlirQ3c/UlWXJrkuyYYkV3f3bVV18dy+Jcm1Sc5Lsj3JQ0leOq/+rUl+OMn7quqWedlPdfe163oUAACwjtYMyUkyh9prh2VbFu53kktWWO/dWXm+MgAAHLL84h4AAAyEZAAAGAjJAAAwEJIBAGAgJAMAwEBIBgCAgZAMAAADIRkAAAZCMgAADIRkAAAYCMkAADAQkgEAYCAkAwDAQEgGAICBkAwAAAMhGQAABkIyAAAMhGQAABgIyQAAMBCSAQBgICQDAMBASAYAgIGQDAAAAyEZAAAGQjIAAAyEZAAAGAjJAAAwEJIBAGAgJAMAwEBIBgCAgZAMAAADIRkAAAZCMgAADIRkAAAYLBWSq+qcqrqjqrZX1WUrtFdVXT6331pVpy20XV1V91bVn69n4QAAsL+sGZKrakOSK5Kcm+SUJBdU1SlDt3OTbJpvFyW5cqHt15Kcsx7FAgDAgbDMSPIZSbZ3953d/XCSa5JsHvpsTvL6ntyQ5OiqOjZJuvtdST66nkUDAMD+tExIPj7JjoXHO+dl+9pnr6rqoqraVlXbdu/evS+rAgDAulomJNcKy/ox9Nmr7r6qu0/v7tM3bty4L6sCAMC6WiYk70xy4sLjE5Lsegx9AADgsLBMSL4pyaaqemZVHZXk/CRbhz5bk1w4X+XirCQPdPc961wrAAAcEGuG5O5+JMmlSa5LcnuSN3f3bVV1cVVdPHe7NsmdSbYneW2Sn9izflW9KcmfJnl2Ve2sqh9d52MAAIB1dcQynbr72kxBeHHZloX7neSSVda94PEUCAAAB5pf3AMAgIGQDAAAAyEZAAAGQjIAAAyEZAAAGAjJAAAwEJIBAGAgJAMAwEBIBgCAgZAMAAADIRkAAAZCMgAADIRkAAAYCMkAADAQkgEAYCAkAwDAQEgGAICBkAwAAAMhGQAABkIyAAAMhGQAABgIyQAAMBCSAQBgICQDAMBASAYAgIGQDAAAAyEZAAAGQjIAAAyEZAAAGAjJAAAwEJIBAGAgJAMAwEBIBgCAwVIhuarOqao7qmp7VV22QntV1eVz+61Vddqy6wIAwKFmzZBcVRuSXJHk3CSnJLmgqk4Zup2bZNN8uyjJlfuwLgAAHFKWGUk+I8n27r6zux9Ock2SzUOfzUle35MbkhxdVccuuS4AABxSlgnJxyfZsfB457xsmT7LrAsAAIeUI5boUyss6yX7LLPutIGqizJN1UiST1TVHUvUBgfKMUnuO9hFcGiqnz/YFcBhwb+jrOog/jv6jNUalgnJO5OcuPD4hCS7luxz1BLrJkm6+6okVy1RDxxwVbWtu08/2HUAHK78O8rhZpnpFjcl2VRVz6yqo5Kcn2Tr0Gdrkgvnq1ycleSB7r5nyXUBAOCQsuZIcnc/UlWXJrkuyYYkV3f3bVV18dy+Jcm1Sc5Lsj3JQ0leurd198uRAADAOqnuFacIAwuq6qJ5ShAAj4F/RzncCMkAADDws9QAADAQkmEVVdVV9RsLj4+oqt1V9Y6DWRfA4aaqPldVtyzcTj7YNcFalrkEHPx19ckkz62qJ3X3p5J8d5IPHuSaAA5Hn+ruUw92EbAvjCTD3v3XJC+Y71+Q5E0HsRYA4AARkmHvrklyflU9Mck3JrnxINcDcDh60sJUi7cd7GJgGaZbwF50963z3LkLMl0PHIB9Z7oFhx0hGda2NckvJDk7ydMPbikAwIEgJMPars70U+vvq6qzD3ItAMABICTDGrp7Z5LXHOw6AIADxy/uAQDAwNUtAABgICQDAMBASAYAgIGQDAAAAyEZAAAGQjIAAAyEZAAAGAjJAAAw+P8By3flzfxobP0AAAAASUVORK5CYII=\n", "text/plain": [ "
    " ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABDAAAAI4CAYAAACcFxlBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA/M0lEQVR4nO3de7itZV0v/O9XFmoIggnbTaStMs1UFBUPJBoecmdoapaUviVWut1uMyszyzQ87fCtrZU7M7ZvmmWEIhZqKaYingAXZzxlKe5Ca4ciAuIJ7/eP8aycrOZca67FWms8Cz6f65rXHON+7ue+f8+YjgvHd93PPTrGCAAAAMCc3WTZBQAAAABsiwADAAAAmD0BBgAAADB7AgwAAABg9gQYAAAAwOwJMAAAAIDZE2AAALBd2r627YuXXQcANy4CDABgu7S9pO01ba9a8fMdO2HMh+6sGtcx33Ft/3x3zbc1bY9t+/5l17Gltqe3/cr0972s7SltD96BcUbb790VNQJw4yLAAAB2xCPHGPuu+PnsMotpu2GZ8++oPaDup48x9k1yxyQHJHn5cssB4MZMgAEA7BRt92/7/7X9XNtL27647V7Tsdu3fXfbz0//mv/6tgdMx/4sye2SvGX61/5ntz2q7T9vMf6/r9KYVlCc3PbP234pybFbm38dtY+2T2v7ybZXtn3RVPOH2n6p7Rva3nTqe1Tbf277G9O1XNL2CVu8Dq9r+29tP9P2N9veZDp2bNsPtH152y8kOSnJq5IcMV37F6d+R7c9b5r7n9oet2L8jVO9T2z7f6Yanrvi+F5Tbf84Xcs5bW87HbtT23e2/ULbT7R93HpenzHGF5K8Kcld13j9ntz2H6ZxT928IqftGVOXC6brO2Y98wHAagQYAMDO8qdJvpHke5PcI8nDkvz8dKxJfjvJdyT5/iS3TXJckowxfjrJ/8m3VnX8v+uc71FJTs5iZcDrtzH/evxwknsluV+SZyc5IckTplrvmuSnVvT9z0kOTHJIkicmOaHt903HXpFk/yTfk+QHk/xMkietOPe+ST6V5D8l+X+SPDXJh6ZrP2Dqc/V03gFJjk7y39o+eot6j0zyfUkekuT5bb9/av/lqdYfSXLLJD+b5Mttb5HknUn+Ypr7p5K8su1dtvXCtD0wyWOTnLfKsQdn8bd9XJKDk3wmyV8myRjjgVO3u0/Xd9K25gKAtQgwAIAd8Vdtvzj9/FXb2yR5eJJnjjGuHmP83yxuN/jJJBlj/MMY451jjK+OMf4tycuy+HB/fXxojPFXY4xvZvFBfc351+mlY4wvjTE+kuTiJKeNMT41xrgiyd9mEYqs9Lzpet6b5G1JHjet+Dgmya+PMa4cY1yS5H8m+ekV5312jPGKMcY3xhjXrFbIGOP0McZFY4xvjjEuTHJi/uPr9YIxxjVjjAuSXJDk7lP7zyf5zTHGJ8bCBWOMzyd5RJJLxhivmeY+N4tVFT++ldfkD6ZVIRck+VwW4ciWnpDkT8YY544xvprk17NYUbJxK+MCwHab+32XAMA8PXqM8Xebn7S9T5K9k3yu7ebmmyT5p+n4f0ryB0kekGS/6djl17OGf1rx+Lu2Nv86/euKx9es8vw/r3h++Rjj6hXPP5PF6pIDk9x0er7y2CFr1L2qtvdNcnwWKz9umuRmSd64Rbd/WfH4y0n2nR7fNsk/rjLsdyW57+bbVCYbkvzZVkp5xhjj1dso9zuSnLv5yRjjqrafz+KaL9nGuQCwblZgAAA7wz8l+WqSA8cYB0w/txxjbL494beTjCR3G2PcMotbJ7ri/LHFeFcn2Wfzk2llw0Fb9Fl5zrbm39luNd2Ssdntknw2yWVJvp5FWLDy2KVr1L3a82Rxm8epSW47xtg/i30yukq/1fxTktuv0f7eFa/PAdNtHf9tneOu5bNZcb3T63LrXPeaAeB6E2AAANfbGONzSU5L8j/b3rLtTaZNMDff9rBfkquSfLHtIUl+dYsh/jWLPSM2+/skN582s9w7yW9msQphR+ffFV7Q9qZtH5DF7RlvHGNcm+QNSV7Sdr+235XFbRdb+8rWf03ynZs3CZ3sl+QLY4yvTKtbHr8ddb06yYva3qELd2t76yRvTXLHtj/ddu/p594r9s7YUX+R5EltD2t7syT/I8lZ0+0zm6/ve9Y6GQDWS4ABAOwsP5PF7Q4fzeL2kJOz2NQxSV6Q5J5Jrshiv4hTtjj3t5P85rSnxrOmfSeelsWH8UuzWJHxz9m6rc2/s/3LNMdns9hA9KljjI9Px34hi3o/leT9WXzA/5OtjPXuJB9J8i9tL5vanpbkhW2vTPL8LEKR9XrZ1P+0JF9K8v8l+bYxxpVZbGz6k1Pd/5LkpdlKMLQeY4x3JXleFvtpfC6L1R8r9x45LsmfTn/bdX3rCQCspmOstmoRAIDVtD0qyZ+PMb5zyaUAwI2KFRgAAADA7AkwAAAAgNlzCwkAAAAwe1ZgAAAAALO3YdkFMC8HHnjg2Lhx47LLAAAA4EbqnHPOuWyMcdCW7QIMrmPjxo3ZtGnTsssAAADgRqrtZ1ZrdwsJAAAAMHsCDAAAAGD2BBgAAADA7AkwAAAAgNkTYAAAAACzJ8AAAAAAZk+AAQAAAMyeAAMAAACYPQEGAAAAMHsCDAAAAGD2BBgAAADA7AkwAAAAgNkTYAAAAACzJ8AAAAAAZk+AAQAAAMyeAAMAAACYPQEGAAAAMHsCDAAAAGD2BBgAAADA7AkwAAAAgNkTYAAAAACzt2HZBTAvF116RTY+523LLgMAAICd4JLjj152CTuNFRgAAADA7AkwAAAAgNkTYAAAAACzJ8AAAAAAZk+AAQAAAMyeAAMAAACYPQEGAAAAMHsCDAAAAGD2BBgAAADA7AkwAAAAgNkTYAAAAACzJ8AAAAAAZk+AAQAAAMyeAAMAAACYPQEGAAAAMHsCjBuBtoe1/ZFl1wEAAAA7SoBx43BYEgEGAAAAeywBxh6k7V+1PaftR9o+ZWq7qu1Lp/a/a3uftqe3/VTbH2170yQvTHJM2/PbHrPcqwAAAIDtJ8DYs/zsGONeSQ5P8oy2t05yiySnT+1XJnlxkh9K8pgkLxxjfC3J85OcNMY4bIxx0paDtn1K201tN1375St228UAAADAem1YdgFsl2e0fcz0+LZJ7pDka0nePrVdlOSrY4yvt70oycb1DDrGOCHJCUlys4PvMHZqxQAAALATCDD2EG2PSvLQJEeMMb7c9vQkN0/y9THG5tDhm0m+miRjjG+29fcFAADgBsEtJHuO/ZNcPoUXd0pyv+0498ok++2asgAAAGDXE2DsOd6eZEPbC5O8KMmZ23Hue5Lc2SaeAAAA7KncYrCHGGN8NcnDVzm074o+x21xzr7T7y8kufeurA8AAAB2JSswAAAAgNkTYAAAAACzJ8AAAAAAZk+AAQAAAMyeAAMAAACYPQEGAAAAMHsCDAAAAGD2BBgAAADA7AkwAAAAgNkTYAAAAACzJ8AAAAAAZk+AAQAAAMyeAAMAAACYvQ3LLoB5OfSQ/bPp+KOXXQYAAABchxUYAAAAwOwJMAAAAIDZE2AAAAAAsyfAAAAAAGZPgAEAAADMngADAAAAmD0BBgAAADB7AgwAAABg9gQYAAAAwOxtWHYBzMtFl16Rjc9527LLgNm55Pijl10CAADcqFmBAQAAAMyeAAMAAACYPQEGAAAAMHsCDAAAAGD2BBgAAADA7AkwAAAAgNkTYAAAAACzJ8AAAAAAZk+AAQAAAMyeAAMAAACYPQEGAAAAMHsCDAAAAGD2BBgAAADA7AkwAAAAgNkTYAAAAACzJ8CYobZXbUff49o+axt9Ht32zte/MgAAAFgOAcaStN2wG6d7dBIBBgAAAHssAcZ2arux7cfbvrrtxW1f3/ahbT/Q9pNt79P2Fm3/pO2H257X9lHTuce2fWPbtyQ5re2+bV/T9qK2F7Z97Ip5XtL2grZntr3NOmt78jTnBW3f1Haftj+Q5EeT/E7b89vefpXzntJ2U9tN1375ip30SgEAAMDOI8DYMd+b5PeT3C3JnZI8PsmRSZ6V5DeSPDfJu8cY907yoCzCg1tM5x6R5IljjAcneV6SK8YYh44x7pbk3VOfWyQ5c4xx9yRnJHnyOus6ZYxx7+m8jyX5uTHGB5OcmuRXxxiHjTH+ccuTxhgnjDEOH2Mcvtc++2/nSwEAAAC73u68jeGG5NNjjIuSpO1HkrxrjDHaXpRkY5LvTPKjK/amuHmS202P3znG+ML0+KFJfnLzoGOMy6eHX0vy1unxOUl+aJ113bXti5MckGTfJO/YzusCAACAWRJg7Jivrnj8zRXPv5nFa3ptkseOMT6x8qS2901y9cqmJGOV8b8+xtjcfm3W/3d6bZJHjzEuaHtskqPWeR4AAADMmltIdo13JPmFtk2StvdYo99pSZ6++UnbW13PefdL8rm2eyd5wor2K6djAAAAsEcSYOwaL0qyd5IL2148PV/Ni5PcatoM9IIs9su4Pp6X5Kwk70zy8RXtf5nkV6cNRf/DJp4AAAAwd/3WnQqQ3OzgO4yDn/h7yy4DZueS449edgkAAHCj0PacMcbhW7ZbgQEAAADMnk089xBtn5vkJ7ZofuMY4yXLqAcAAAB2JwHGHmIKKoQVAAAA3Ci5hQQAAACYPQEGAAAAMHsCDAAAAGD2BBgAAADA7AkwAAAAgNkTYAAAAACzJ8AAAAAAZk+AAQAAAMyeAAMAAACYvQ3LLoB5OfSQ/bPp+KOXXQYAAABchxUYAAAAwOwJMAAAAIDZE2AAAAAAsyfAAAAAAGZPgAEAAADMngADAAAAmD0BBgAAADB7AgwAAABg9gQYAAAAwOxtWHYBzMtFl16Rjc9527LL4AbikuOPXnYJAADADYQVGAAAAMDsCTAAAACA2RNgAAAAALMnwAAAAABmT4ABAAAAzJ4AAwAAAJg9AQYAAAAwewIMAAAAYPYEGAAAAMDsCTAAAACA2RNgAAAAALMnwAAAAABmT4ABAAAAzJ4AAwAAAJg9AQYAAAAwewKM3aDtU9v+zPT42LbfseyaAAAAYE+yYdkF3BiMMV614umxSS5O8tnlVAMAAAB7HiswdoG2P9P2wrYXtP2ztse1fVbbH09yeJLXtz2/7dFt37zivB9qe8pWxr2q7f9se27bd7U9aGo/rO2Z05xvbnurqf30tr/X9oNtL257nzXGfUrbTW03XfvlK3buiwEAAAA7gQBjJ2t7lyTPTfLgMcbdk/zi5mNjjJOTbEryhDHGYUn+Jsn3bw4ikjwpyWu2Mvwtkpw7xrhnkvcm+a2p/XVJfm2McbckF61oT5JbjDF+IMnTkvzJaoOOMU4YYxw+xjh8r332367rBQAAgN1BgLHzPTjJyWOMy5JkjPGFtTqOMUaSP0vy/7Q9IMkRSf52K2N/M8lJ0+M/T3Jk2/2THDDGeO/U/qdJHrjinBOnuc5IcstpHgAAANij2ANj52uSsR39X5PkLUm+kuSNY4xvbMe565lnyz7bUxsAAADMghUYO9+7kjyu7a2TpO23b3H8yiT7bX4yxvhsFht6/maS125j7Jsk+fHp8eOTvH+McUWSy9s+YGr/6SxuL9nsmKmOI5NcMfUHAACAPYoVGDvZGOMjbV+S5L1tr01yXpJLVnR5bZJXtb0myRFjjGuSvD7JQWOMj25j+KuT3KXtOUmuyBROJHniNOY+ST6VxV4am13e9oNJbpnkZ6/XxQEAAMCSCDB2gTHGn2axF8Vqx96U5E1bNB+Z5H+vc+znJXneFm3nJ7nfGqe8aYzx6+sZGwAAAOZKgLFk02qKq5P8yrJrAQAAgLkSYCzZGONeW7a1PSvJzbZo/ukxxr7bOfZR16M0AAAAmA0BxgyNMe677BoAAABgTnwLCQAAADB7AgwAAABg9gQYAAAAwOwJMAAAAIDZE2AAAAAAsyfAAAAAAGZPgAEAAADMngADAAAAmD0BBgAAADB7G5ZdAPNy6CH7Z9PxRy+7DAAAALgOKzAAAACA2RNgAAAAALMnwAAAAABmT4ABAAAAzJ4AAwAAAJg9AQYAAAAwewIMAAAAYPYEGAAAAMDsCTAAAACA2duw7AKYl4suvSIbn/O2ZZfBjF1y/NHLLgEAALgRsgIDAAAAmD0BBgAAADB7AgwAAABg9gQYAAAAwOwJMAAAAIDZE2AAAAAAsyfAAAAAAGZPgAEAAADMngADAAAAmD0BBgAAADB7AgwAAABg9gQYAAAAwOwJMAAAAIDZE2AAAAAAsyfAuAFoe9U2jh/Q9mm7qx4AAADY2QQYNw4HJBFgAAAAsMcSYNyAtN237bvantv2oraPmg4dn+T2bc9v+zvLrBEAAAB2xIZlF8BO9ZUkjxljfKntgUnObHtqkuckuesY47DVTmr7lCRPSZK9bnnQ7qoVAAAA1k2AccPSJP+j7QOTfDPJIUlus62TxhgnJDkhSW528B3GLq0QAAAAdoAA44blCUkOSnKvMcbX216S5ObLLQkAAACuP3tg3LDsn+T/TuHFg5J819R+ZZL9llcWAAAAXD8CjBuW1yc5vO2mLFZjfDxJxhifT/KBthfbxBMAAIA9kVtIbgDGGPtOvy9LcsQafR6/W4sCAACAncgKDAAAAGD2BBgAAADA7AkwAAAAgNkTYAAAAACzJ8AAAAAAZk+AAQAAAMyeAAMAAACYPQEGAAAAMHsCDAAAAGD2BBgAAADA7AkwAAAAgNkTYAAAAACzJ8AAAAAAZm/DsgtgXg49ZP9sOv7oZZcBAAAA12EFBgAAADB7AgwAAABg9gQYAAAAwOwJMAAAAIDZE2AAAAAAsyfAAAAAAGZPgAEAAADMngADAAAAmD0BBgAAADB7G5ZdAPNy0aVXZONz3rbsMpiBS44/etklAAAA/DsrMAAAAIDZE2AAAAAAsyfAAAAAAGZPgAEAAADMngADAAAAmD0BBgAAADB7AgwAAABg9gQYAAAAwOwJMAAAAIDZE2AAAAAAsyfAAAAAAGZPgAEAAADMngADAAAAmD0BBgAAADB7AoyZa3vVsmsAAACAZRNgAAAAALMnwNhDdOF32l7c9qK2x0ztR7U9ve3JbT/e9vVtOx37kant/W3/oO1bl3sVAAAAsGM2LLsA1u3HkhyW5O5JDkzy4bZnTMfukeQuST6b5ANJ7t92U5I/TvLAMcan2564+0sGAACAncMKjD3HkUlOHGNcO8b41yTvTXLv6djZY4x/HmN8M8n5STYmuVOST40xPj31WTPAaPuUtpvabrr2y1fssgsAAACAHSXA2HN0K8e+uuLxtVmsrNla/+sYY5wwxjh8jHH4Xvvsv6P1AQAAwC4jwNhznJHkmLZ7tT0oyQOTnL2V/h9P8j1tN07Pj9nF9QEAAMAuYw+MPcebkxyR5IIkI8mzxxj/0vZOq3UeY1zT9mlJ3t72smw97AAAAIBZE2DM3Bhj3+n3SPKr08/K46cnOX3F86evOPyeMcadpm8l+cMkm3Z1vQAAALAruIXkhu3Jbc9P8pEk+2fxrSQAAACwx7EC4wZsjPHyJC9fdh0AAABwfVmBAQAAAMyeAAMAAACYPQEGAAAAMHsCDAAAAGD2BBgAAADA7AkwAAAAgNkTYAAAAACzJ8AAAAAAZk+AAQAAAMyeAAMAAACYPQEGAAAAMHsbll0A83LoIftn0/FHL7sMAAAAuA4rMAAAAIDZE2AAAAAAsyfAAAAAAGZPgAEAAADMngADAAAAmD0BBgAAADB7AgwAAABg9gQYAAAAwOwJMAAAAIDZ27DsApiXiy69Ihuf87Zll8E6XXL80csuAQAAYLewAgMAAACYPQEGAAAAMHsCDAAAAGD2BBgAAADA7AkwAAAAgNkTYAAAAACzJ8AAAAAAZk+AAQAAAMyeAAMAAACYPQEGAAAAMHsCDAAAAGD2BBgAAADA7AkwAAAAgNkTYAAAAACzJ8AAAAAAZk+AsQRtr9qOvse1fdaurAcAAADmToCxi7TdsOwaAAAA4IZCgLGFthvbfrztq9te3Pb1bR/a9gNtP9n2Pm1v0fZP2n647XltHzWde2zbN7Z9S5LT2u7b9jVtL2p7YdvHrpjnJW0vaHtm29uss7bDpv4Xtn1z21tN7ae3fWnbs9v+fdsHTO37tH3D1P+ktme1PXwXvGwAAACwSwkwVve9SX4/yd2S3CnJ45McmeRZSX4jyXOTvHuMce8kD0ryO21vMZ17RJInjjEenOR5Sa4YYxw6xrhbkndPfW6R5Mwxxt2TnJHkyeus63VJfm0a66Ikv7Xi2IYxxn2SPHNF+9OSXD71f1GSe602aNuntN3UdtO1X75inaUAAADA7iPAWN2nxxgXjTG+meQjSd41xhhZhAYbkzwsyXPanp/k9CQ3T3K76dx3jjG+MD1+aJI/3DzoGOPy6eHXkrx1enzONOZWtd0/yQFjjPdOTX+a5IErupyyynhHJvnLae6Lk1y42thjjBPGGIePMQ7fa5/9t1UKAAAA7Hb2aVjdV1c8/uaK59/M4jW7NsljxxifWHlS2/smuXplU5KxyvhfnwKRTGPtjL/D5hpXjtedMC4AAAAsnRUYO+YdSX6hbZOk7T3W6HdakqdvfrJ5z4odMca4Isnlm/e3SPLTSd67lVOS5P1JHjfNfeckh+7o/AAAALBMAowd86Ikeye5sO3F0/PVvDjJrabNQC/IYr+M6+OJWey3cWGSw5K8cBv9X5nkoKn/r2VxC4lNLgAAANjj9Ft3MnBD03avJHuPMb7S9vZJ3pXkjmOMr611zs0OvsM4+Im/t7tK5Hq65Pijl10CAADATtX2nDHGf/gGTXtg3LDtk+Q9bffOYj+M/7a18AIAAADmSoAxE22fm+Qntmh+4xjjJTs65hjjyiT/IbUCAACAPY0AYyamoGKHwwoAAAC4IbOJJwAAADB7AgwAAABg9gQYAAAAwOwJMAAAAIDZE2AAAAAAsyfAAAAAAGZPgAEAAADMngADAAAAmD0BBgAAADB7G5ZdAPNy6CH7Z9PxRy+7DAAAALgOKzAAAACA2RNgAAAAALMnwAAAAABmT4ABAAAAzJ4AAwAAAJg9AQYAAAAwewIMAAAAYPYEGAAAAMDsCTAAAACA2duw7AKYl4suvSIbn/O2ZZdxo3fJ8UcvuwQAAIBZsQIDAAAAmD0BBgAAADB7AgwAAABg9gQYAAAAwOwJMAAAAIDZE2AAAAAAsyfAAAAAAGZPgAEAAADMngADAAAAmD0BBgAAADB7AgwAAABg9gQYAAAAwOwJMAAAAIDZE2AAAAAAsyfAAAAAAGZvpwcYbY9q+wM7e9xdoe0lbQ/cxXP8TdsDduUc66jhmW33WWYNAAAAcH3sihUYRyXZpQFGF/aI1SNjjB8ZY3xxyWU8M4kAAwAAgD3WukOAtj/T9sK2F7T9s7aPbHtW2/Pa/l3b27TdmOSpSX6p7fltH9D2oLZvavvh6ef+03gHtX1n23Pb/nHbz2xeDdH2l9tePP08c2rb2PZjbV+Z5Nwkz2v78hX1Pbnty9ao/RZt3zbVfnHbY1Yc/oWphova3mnq/+1t/2q63jPb3m1qP2669ne3/WTbJ0/tR7U9o+2b23607as2ByybV3msqP9/t/1I29PaftvU597TXB9q+zttL97K3+HYtqe0fftUw/+74tjDpjHObfvGtvu2fUaS70jynrbvWe/fGwAAAOZkXQFG27skeW6SB48x7p7kF5O8P8n9xhj3SPKXSZ49xrgkyauSvHyMcdgY431Jfn96fu8kj03y6mnY30ry7jHGPZO8OcntprnuleRJSe6b5H5Jntz2HtM535fkddOcv5vkR9vuPR17UpLXrHEJP5zks2OMu48x7prk7SuOXTbV8EdJnjW1vSDJeWOMuyX5jSSvW9H/bkmOTnJEkue3/Y6p/T5JfiXJoUlun+THVqnjDkn+cIxxlyRfnF6PTHU/dYxxRJJr17iGlQ5Lcsw01zFtbzuFP7+Z5KHT9WxK8stjjD9I8tkkDxpjPGi1wdo+pe2mtpuu/fIV65geAAAAdq8N6+z34CQnjzEuS5IxxhfaHprkpLYHJ7lpkk+vce5Dk9y57ebnt2y7X5IjkzxmGu/tbS+fjh+Z5M1jjKuTpO0pSR6Q5NQknxljnDmdc3Xbdyd5RNuPJdl7jHHRGjVclOR32740yVunYGWzU6bf5+RbocORmcKFMca729667f7Tsb8eY1yT5JppRcN9sggjzh5jfGqq+cRpjJO3qOPTY4zzV8y3cdofY78xxgen9r9I8og1rmOzd40xrpjm+miS70pyQJI7J/nA9FrfNMmHtjFOpms8IckJSXKzg+8w1nMOAAAA7E7rDTCaZMsPtq9I8rIxxqltj0py3Brn3iTJEdOH/m8NuCLRWGWutVy9xfNXZ7FC4uNZe/VFxhh/P63s+JEkv932tDHGC6fDX51+X5tvvR6r1TC2+L3e9pW+uuLxtUm+bY25tmXLcTZM47xzjPFTOzAeAAAAzNp698B4V5LHtb11stgjIsn+SS6djj9xRd8rk+y34vlpSZ6++Unbw6aH70/yuKntYUluNbWfkeTRbfdpe4ssVmmsXDHx78YYZyW5bZLHJzlxreKn2zy+PMb48yxuPbnn1i83ZyR5wnTuUVncZvKl6dij2t58ei2OSvLhqf0+bb972vvimOn6tmmMcXmSK9veb2r6yfWct4ozk9y/7fdOde/T9o7TsS3/JgAAALBHWVeAMcb4SJKXJHlv2wuSvCyLFRdvbPu+JJet6P6WJI/ZvIlnkmckOXzapPKjWWzymSz2mXhY23OTPDzJ55JcOcY4N8lrk5yd5Kwkrx5jnLeV8t6Q5ANTELCWQ5Oc3fb8LPbyePE2Lvm4zTUnOT7XDWjOTvK2LAKDF40xPju1f2jqe3EWt9O8eRtzrPRzSU5o+6EsVlJs90YUY4x/S3JskhOnus9Mcqfp8AlJ/tYmngAAAOypOsZytjxoe7Mk144xvtH2iCR/NMY4bAfGeWsWm4S+a2fXuMpcxyW5aozxu1u0H5XkWWOMbe1dsda4+44xrpoePyfJwWOMX7x+1e6Ymx18h3HwE39vGVOzwiXHH73sEgAAAJai7TljjMO3bF/vHhi7wu2SvGG65eJrSZ68PSdPm1+eneSC3RFe7GJHt/31LP4en8liJQUAAAAwWVqAMcb4ZJJ7bLPj2ud/MckdV7ZN+1KsFmY8ZIzx+R2da8Wcx63RfnqS06/HuCclOWllW9v/kuSlW3T99BjjMTs6DwAAAOyplrkCY6ebQorDll3HzjDGeEeSdyy7DgAAAJiD9X4LCQAAAMDSCDAAAACA2RNgAAAAALMnwAAAAABmT4ABAAAAzJ4AAwAAAJg9AQYAAAAwewIMAAAAYPYEGAAAAMDsCTAAAACA2duw7AKYl0MP2T+bjj962WUAAADAdViBAQAAAMyeAAMAAACYPQEGAAAAMHsCDAAAAGD2BBgAAADA7AkwAAAAgNkTYAAAAACzJ8AAAAAAZm/DsgtgXi669IpsfM7bll3G7F1y/NHLLgEAAOBGxQoMAAAAYPYEGAAAAMDsCTAAAACA2RNgAAAAALMnwAAAAABmT4ABAAAAzJ4AAwAAAJg9AQYAAAAwewIMAAAAYPYEGAAAAMDsCTAAAACA2RNgAAAAALMnwAAAAABmT4ABAAAAzN5uDTDaHtX2B3bnnAAAAMCeb3evwDgqyS4NMLqw06+r7YZdMOZeO3tMAAAAuCHaKR/02/5M2wvbXtD2z9o+su1Zbc9r+3dtb9N2Y5KnJvmltue3fUDbg9q+qe2Hp5/7T+Md1Padbc9t+8dtP9P2wOnYL7e9ePp55tS2se3H2r4yyblJntf25Svqe3Lbl22l/ue1/fg054ltnzW1n972f7R9b5JfbPuQ6ZouavsnbW829bt32w9O13922/3a7tX2d6brurDtf536HtX2PW3/IslFbV/U9hdX1PKSts9Yo86j2p7R9s1tP9r2VZvDmrY/NdV1cduXTm17tX3t1HZR21/asb8wAAAALNf1XlXQ9i5Jnpvk/mOMy9p+e5KR5H5jjNH255M8e4zxK21fleSqMcbvTuf+RZKXjzHe3/Z2Sd6R5PuT/FaSd48xfrvtDyd5ytT/XkmelOS+SZrkrClcuDzJ9yV50hjjaW1vkeTCts8eY3x9Oue/rlH/4Ukem+Qe0+txbpJzVnQ5YIzxg21vnuSTSR4yxvj7tq9L8t+m0OSkJMeMMT7c9pZJrknyc0muGGPcewo6PtD2tGnM+yS56xjj01Owc0qS35/CiJ+cjq/lPknunOQzSd6e5MfafjDJS5Pca3otTmv76CT/lOSQMcZdp2s9YCvjAgAAwGztjNsiHpzk5DHGZUkyxvhC20OTnNT24CQ3TfLpNc59aJI7t938/JZt90tyZJLHTOO9ve3l0/Ejk7x5jHF1krQ9JckDkpya5DNjjDOnc65u++4kj2j7sSR7jzEuWqOGI5P89RjjmmnMt2xx/KTp9/cl+fQY4++n53+a5L8neVeSz40xPjzN/aVpnIcluVvbH5/675/kDkm+luTsMcanp/6XtP1823skuU2S88YYn1+j1kznfmqa48Sp/q8nOX2M8W9T++uTPDDJi5J8T9tXJHlbktNWG7DtUzKFRHvd8qCtTA0AAADLsTMCjGax4mKlVyR52Rjj1LZHJTlujXNvkuSIzeHBvw+4ItFYZa61XL3F81cn+Y0kH0/ymq2ct7UxV467tZq2vP7N7b8wxnjHdRoXr8dqtR6b5D8n+ZNt1LPlXGOt2sYYl7e9e5L/kkXY8rgkP7tKvxOSnJAkNzv4DqtdCwAAACzVztgD411JHtf21kky3UKyf5JLp+NPXNH3yiT7rXh+WpKnb37S9rDp4fuz+LC9eSXDrab2M5I8uu0+020ij0nyvtWKGmOcleS2SR6f5MSt1P/+JI9se/O2+yY5eo1+H0+yse33Ts9/Osl7p/bvaHvvqd79utjw8x1Z3GKy99R+x6nm1bw5yQ8nufd03tbcp+13T7ebHDPVf1aSH2x7YBcbg/5UkvdO+4bcZIzxpiTPS3LPbYwNAAAAs3S9V2CMMT7S9iVZfGC+Nsl5Way4eGPbS5OcmeS7p+5vSXJy20cl+YUkz0jyh20vnGo5I4uNPl+Q5MS2x2QREnwuyZVjjHPbvjbJ2dN4rx5jnDftI7GaNyQ5bIxx+RrHM+1bcWqSC7LYV2JTkitW6feVtk+armtDkg8nedUY42tTna9o+21Z7H/x0CxWVWxMcu60ouTfkjx6jRq+1vY9Sb44xrh2rVonH0pyfJJDs3i93jzG+GbbX0/ynixWY/zNGOOvp9UXr+m3vpXl17cxNgAAAMxSx5jfHQPTppfXjjG+0faIJH80xjhsB8Z5axabhL5rG/32HWNc1XafLEKBp4wxzt2R2nfEFDCcm+Qnxhif3Eq/o5I8a4zxiF1Vy80OvsM4+Im/t6uGv8G45Pi1FuoAAABwfbQ9Z4xx+JbtO2MPjF3hdkneMH2w/1qSJ2/PydO3bZyd5IJthReTE9reOcnNk/zpbg4v7pzkrVmspFgzvAAAAIAbs1kGGNMH+Xtcj/O/mOSOK9umPTpWCzMeMsZ4/I7OdX2NMT6a5HtWtk3f4vJnW3T96hjjvklO302lAQAAwGzMMsDYFaavJj1s2XWsx/SVr4ctuw4AAACYi53xLSQAAAAAu5QAAwAAAJg9AQYAAAAwewIMAAAAYPYEGAAAAMDsCTAAAACA2RNgAAAAALMnwAAAAABmT4ABAAAAzJ4AAwAAAJg9AQYAAAAwexuWXQDzcugh+2fT8UcvuwwAAAC4DiswAAAAgNkTYAAAAACzJ8AAAAAAZk+AAQAAAMyeAAMAAACYPQEGAAAAMHsCDAAAAGD2BBgAAADA7G1YdgHMy0WXXpGNz3nbssvYpkuOP3rZJQAAALAbWYEBAAAAzJ4AAwAAAJg9AQYAAAAwewIMAAAAYPYEGAAAAMDsCTAAAACA2RNgAAAAALMnwAAAAABmT4ABAAAAzJ4AAwAAAJg9AQYAAAAwewIMAAAAYPYEGAAAAMDsCTAAAACA2RNgAAAAALMnwAAAAABmbykBRtuj2v7AMubemrbPaPuxtq/fCWNd0vbAdfY9ru2zpscvbPvQbfT/0bbPub41AgAAwJ5iw5LmPSrJVUk+uKsmaNskHWN8cztOe1qSh48xPr2LytqmMcbz19Hn1CSn7oZyAAAAYBZ26gqMtj/T9sK2F7T9s7aPbHtW2/Pa/l3b27TdmOSpSX6p7fltH9D2oLZvavvh6ef+03gHtX1n23Pb/nHbz2xe1dD2l9tePP08c2rbOK2geGWSc5M8r+3LV9T35LYvW6P2VyX5niSntv2ltt/e9q+m6zmz7d2mfmu137rtadO1/nGSbuO1em7bT7T9uyTft6L9tW1/fHp8SdsXTNd/Uds7Te3Htv1fK/r/QdsPtv3UinNv0vaVbT/S9q1t/2bzsVVqeUrbTW03XfvlK7ZWNgAAACzFTgsw2t4lyXOTPHiMcfckv5jk/UnuN8a4R5K/TPLsMcYlSV6V5OVjjMPGGO9L8vvT83sneWySV0/D/laSd48x7pnkzUluN811ryRPSnLfJPdL8uS295jO+b4kr5vm/N0kP9p27+nYk5K8ZrX6xxhPTfLZJA8aY7w8yQuSnDfGuFuS30jyuqnrWu2/leT907ynbq51jdfqXkl+Msk9kvxYknuv1TfJZdP1/1GSZ63R5+AkRyZ5RJLjp7YfS7IxyaFJfj7JEWtNMMY4YYxx+Bjj8L322X8rpQAAAMBy7MxbSB6c5OQxxmVJMsb4QttDk5zU9uAkN02y1q0ZD01y58VdH0mSW7bdL4sP5Y+Zxnt728un40cmefMY4+okaXtKkgdkERx8Zoxx5nTO1W3fneQRbT+WZO8xxkXrvJ4jswhTMsZ497TCYv+ttD8wi9AgY4y3rah1NQ+Y6v/yVP/Wbgc5Zfp9zubxV/FX060yH217mxX1v3Fq/5e279nG9QIAAMBs7cwAo0nGFm2vSPKyMcapbY9Kctwa594kyRFjjGuuM+CKRGOVudZy9RbPX53FSomPZ43VF9sxx9hK+8rf67Hevl+dfl+btf9eX13xuFv8BgAAgD3eztwD411JHtf21slir4gk+ye5dDr+xBV9r0yy34rnpyV5+uYnbQ+bHr4/yeOmtocludXUfkaSR7fdp+0tslil8b7VihpjnJXktkken+TE7bieM5I8YZr7qCxu5fjSOtsfvqLWtcZ+TNtvm1aaPHI76lqv9yd57LQXxm2y2DgVAAAA9kg7bQXGGOMjbV+S5L1tr01yXhYrLt7Y9tIkZyb57qn7W5Kc3PZRSX4hyTOS/GHbC6eazshio88XJDmx7TFJ3pvkc0muHGOc2/a1Sc6exnv1GOO8aYPQ1bwhyWFjjK3d1rGl45K8Zqrpy/lWALNW++Zaz51q/T9rDTzVf1KS85N8JmuEL9fTm5I8JMnFSf4+yVlJ7NAJAADAHqljbM9dD7tX25sluXaM8Y22RyT5ozHGYTswzluz2CT0XTu7xjlru+8Y46ppVczZSe4/xviXrZ1zs4PvMA5+4u/tlvquj0uOP3rZJQAAALALtD1njHH4lu07cw+MXeF2Sd7Q9iZJvpbkydtzctsDsvjgfsGNLbyYvHV6DW6a5EXbCi8AAABgrmYdYIwxPpnFV43u6PlfTHLHlW3TaoTVwoyHjDE+v6NzrWZ3zrWaMcZRu3oOAAAA2B1mHWDsClNwcNgNbS4AAAC4IduZ30ICAAAAsEsIMAAAAIDZE2AAAAAAsyfAAAAAAGZPgAEAAADMngADAAAAmD0BBgAAADB7AgwAAABg9gQYAAAAwOxtWHYBzMuhh+yfTccfvewyAAAA4DqswAAAAABmT4ABAAAAzJ4AAwAAAJg9AQYAAAAwewIMAAAAYPYEGAAAAMDsCTAAAACA2RNgAAAAALO3YdkFMC8XXXpFNj7nbcsuY1WXHH/0sksAAABgSazAAAAAAGZPgAEAAADMngADAAAAmD0BBgAAADB7AgwAAABg9gQYAAAAwOwJMAAAAIDZE2AAAAAAsyfAAAAAAGZPgAEAAADMngADAAAAmD0BBgAAADB7AgwAAABg9gQYAAAAwOzt1ACj7VFtf2BnjjlnbQ9r+yPLrmNb2m5s+/hl1wEAAAA7amevwDgqyS4NMLowl5UjhyVZNcBou2H3lrK6qY6NSQQYAAAA7LHWFQS0/Zm2F7a9oO2ftX1k27Pantf279repu3GJE9N8kttz2/7gLYHtX1T2w9PP/efxjuo7Tvbntv2j9t+pu2B07Ffbnvx9PPMqW1j24+1fWWSc5M8r+3LV9T35LYv20r9z2v78WnOE9s+a8V5H56u601t95naf2Ka/4K2Z6wx5k2TvDDJMdP1HtP2uLYntD0tyeumut83Xee5m1enTCtVTm978lTX69t2OnZ8249Or/fvTm2vbfuqaay/b/uIqf3mbV/T9qLpb/Ggqf3Ytm9s+5YkpyU5PskDpjp/aT1/cwAAAJiTba4SaHuXJM9Ncv8xxmVtvz3JSHK/McZo+/NJnj3G+JW2r0py1Rhj8wfvv0jy8jHG+9veLsk7knx/kt9K8u4xxm+3/eEkT5n63yvJk5LcN0mTnNX2vUkuT/J9SZ40xnha21skubDts8cYX5/O+a9r1H94kscmucd0vecmOWc6fMoY439P/V6c5OeSvCLJ85P8lzHGpW0PWG3cMcbX2j4/yeFjjKdPYxyX5F5JjhxjXDMFIj80xvhK2zskOTHJ4dMQ90hylySfTfKBJPdv+9Ekj0lyp+m1XTn3xiQ/mOT2Sd7T9nuT/PeplkPb3inJaW3vOPU/IsndxhhfaHtUkmeNMR6x2rUAAADA3K3nNocHJzl5jHFZkkwfiA9NclLbg5PcNMmn1zj3oUnuPC0uSJJbtt0vyZFZfFDPGOPtbS+fjh+Z5M1jjKuTpO0pSR6Q5NQknxljnDmdc3Xbdyd5RNuPJdl7jHHRGjUcmeSvxxjXTGO+ZcWxu07BxQFJ9s0iYEkWgcJr274hySnbfIWu69TNcyXZO8n/antYkmuT3HFFv7PHGP881XR+FgHFmUm+kuTVbd+W5K0r+r9hjPHNJJ9s+6kkd5qu7RVJMsb4eNvPrJjjnWOML6yn4LZPyRQi7XXLg7brYgEAAGB3WM8tJM1ixcVKr0jyv8YYh2ax8uHmWxn/iDHGYdPPIWOMK6cx15prLVdv8fzVSY7NYvXFa7ZR/1pem+Tp03W8INN1jDGemuQ3k9w2yfltb72VMbZW5y8l+dckd89i5cVNVxz76orH1ybZMMb4RpL7JHlTkkcnefuKPlv+DUa27/Va0xjjhDHG4WOMw/faZ//1ngYAAAC7zXoCjHcledzmD/HTLST7J7l0Ov7EFX2vTLLfiuenJXn65ifTSoQkeX+Sx01tD0tyq6n9jCSPbrvPdJvIY5K8b7WixhhnZREwPD6LWzPW8v4kj5z2i9g3ydErju2X5HNt907yhBV13n6McdYY4/lJLpvmWc2W17ul/ZN8blo58dNJ9tpK30z17T/G+Jskz8xik9DNfqLtTdrePsn3JPlEFq/XE6Zz75jkdlP79tYJAAAAs7bNAGOM8ZEkL0ny3rYXJHlZkuOSvLHt+7L4gL/ZW5I8Ztos8gFJnpHk8GlDyo9msclnsljt8LC25yZ5eJLPJblyjHFuFqsizk5yVpJXjzHO20p5b0jygTHG5Wt1GGN8OItbUC7I4naQTUmumA4/b5rnnUk+vuK035k2xrw4i5DggjWGf08Wt8ic3/aYVY6/MskT256Zxa0d21oVsV+St7a9MMl7s1jBsdknpra/TfLUMcZXpvH3antRkpOSHDvG+Gr+owuTfGPalNQmngAAAOxxOsaWdybshknbmyW5dozxjbZHJPmjMcZhOzDOW7PYJPRd2+i37xjjqmlTzTOSPGUKS/YIbV+b5K1jjJN39Vw3O/gO4+An/t6unmaHXHL80dvuBAAAwB6t7TljjMO3bF/PJp67wu2SvKHtTZJ8LcmTt+fk6ds5zk5ywbbCi8kJbe+cxR4Xf7onhRcAAADAkgKMMcYns/ga0R09/4u57jd6ZNqjY7Uw4yFjjMfv6FzT2P8lyUu3aP70GOMx12fc9RpjHLs75gEAAIC5WtYKjJ1ujPH5XHfTy5059jvyra9YBQAAAHaz9XwLCQAAAMBSCTAAAACA2RNgAAAAALMnwAAAAABmT4ABAAAAzJ4AAwAAAJg9AQYAAAAwewIMAAAAYPYEGAAAAMDsCTAAAACA2RNgAAAAALO3YdkFMC+HHrJ/Nh1/9LLLAAAAgOuwAgMAAACYPQEGAAAAMHsCDAAAAGD2BBgAAADA7AkwAAAAgNkTYAAAAACzJ8AAAAAAZk+AAQAAAMyeAAMAAACYPQEGAAAAMHsCDAAAAGD2BBgAAADA7AkwAAAAgNkTYAAAAACzJ8AAAAAAZk+AAQAAAMyeAAMAAACYPQEGAAAAMHsCDAAAAGD2BBgAAADA7AkwAAAAgNkTYAAAAACz1zHGsmtgRtpemeQTy64DZuzAJJctuwiYMe8R2DrvEdg67xGS5LvGGAdt2bhhGZUwa58YYxy+7CJgrtpu8h6BtXmPwNZ5j8DWeY+wNW4hAQAAAGZPgAEAAADMngCDLZ2w7AJg5rxHYOu8R2DrvEdg67xHWJNNPAEAAIDZswIDAAAAmD0BBgAAADB7AowbqbY/3PYTbf+h7XNWOd62fzAdv7DtPZdRJyzDOt4fd2r7obZfbfusZdQIy7SO98gTpv92XNj2g23vvow6YVnW8R551PT+OL/tprZHLqNOWJZtvUdW9Lt322vb/vjurI/5sgfGjVDbvZL8fZIfSvLPST6c5KfGGB9d0edHkvxCkh9Jct8kvz/GuO8SyoXdap3vj/+U5LuSPDrJ5WOM311CqbAU63yP/ECSj40xLm/78CTH+W8INxbrfI/sm+TqMcZoe7ckbxhj3GkpBcNutp73yIp+70zylSR/MsY4eXfXyvxYgXHjdJ8k/zDG+NQY42tJ/jLJo7bo86gkrxsLZyY5oO3Bu7tQWIJtvj/GGP93jPHhJF9fRoGwZOt5j3xwjHH59PTMJN+5m2uEZVrPe+Sq8a1/RbxFEv+iyI3Jej6LJIt/TH1Tkv+7O4tj3gQYN06HJPmnFc//eWrb3j5wQ+R/+7B12/se+bkkf7tLK4J5Wdd7pO1j2n48yduS/Oxuqg3mYJvvkbaHJHlMklftxrrYAwgwbpy6StuWyf96+sANkf/tw9at+z3S9kFZBBi/tksrgnlZ13tkjPHm6baRRyd50a4uCmZkPe+R30vya2OMa3d9OexJNiy7AJbin5PcdsXz70zy2R3oAzdE/rcPW7eu98h0X/+rkzx8jPH53VQbzMF2/XdkjHFG29u3PXCMcdkurw6Wbz3vkcOT/GXbJDkwyY+0/cYY4692S4XMlhUYN04fTnKHtt/d9qZJfjLJqVv0OTXJz0zfRnK/JFeMMT63uwuFJVjP+wNuzLb5Hml7uySnJPnpMcbfL6FGWKb1vEe+t9Mns+mb3m6aRNDHjcU23yNjjO8eY2wcY2xMcnKSpwkvSKzAuFEaY3yj7dOTvCPJXlns6vuRtk+djr8qyd9k8Q0k/5Dky0metKx6YXdaz/uj7X9OsinJLZN8s+0zk9x5jPGlZdUNu8s6/xvy/CS3TvLK6TPaN8YYhy+rZtid1vkeeWwW/1D09STXJDlmxaaecIO2zvcIrMrXqAIAAACz5xYSAAAAYPYEGAAAAMDsCTAAAACA2RNgAAAAALMnwAAAAABmT4ABAOw0ba9te37bi9u+pe0B2+h/XNtnbaPPo9veecXzF7Z96E6o9bVtf/z6jrOdcz6z7T67c85p3mPbnrhF24Ft/63tzbZyzv/aPRUCwLYJMACAnemaMcZhY4y7JvlCkv++E8Z8dJJ/DzDGGM8fY/zdThh3t2q7V5JnJtntAUaSU5L80BbhyY8nOXWM8dUl1AMA202AAQDsKh9KckiStL1927e3Paft+9reacvObZ/c9sNtL2j7prb7tP2BJD+a5HemlR2337xyou3D275hxflHtX3L9PhhbT/U9ty2b2y779YKbXtJ2/8xnbOp7T3bvqPtP7Z96orxz2j75rYfbfuqtjeZjv1U24umlScvXTHuVdOKkbOSPDfJdyR5T9v3TMf/aJrvI21fsEU9L5jqv2jz69V237avmdoubPvY9VzvGONLSc5I8sgVzT+Z5MS2j2x7Vtvz2v5d29us8vpcZ7VK26tWPP7V6e924cprAICdTYABAOx002qDhyQ5dWo6IckvjDHuleRZSV65ymmnjDHuPca4e5KPJfm5McYHpzF+dVrZ8Y8r+r8zyf3a3mJ6fkySk9oemOQ3kzx0jHHPJJuS/PI6yv6nMcYRSd6X5LVZrFC4X5IXruhznyS/kuTQJLdP8mNtvyPJS5M8OMlhSe7d9tFT/1skuXiMcd8xxguTfDbJg8YYD5qOP3eMcXiSuyX5wbZ3WzHXZVP9fzS9ZknyvCRXjDEOHWPcLcm7t+N6T8witMhU8x2TvCfJ+5Pcb4xxjyR/meTZ63itMo3zsCR3mF6Xw5Lcq+0D13s+AGyPDcsuAAC4Qfm2tucn2ZjknCTvnFYD/ECSN7bd3G+1fRfu2vbFSQ5Ism+Sd2xtojHGN9q+Pckj256c5OgsPnz/YBa3nHxgmu+mWawG2ZbNYctFSfYdY1yZ5Mq2X1mxl8fZY4xPJcm0p8SRSb6e5PQxxr9N7a9P8sAkf5Xk2iRv2sqcj2v7lCz+P9nBU90XTsdOmX6fk+THpscPzRRCTK/B5W0fsc7rfWuSV7a9ZZLHJTl5jHFt2+/MIvg5eDr301upd0sPm37Om57vm0WgccZ2jAEA6yLAAAB2pmvGGIe13T+LD8z/PYvVDF8cYxy2jXNfm+TRY4wL2h6b5Kh1zHfSNMcXknx4jHFlF5/i3znG+KntrH3zXhDfXPF48/PN/59pbHHOSNKs7StjjGtXO9D2u7NYWXHvKYh4bZKbr1LPtSvm7yo1rOt6xxjXTIHPY7IIQX5pOvSKJC8bY5za9qgkx61y+jcyrdydXt+brpj7t8cYf7y1uQFgZ3ALCQCw040xrkjyjCw+oF+T5NNtfyJZfABue/dVTtsvyefa7p3kCSvar5yOreb0JPdM8uQswowkOTPJ/dt+7zTfPm3veP2u6N/dp+13T3tfHJPF7RdnZXH7x4HTrTM/leS9a5y/8lpumeTqJFdM+048fB3zn5bk6ZuftL1Vtu96T8zi9pLbTOclyf5JLp0eP3GN8y5Jcq/p8aOS7D09fkeSn92850bbQ9r+p3VcBwBsNwEGALBLjDHOS3JBFv/a/4QkP9f2giQfyeJD8Jael0UY8M4kH1/R/pdJfnXaZPL2W8xxbRYrPR4+/c50K8exWWxQeWEWH9T/w6ahO+hDSY5PcnEWt1q8eYzxuSS/nsV+EhckOXeM8ddrnH9Ckr9t+54xxgVZ3HrxkSR/kuQD65j/xUluNW0WekEW+2lsz/WelsVGoieNMTav5Dgui9t73pfksjXO+99ZhDRnJ7lvFsFLxhinJfmLJB9qe1GSk7N22AQA10u/9d8uAADWMt1e8awxxiOWXAoA3ChZgQEAAADMnhUYAAAAwOxZgQEAAADMngADAAAAmD0BBgAAADB7AgwAAABg9gQYAAAAwOz9/41pBMA77npiAAAAAElFTkSuQmCC\n", "text/plain": [ "
    " ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# Import model scorecard of second model (without protected attribute as model feature) from external python file\n", "# Same steps taken as the first model, excluding irrelevant tests\n", "\n", "# Model card to be compared with that of first model\n", "from model_without_protected_attributes import mc2, mct2" ] }, { "cell_type": "code", "execution_count": 17, "id": "30966c89", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<!DOCTYPE html>\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", " Model Card for Credit Card Fraud Model\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "

    \n", "\n", " Model Card for Credit Card Fraud Model\n", "\n", "

    \n", "\n", "
    \n", "\n", "
    \n", "\n", "

    Model Details

    \n", "\n", "

    Overview

    \n", "\n", " Sample example of a risk assessment of a credit card fraud model. Binary prediction problem (fraud or no fraud). Customers flagged as potentially fraudulent will be passed to internal investigation team for follow-up.\n", "\n", "

    Version

    \n", "\n", " \n", "\n", " \n", "\n", "
    name: v1
    \n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", "

    Owners

    \n", "\n", " \n", "\n", " \n", "\n", "
  • Timothy, Product Owner(s)
  • \n", "\n", " \n", "\n", "
  • Swan, Model Developer(s)
  • \n", "\n", " \n", "\n", "
  • Jason, Reviewer(s)
  • \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "

    Regulatory requirements

    \n", "\n", " MAS Fairness, Ethics, Accountability and Transparency (FEAT) principles\n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "

    Considerations

    \n", "\n", " \n", "\n", "

    Intended Users

    \n", "\n", " \n", "\n", " \n", "\n", "
      \n", "\n", " \n", "\n", "
    • Credit card fraud team and credit card holders
    • \n", "\n", " \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", "

    Use Cases

    \n", "\n", " \n", "\n", " \n", "\n", "
      \n", "\n", " \n", "\n", "
    • Increase accuracy of predicting credit card fraud over the existing rule-based model, saving the bank time and energy for each false positive case and avoiding reputation harm from false negative cases.
    • \n", "\n", " \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "

    Fairness Considerations

    \n", "\n", "
      \n", "\n", "
    • \n", "\n", "
      Group at risk: race, age, gender
      \n", "\n", "
      Benefits: A more precise model will reduce the number of customers being mistakenly labelled as fraudulent in the existing rules based model, which takes 7 man-days to resolve before a credit card could be unfrozen.
      \n", "\n", "
      Harms: Customers who are in the false-positive category will have their credit card frozen and may be excluded from the financial services of the bank for up to 7 days.
      \n", "\n", "
      Mitigation Strategy: Because there is less data for certain demographic groups (e.g. youth, elderly), the model can have much higher/lower false-positive rates for that segment than that of others. We will prioritize such cases after the initial model score to add a 2nd level of check and minimise disruption to the customer.
      \n", "\n", "
    \n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "

    Datasets

    \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", "

    Credit Card Dataset

    \n", "\n", "

    Standard credit card dataset

    \n", "\n", " \n", "\n", "

    Sensitive data

    \n", "\n", "
      \n", "\n", " \n", "\n", "
    • age
    • \n", "\n", " \n", "\n", "
    • gender
    • \n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", "

    Sensitive data used in model

    \n", "\n", "
      \n", "\n", " \n", "\n", "
    • age
    • \n", "\n", " \n", "\n", "
    • gender
    • \n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "

    Justification

    \n", "\n", "

    Age and gender is an important predictor of credit card fraud

    \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", "

    CRM

    \n", "\n", "

    Customer information database

    \n", "\n", " \n", "\n", "

    Sensitive data

    \n", "\n", "
      \n", "\n", " \n", "\n", "
    • age
    • \n", "\n", " \n", "\n", "
    • gender
    • \n", "\n", " \n", "\n", "
    • race
    • \n", "\n", " \n", "\n", "
    • religion
    • \n", "\n", " \n", "\n", "
    • id
    • \n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", "

    Sensitive data used in model

    \n", "\n", "
      \n", "\n", " \n", "\n", "
    • age
    • \n", "\n", " \n", "\n", "
    • gender
    • \n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "

    Justification

    \n", "\n", "

    Age and gender is an important predictor of credit card fraud

    \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", " \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "

    Quantitative Analysis

    \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "

    Recall - 0.958 (Training Set)

    \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "

    Precision - 0.981 (Training Set)

    \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", " \n", "\n", "
    Confusion matrix and ROC Curve
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " None\n", "\n", "
    \n", "\n", " \n", "\n", "
    \n", "\n", " None\n", "\n", "
    \n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "

    Recall - 0.711 (Test Set)

    \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "

    Precision - 0.858 (Test Set)

    \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", " \n", "\n", "
    Confusion matrix and ROC Curve
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " None\n", "\n", "
    \n", "\n", " \n", "\n", "
    \n", "\n", " None\n", "\n", "
    \n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "

    Explainability Analysis

    \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "

    Top 10 most important features

    \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " Feature Importance Plot\n", "\n", "
    \n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "

    Fairness Analysis

    \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "

    Minimum acceptable service

    \n", "\n", " \n", "\n", "
    \n", "\n", " Segment: \n", "\n", " Age and gender \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " Description: \n", "\n", " False positive rate for the credit scoring model should be below 2.5% which is the existing average false positive rate of the rule based model \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", "

    ROC/Min Max Threshold Test

    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " Description: \n", "\n", " Test if the fpr of the subgroups within gender \n", "is lower than the threshold of 0.025.\n", " \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " Threshold: \n", "\n", " 0.025 \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " Result: \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "\n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    fpr at current probability thresholdpassed\r", "
    gender_M0.06False\r", "
    gender_F0.059False\r", "
    \n", "\n", "\n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    Failed
    \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " ROC Curve of gender groups\n", "\n", "
    \n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", "

    ROC/Min Max Threshold Test

    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " Description: \n", "\n", " Test if the fpr of the subgroups within age \n", "is lower than the threshold of 0.025.\n", " \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " Threshold: \n", "\n", " 0.025 \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " Result: \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "\n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    fpr at current probability thresholdpassed\r", "
    age_>=650.06False\r", "
    age_26-390.061False\r", "
    age_40-640.059False\r", "
    age_<=250.052False\r", "
    \n", "\n", "\n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    Failed
    \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " ROC Curve of age groups\n", "\n", "
    \n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "

    Equal false positive rate

    \n", "\n", " \n", "\n", "
    \n", "\n", " Segment: \n", "\n", " Age and gender \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " Description: \n", "\n", " Disparity ratio of false positive rates of any 2 bins in the respective attribute should not be more than a factor of 1.5 \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", "

    Subgroup Disparity Test

    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " Description: \n", "\n", " Test if the maximum ratio of the false postive rate of any 2\n", "groups within age attribute exceeds 1.5. To\n", "pass, this value cannot exceed the threshold. \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " Threshold: \n", "\n", " 1.5 \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " Result: \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "\n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    age_fpr_max_ratio\r", "
    01.175\r", "
    \n", "\n", "\n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    Passed
    \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " False Positive Rates across age subgroups\n", "\n", "
    \n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", "

    Subgroup Disparity Test

    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " Description: \n", "\n", " Test if the maximum ratio of the false postive rate of any 2\n", "groups within gender attribute exceeds 1.5. To\n", "pass, this value cannot exceed the threshold. \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " Threshold: \n", "\n", " 1.5 \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " Result: \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "\n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    gender_fpr_max_ratio\r", "
    01.013\r", "
    \n", "\n", "\n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    Passed
    \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " False Positive Rates across gender subgroups\n", "\n", "
    \n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", "\n", "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Export to html\n", "html2 = mct2.export_format(output_file=\"credit_card_fraud_example2.html\")\n", "display.display(display.HTML(html2))" ] }, { "cell_type": "markdown", "id": "5390c1ff", "metadata": {}, "source": [ "## Comparision between 2 model cards" ] }, { "cell_type": "code", "execution_count": 18, "id": "30e47e80", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<!DOCTYPE html>\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "Model Card Comparison\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
    \n", "\n", "
    \n", "\n", "

    Credit Card Fraud Model

    \n", "\n", "
    \n", "\n", "
    \n", "\n", "

    Credit Card Fraud Model, without protected attributes as model features

    \n", "\n", "
    \n", "\n", "
    \n", "\n", "\n", "\n", "\n", "\n", "

    Performance Metrics

    \n", "\n", " \n", "\n", "\n", "\n", "
    \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", "

    Recall - 0.936

    \n", "\n", " \n", "\n", "
    \n", "\n", " Slice: \n", "\n", " Training Set \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", "
    \n", "\n", "
    \n", "\n", "

    Recall - 0.958

    \n", "\n", " \n", "\n", "
    \n", "\n", " Slice: \n", "\n", " Training Set \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", "
    \n", "\n", "\n", "\n", "
    \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", "

    Precision - 0.998

    \n", "\n", " \n", "\n", "
    \n", "\n", " Slice: \n", "\n", " Training Set \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", " \n", "\n", "
    Confusion matrix and ROC Curve
    \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", " None\n", "\n", "
    \n", "\n", "
    \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", " None\n", "\n", "
    \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", "
    \n", "\n", "
    \n", "\n", "

    Precision - 0.981

    \n", "\n", " \n", "\n", "
    \n", "\n", " Slice: \n", "\n", " Training Set \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", " \n", "\n", "
    Confusion matrix and ROC Curve
    \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", " None\n", "\n", "
    \n", "\n", "
    \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", " None\n", "\n", "
    \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", "
    \n", "\n", "\n", "\n", "
    \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", "

    Recall - 0.77

    \n", "\n", " \n", "\n", "
    \n", "\n", " Slice: \n", "\n", " Test Set \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", "
    \n", "\n", "
    \n", "\n", "

    Recall - 0.711

    \n", "\n", " \n", "\n", "
    \n", "\n", " Slice: \n", "\n", " Test Set \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", "
    \n", "\n", "\n", "\n", "
    \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", "

    Precision - 0.955

    \n", "\n", " \n", "\n", "
    \n", "\n", " Slice: \n", "\n", " Test Set \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", " \n", "\n", "
    Confusion matrix and ROC Curve
    \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", " None\n", "\n", "
    \n", "\n", "
    \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", " None\n", "\n", "
    \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", "
    \n", "\n", "
    \n", "\n", "

    Precision - 0.858

    \n", "\n", " \n", "\n", "
    \n", "\n", " Slice: \n", "\n", " Test Set \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", " \n", "\n", "
    Confusion matrix and ROC Curve
    \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", " None\n", "\n", "
    \n", "\n", "
    \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", " None\n", "\n", "
    \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", "
    \n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "

    Explainability Reports

    \n", "\n", " \n", "\n", "\n", "\n", "
    \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", "

    Top 10 most important features

    \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", " Feature Importance Plot\n", "\n", "
    \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", "
    \n", "\n", "
    \n", "\n", "

    Top 10 most important features

    \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", " Feature Importance Plot\n", "\n", "
    \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", "
    \n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "

    Fairness Reports

    \n", "\n", " \n", "\n", "\n", "\n", "
    \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", "

    Minimum acceptable service

    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " Segment: \n", "\n", " Age and gender \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " Description: \n", "\n", " False positive rate for the credit scoring model should be below 2.5% which is the existing average false positive rate of the rule based model \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", "

    ROC/Min Max Threshold Test

    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " Description: \n", "\n", " Test if the fpr of the subgroups within gender \n", "is lower than the threshold of 0.025.\n", " \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " Threshold: \n", "\n", " 0.025 \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " Result: \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "\n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    fpr at current probability thresholdpassed\r", "
    gender_M0.009True\r", "
    gender_F0.024True\r", "
    \n", "\n", "\n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    Passed
    \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", " ROC Curve of gender groups\n", "\n", "
    \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", "

    ROC/Min Max Threshold Test

    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " Description: \n", "\n", " Test if the fpr of the subgroups within age \n", "is lower than the threshold of 0.025.\n", " \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " Threshold: \n", "\n", " 0.025 \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " Result: \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "\n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    fpr at current probability thresholdpassed\r", "
    age_>=650.011True\r", "
    age_26-390.021True\r", "
    age_40-640.024True\r", "
    age_<=250.012True\r", "
    \n", "\n", "\n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    Passed
    \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", " ROC Curve of age groups\n", "\n", "
    \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", "
    \n", "\n", "
    \n", "\n", "

    Minimum acceptable service

    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " Segment: \n", "\n", " Age and gender \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " Description: \n", "\n", " False positive rate for the credit scoring model should be below 2.5% which is the existing average false positive rate of the rule based model \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", "

    ROC/Min Max Threshold Test

    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " Description: \n", "\n", " Test if the fpr of the subgroups within gender \n", "is lower than the threshold of 0.025.\n", " \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " Threshold: \n", "\n", " 0.025 \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " Result: \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "\n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    fpr at current probability thresholdpassed\r", "
    gender_M0.06False\r", "
    gender_F0.059False\r", "
    \n", "\n", "\n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    Failed
    \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", " ROC Curve of gender groups\n", "\n", "
    \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", "

    ROC/Min Max Threshold Test

    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " Description: \n", "\n", " Test if the fpr of the subgroups within age \n", "is lower than the threshold of 0.025.\n", " \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " Threshold: \n", "\n", " 0.025 \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " Result: \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "\n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    fpr at current probability thresholdpassed\r", "
    age_>=650.06False\r", "
    age_26-390.061False\r", "
    age_40-640.059False\r", "
    age_<=250.052False\r", "
    \n", "\n", "\n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    Failed
    \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", " ROC Curve of age groups\n", "\n", "
    \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", "
    \n", "\n", "\n", "\n", "
    \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", "

    Equal false positive rate

    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " Segment: \n", "\n", " Age and gender \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " Description: \n", "\n", " Disparity ratio of false positive rates of any 2 bins in the respective attribute should not be more than a factor of 1.5 \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", "

    Subgroup Disparity Test

    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " Description: \n", "\n", " Test if the maximum ratio of the false postive rate of any 2\n", "groups within age attribute exceeds 1.5. To\n", "pass, this value cannot exceed the threshold. \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " Threshold: \n", "\n", " 1.5 \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " Result: \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "\n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    age_fpr_max_ratio\r", "
    02.094\r", "
    \n", "\n", "\n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    Failed
    \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", " False Positive Rates across age subgroups\n", "\n", "
    \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", "

    Subgroup Disparity Test

    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " Description: \n", "\n", " Test if the maximum ratio of the false postive rate of any 2\n", "groups within gender attribute exceeds 1.5. To\n", "pass, this value cannot exceed the threshold. \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " Threshold: \n", "\n", " 1.5 \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " Result: \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "\n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    gender_fpr_max_ratio\r", "
    02.574\r", "
    \n", "\n", "\n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    Failed
    \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", " False Positive Rates across gender subgroups\n", "\n", "
    \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", "
    \n", "\n", "
    \n", "\n", "

    Equal false positive rate

    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " Segment: \n", "\n", " Age and gender \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " Description: \n", "\n", " Disparity ratio of false positive rates of any 2 bins in the respective attribute should not be more than a factor of 1.5 \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", "

    Subgroup Disparity Test

    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " Description: \n", "\n", " Test if the maximum ratio of the false postive rate of any 2\n", "groups within age attribute exceeds 1.5. To\n", "pass, this value cannot exceed the threshold. \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " Threshold: \n", "\n", " 1.5 \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " Result: \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "\n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    age_fpr_max_ratio\r", "
    01.175\r", "
    \n", "\n", "\n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    Passed
    \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", " False Positive Rates across age subgroups\n", "\n", "
    \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", "

    Subgroup Disparity Test

    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " Description: \n", "\n", " Test if the maximum ratio of the false postive rate of any 2\n", "groups within gender attribute exceeds 1.5. To\n", "pass, this value cannot exceed the threshold. \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " Threshold: \n", "\n", " 1.5 \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", " Result: \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "\n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    gender_fpr_max_ratio\r", "
    01.013\r", "
    \n", "\n", "\n", "\n", " \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    Passed
    \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", " False Positive Rates across gender subgroups\n", "\n", "
    \n", "\n", "
    \n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", "
    \n", "\n", "\n", "\n", " \n", "\n", " \n", "\n", "
    \n", "\n", "
    \n", "\n", "
    \n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Compare the score cards (on the same content) between model1 and model2\n", "html_compare=mct.compare_model_cards(mc, mc2, export_path='model_card_output/model_cards/credit_card_fraud_comparision.html')\n", "display.display(display.HTML(html_compare))" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.8" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": {}, "version_major": 2, "version_minor": 0 } } }, "nbformat": 4, "nbformat_minor": 5 }